留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超轻质石英/酚醛复合材料烧蚀行为与多物理场数值模拟

闫晓杰 金翔宇 黄鹤 范召林 张幸红 洪长青

闫晓杰, 金翔宇, 黄鹤, 等. 超轻质石英/酚醛复合材料烧蚀行为与多物理场数值模拟[J]. 复合材料学报, 2024, 41(9): 4776-4790. doi: 10.13801/j.cnki.fhclxb.20240418.002
引用本文: 闫晓杰, 金翔宇, 黄鹤, 等. 超轻质石英/酚醛复合材料烧蚀行为与多物理场数值模拟[J]. 复合材料学报, 2024, 41(9): 4776-4790. doi: 10.13801/j.cnki.fhclxb.20240418.002
YAN Xiaojie, JIN Xiangyu, HUANG He, et al. Ablation behavior and multi-physical field numerical simulation of ultra-lightweight quartz/phenolic composite[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4776-4790. doi: 10.13801/j.cnki.fhclxb.20240418.002
Citation: YAN Xiaojie, JIN Xiangyu, HUANG He, et al. Ablation behavior and multi-physical field numerical simulation of ultra-lightweight quartz/phenolic composite[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4776-4790. doi: 10.13801/j.cnki.fhclxb.20240418.002

超轻质石英/酚醛复合材料烧蚀行为与多物理场数值模拟

doi: 10.13801/j.cnki.fhclxb.20240418.002
基金项目: 国家自然科学基金(51872066;52032003;U20B2017)
详细信息
    通讯作者:

    张幸红,博士,教授,硕士生/博士生导师,研究方向为超高温复合材料与热防护 E-mail: zhangxh@hit.edu.cn

    洪长青,博士,教授,硕士生/博士生导师,研究方向为超轻质烧蚀型复合材料防隔热机制与评价 E-mail: hongcq@hit.edu.cn

  • 中图分类号: TB332

Ablation behavior and multi-physical field numerical simulation of ultra-lightweight quartz/phenolic composite

Funds: National Natural Science Foundation of China (51872066; 52032003; U20B2017)
  • 摘要: 基于超轻质石英/酚醛复合材料的烧蚀防热机制,建立了包含二氧化硅相变的复合材料烧蚀多物理场模型,预测了超轻质石英/酚醛复合材料的表背面温度、热解度、不同层厚度及孔隙压力分布。数值模拟通过计算获得了表面二氧化硅液态层厚度变化规律,模型预测的温度结果与烧蚀实验中测量结果吻合。根据各项传热模式的热流分析结果可见,对防/隔热机制影响最主要的是热辐射、热阻塞和二氧化硅气化。针对超轻质石英/酚醛复合材料的典型服役工况,采用0.5~2.5 MW/m2之间热流密度作为环境输入参数,研究了不同热流密度条件下超轻质石英/酚醛复合材料的烧蚀行为,结果表明:超轻质石英/酚醛复合材料表面烧蚀后退量随热流密度的增加而增加;热流密度小于1.5 MW/m2时表面液态层厚度随热流密度的增加而增加,热流密度大于1.5 MW/m2时表面液态层厚度基本保持不变。该模型为深入研究超轻质石英/酚醛复合材料的烧蚀机制提供一定的指导。

     

  • 图  1  超轻质石英/酚醛复合材料高温烧蚀示意图

    Figure  1.  High temperature ablation schematic diagram of ultra-light quartz fiber reinforced phenolic composite

    图  2  氧乙炔烧蚀试验示意图:(a)烧蚀试验前;(b)烧蚀试验后

    Figure  2.  Schematic diagram of oxyacetylene ablation test: (a) Before the ablation test; (b) After the ablation test

    图  3  超轻质石英纤维/酚醛多物理场烧蚀模型边界条件设置:(a)热流边界条件;(b)压力边界条件

    q0—Heat flux; T0—Temperature; P0—Pressure

    Figure  3.  Boundary condition of a multi-physics field ablation model for lightweight quartz fiber phenolic composite: (a) Heat flux boundary condition; (b) Pressure boundary condition

    图  4  超轻质石英纤维/酚醛复合材料背面4 mm处烧蚀温度曲线

    Figure  4.  Temperature curves at 4 mm on the back of ultra-lightweight quartz/phenolic composite

    图  5  超轻质石英纤维/酚醛复合材料烧蚀后试验结果分析:(a)烧蚀后材料截面图;(b)表面液态层微观形貌;(c)炭化层微观形貌;(d)热解层微观形貌;(e)原始层微观形貌;(f)炭化层硅元素分布;(g)炭化层氧元素分布;(h)炭化层碳元素分布;(i)炭化层不同元素含量占比

    Figure  5.  Analysis of experimental results after ablation of ultra-lightweight quartz/phenolic composite: (a) Cross section view of composite after ablation; (b) Microstructure of surface liquid layer; (c) Microstructure of charring layer; (d) Microstructure of pyrolysis layer; (e) Microstructure of virgin layer; (f) Distribution of silicon element in charring layer; (g) Distribution of oxygen element in charring layer; (h) Distribution of carbon element in charring layer; (i) Proportion of different element contents in charring layer

    图  6  超轻质石英纤维/酚醛复合材料在1.5 MW/m2热流密度条件下不同物理量演化规律:(a)不同深度温度曲线;(b)不同层分布规律;(c)不同深度热解度分布;(d)不同深度和不同层孔隙压力分布

    Figure  6.  Evolution of different physical quantities in ultra-lightweight quartz/phenolic composite under 1.5 MW/m2: (a) Temperature curves at different depths; (b) Different layer distribution patterns; (c) Distribution of pyrolysis degree at different depths; (d) Pore pressure distribution at different depths

    图  7  超轻质石英/酚醛复合材料温度场分布云图:加热阶段:(a) 30 s;(b) 60 s;(c) 90 s;冷却阶段:(d) 100 s;(e) 150 s;(f) 200 s

    Figure  7.  Temperature field distribution of ultra-lightweight quartz/phenolic composite: Heating stage: (a) 30 s; (b) 60 s; (c) 90 s; Cooling stage: (d) 100 s; (e) 150 s; (f) 200 s

    图  8  超轻质石英纤维/酚醛复合材料不同层分布云图:加热阶段:(a) 30 s;(b) 60 s;(c) 90 s;冷却阶段:(d) 100 s;(e) 150 s;(f) 200 s

    Figure  8.  Different layer distribution of ultra-lightweight quartz/phenolic composite: Heating stage: (a) 30 s; (b) 60 s; (c) 90 s; Cooling stage: (d) 100 s; (e) 150 s; (f) 200 s

    图  9  超轻质石英/酚醛复合材料孔隙压力分布云图:加热阶段:(a) 30 s;(b) 60 s;(c) 90 s;冷却阶段:(d) 100 s;(e) 150 s;(f) 200 s

    Figure  9.  Pore pressure distribution of ultra-lightweight quartz/phenolic composite: Heating stage: (a) 30 s; (b) 60 s; (c) 90 s; Cooling stage: (d) 100 s; (e) 150 s; (f) 200 s

    图  10  超轻质石英纤维/酚醛复合材料防/隔热机制中各项热效应等效热流及不同热流密度表背面温度曲线

    Tmax—Maximum surface temperature of the material

    Figure  10.  Equivalent heat flux of various thermal effects and temperature curves on the back surface of different heat flux densities in the prevention/insulation mechanism of ultra-lightweight quartz fiber/phenolic composite

    图  11  不同热流密度条件下90 s时刻超轻质石英/酚醛复合材料不同层分层规律(加热时间:90 s):(a) 0.5 MW/m2;(b) 1.0 MW/m2;(c) 1.5 MW/m2;(d) 2.0 MW/m2;(e) 2.5 MW/m2

    Figure  11.  Pattern of different layers of ultra-lightweight quartz/phenolic composite at 90 s under different heat flux density conditions (heating time: 90 s): (a) 0.5 MW/m2; (b) 1.0 MW/m2; (c) 1.5 MW/m2; (d) 2.0 MW/m2; (e) 2.5 MW/m2

    表  1  超轻质石英/酚醛复合材料烧蚀后各层厚度实验与模拟结果(单位:mm)

    Table  1.   Experimental and simulation results of the thickness of each layer of ultra-lightweight quartz/phenolic composite material after ablation (Unit: mm)

    Different layer Experiment Simulation Difference
    Ablation retreat 1.85 1.10 0.75
    Liquid layer 0.97 0.90 0.07
    Charring layer 12.50 10.03 2.47
    Pyrolysis layer 7.29 8.76 1.47
    Virgin layer 7.39 9.22 2.00
    下载: 导出CSV

    表  1  超轻质石英/酚醛复合材料性能参数

    Table  1.   Performance parameters of ultra-lightweight quartz/phenolic composite

    Performance parameter Value Unit
    The virgin material density of silica as a solid state, $ {\rho _{{\text{vs}}}} $ 312.56 kg/m3
    The charring material density of silica as a solid state, $ {\rho _{{\text{cs}}}} $ 250.17 kg/m3
    The charring material density of silica as a liquid state, $ {\rho _{{\text{cl}}}} $ 550.24 kg/m3
    The porosity of virgin material of silica as a solid state, $ {\phi _{{\text{vs}}}} $ 0.78
    The porosity of charring material of silica as solid state, $ {\phi _{{\text{cs}}}} $ 0.88
    The porosity of charring material of silica as liquid state, $ {\phi _{{\text{cl}}}} $ 0.45
    The specific heat capacity of virgin material of silica as a solid state, $ {c_{{\text{pvs}}}} $ 1628.7+0.976T J/(kg·K)
    The specific heat capacity of charring material of silica as a solid state, $ {c_{{\text{pcs}}}} $ 954.80+0.764T J/(kg·K)
    The specific heat capacity of charring material of silica as a liquid state, $ {c_{{\text{pcl}}}} $ 1250.45+0.544T J/(kg·K)
    The latent heat of silica phase transition, $ L $ 333 kJ/kg
    The pyrolysis gas specific heat capacity of phenolic, $ {c_{{\text{pg}}}} $ 2103.35+1.05T J/(kg·K)
    The gas specific heat rate, $ \gamma $ 1.401–8.63×105T
    The permeability of virgin material of silica as a solid state, $ {\lambda _{{\text{vs}}}} $ 1.33×10−11 m2
    The permeability of charring material of silica as a solid state, $ {\lambda _{{\text{cs}}}} $ 3.81×10−11 m2
    The permeability of charring material of silica as a liquid state, $ {\lambda _{{\text{cl}}}} $ 0.84×10−11 m2
    The thermal conductivity of virgin material of silica as a solid state, $ {k_{{\text{vs}}}} $ 0.05+4.05×10−5 W/(m·K)
    The thermal conductivity of charring material of silica as a solid state, $ {k_{{\text{cs}}}} $ 0.316+9.76×10−5 W/(m·K)
    The thermal conductivity of virgin material of silica as a liquid state, $ {k_{{\text{cl}}}} $ 0.15+4.05×10−5 W/(m·K)
    The thermal conductivity of pyrolysis gas, $ {k_{\text{g}}} $ 0.0246 W/(m·K)
    The emissivity of virgin material of silica as a solid state, $ {\varepsilon _{{\text{vs}}}} $ 0.80
    The emissivity of charring material of silica as a solid state, $ {\varepsilon _{{\text{cs}}}} $ 0.90
    The emissivity of virgin material of silica as a liquid state, $ {\varepsilon _{{\text{cl}}}} $ 0.95
    The phenolic pyrolysis pre exponential factor, $ A $ 3.3×105 1/s
    The activation energy of phenolic pyrolysis, $ E $ 74.8 kJ/mol
    The pyrolysis gas viscosity coefficient, $ {\bar \mu _{\text{g}}} $ 14.8×10−5+25×10−8T Pa·s
    The pyrolysis gas average molar mass, $ {\bar M_{\text{g}}} $ 0.01835 kg/mol
    The latent heat of silica gasification, $ {H_{\text{v}}} $ 12868 kJ/kg
    The standard atmospheric pressure, $ {P_0} $ 1×105 Pa
    The gasification temperature of silica, $ {H_{\text{b}}} $ 2500
    The density of silica, $ {\rho _{\text{f}}} $ 2200 kg/m3
    The volume ablation rate of silica, $ {J_{\text{f}}} $ 6.6×103 kg/(m3·s−1)
    The thermal conductivity of silica, $ {k_{\text{f}}} $ 1.3 W/(m·K)
    The specific heat capacity of silica, $ {C_{\text{f}}} $ 650 J/(kg·K)
    The tensile strength of composite, $ {\sigma _{{\text{mT}}}} $ 220 MPa
    The mechanical erosion activation energy, $ {E_{\text{A}}} $ 9.8×103 J/mol
    The average molar mass of air, $ {M_{\text{a}}} $ 0.02896 kg/mol
    The boundary layer air recovery enthalpy, $ {h_{{\text{re}}}} $ 35 MJ/kg
    The gas constant, $ R $ 8.314 J/(mol·K)
    The Boltzmann constant, $ m $ 1.38×10−23 J/K
    The gasification coefficient of silica, $ \beta $ 0.84
    The molecular weight of silica, $ m $ 60×1.674×10−27 kg
    The average specific heat of surface ablative materials, $ {c_{\text{p}}} $ 700 J/(kg·K)
    The content of phenolic, $ {f_{\text{p}}} $ 0.455
    The carbon residue rate of phenolic, $ \xi $ 0.564
    The relative molar mass of carbon atoms, $ {M_{\text{C}}} $ 0.012 kg/mol
    The relative molar mass of oxygen atoms, $ {M_{\text{O}}} $ 0.016 kg/mol
    下载: 导出CSV
  • [1] 姜贵庆, 刘连元. 高速气流传热与烧蚀热防护[M]. 北京: 国防工业出版社, 2003: 52-93.

    JIANG Guiqing, LIU Lianyuan. Heat transfer of hypersonic gas and ablation thermal protection[M]. Beijing: National Defense Industry Press, 2003: 52-93(in Chinese).
    [2] 张睿, 祝文祥, 张澳, 等. 烧蚀型热防护系统概率设计与可靠性评估方法研究[J]. 计算力学学报, 2023, 21(8): 4708.

    ZHANG Rui, ZHU Wenxiang, ZHANG Ao, et al. Probabilistic design and reliability assessment methods for ablative thermal protection systems[J]. Chinese Journal of Computational Mechanics, 2023, 21(8): 4708(in Chinese).
    [3] 韩杰才, 洪长青, 张幸红, 等. 新型超轻质热防护复合材料的研究进展[J]. 载人航天, 2015, 21(4): 315-321. doi: 10.3969/j.issn.1674-5825.2015.04.001

    HAN Jiecai, HONG Changqing, ZHANG Xinghong, et al. Research progress of novel lightweight thermal protection composites[J]. Manned Spaceflight, 2015, 21(4): 315-321(in Chinese). doi: 10.3969/j.issn.1674-5825.2015.04.001
    [4] JIN X Y, LIU C, HUANG H, et al. Multiscale, elastic, and low-density carbon fibre/siliconoxy carbide-phenolic interpenetrating aerogel nanocomposite for ablative thermal protection[J]. Composites Part B: Engineering, 2022, 217(1): 109100.
    [5] YAN X J, HUANG H, FAN Z L, et al. Assessment of a 3D ablation material response model for ultra-lightweight quartz/phenolic composite[J]. Polymer Composites, 2022, 43(4): 8341-8355.
    [6] LIANG H R, LI W J, WANG T K, et al. Optimal design of three-dimensional thermal protection structure considering orthotropic properties of woven composites based on Micro-CT image[J]. International Journal of Thermal Sciences, 2023, 194(7): 108579.
    [7] 张军, 许阳阳, 张运法, 等. 石英灯辐射加热条件下低密度碳/酚醛复合材料高温响应及分析[J]. 装备环境工程, 2020, 17(1): 51-57.

    ZHANG Jun, XU Yangyang, ZHANG Yunfa, et al. High temperature response and analysis of low density carbon fiber/phenolic composites under quartz lamp radiation heating[J]. Equipment Environmental Engineering, 2020, 17(1): 51-57(in Chinese).
    [8] PESCI P G S, DE PAULA E SILVA H, RITA C C P, et al. The effect of environment in carbon-phenolic composite ablation[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 500(43): 1-16.
    [9] PAN Y W, JIN X Y, WANG H B, et al. Nano-TiO2 coated needle carbon fiber reinforced phenolic aerogel composite with low density, excellent heat-insulating and infrared radiation shielding performance[J]. Journal of Materials Science & Technology, 2023, 152(12): 181-189.
    [10] WANG H B, QUAN X, YIN L, et al. Lightweight quartz fiber fabric reinforced phenolic aerogel with surface densified and graded structure for high temperature thermal protection[J]. Composites Part A: Applied Science and Manufacturing, 2022, 159(5): 109798.
    [11] CAI H X, NIU B, QIAN Z, et al. Mechanical, thermal insulation, and ablation behaviors of needle-punched fabric reinforced nanoporous phenolic composites: The role of anisotropic microstructure[J]. Composites Science and Technology, 2024, 245(8): 110325.
    [12] 陈海龙, 方国东, 李林杰, 等. 高硅氧/酚醛复合材料热-力-化学多物理场耦合计算[J]. 复合材料学报, 2014, 81(8): 533-540.

    CHEN Hailong, FANG Guodong, LI Linjie, et al. Multi-physical field coupling calculation of silica/phenolic composites under thermal-mechanical-chemical condition[J]. Acta Materiae Compositae Sinica, 2014, 81(8): 533-540(in Chinese).
    [13] 李林杰, 方国东, 易法军, 等. 高硅氧/酚醛复合材料热变形实验测试及表面烧蚀形貌分析[J]. 固体火箭技术, 2015, 38(3): 445-450.

    LI Linjie, FANG Guodong, YI Fajun, et al. Thermal deformation test and surface ablative morphology analysis of silica/phenolic composites[J]. Journal of Solid Rocket Technology, 2015, 38(3): 445-450(in Chinese).
    [14] SHI S B, LI L J, LIANG J, et al. Surface and volumetric ablation behaviors of SiFRP composites at high heating rates for thermal protection applications[J]. International Journal of Heat and Mass Transfer, 2016, 102(11): 1190-1198.
    [15] 宋若康, 张梦珊, 戴珍, 等. 烧蚀型防热/吸波多功能一体化复合材料的制备及性能[J]. 复合材料学报, 2024, 41(1): 252-261.

    SONG Ruokang, ZHANG Mengshan, DAI Zhen, et al. Preparation and properties of multi-functional composite integrated with heat-shielding and radar-absorbing[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 252-261(in Chinese).
    [16] 白炳越, 刘丹, 杨进军, 等. 酚醛树脂浸渍石英纤维复合材料的热解行为[J]. 灭火剂与助燃材料, 2023, 42(9): 1275-1279.

    BAI Bingyue, LIU Dan, YANG Jinjun, et al. Thermal decomposition behavior of phenolic resin impregnated quartz fiber composite materials[J]. Fire Extinguishing Agents and Combustion Materials, 2023, 42(9): 1275-1279(in Chinese).
    [17] HUANG H, YAN X J, JIN X Y, et al. Flexible and interlocked quartz fibre reinforced dual polyimide network for high-temperature thermal protection[J]. Journal of Materials Chemistry A, 2023, 11(3): 9931-9941.
    [18] 王湘阳, 年永乐, 刘娜, 等. 考虑C-SiO2反应的新型硅基材料烧蚀分析模型[J]. 化工学报, 2021, 72(6): 3270-3277.

    WANG Xiangyang, NIAN Yongle, LIU Na, et al. Novel ablation model of silica-reinforced composites considering C-SiO2 reaction[J]. CIESC Journal, 2021, 72(6): 3270-3277(in Chinese).
    [19] 许善成. 切向空气流下连续激光辐照玻璃纤维树脂基复合材料烧蚀特性的研究[D]. 南京: 南京理工大学, 2019.

    XU Shancheng. Study on ablation characteristics of glass fiber reinforced resin matrix composites by CW laser irradiation under tangential air flow[D]. Nanjing: Nanjing University of Science & Technology, 2019(in Chinese).
    [20] 智伟. 柔性防热材料辐射热流下烧蚀行为的数值计算[D]. 天津: 天津工业大学, 2019.

    ZHI Wei. Numerical calculation of ablation behavior of flexible heat-resistant materials under radiation heat flux[D]. Tianjin: Tiangong University, 2019(in Chinese).
    [21] MACHADO H A, ESILVA S F C, BITTENCOURT E. Simulation of ablation in composite via an interface tracking method[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39: 1453-1467.
    [22] 黄鹏, 郑振荣, 毛科铸, 等. 热阻塞效应在有机硅树脂-碳纤织物复合材料烧蚀防热中的作用[J]. 复合材料学报, 2021, 38(9): 3045-3055.

    HUANG Peng, ZHENG Zhenrong, MAO Kezhu, et al. Effect of heat blockage on ablative thermal protection of silicone resin-carbon fiber fabrics[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3045-3055(in Chinese).
    [23] 万涛. 超轻质碳/酚醛复合材料的烧蚀行为和仿真预报研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    WAN Tao. Research on ablation behavior and simulation prediction of ultra-lightweight carbon phenolic composite[D]. Harbin: Harbin institute of Technology, 2017(in Chinese).
    [24] 时圣波. 高硅氧/酚醛复合材料的烧蚀机理及热-力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    SHI Shengbo. Ablation mechanism and thermo-mechanical behavior of silica/phenolic composites[D]. Harbin: Harbin Institute of Technology, 2013(in Chinese).
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  126
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-29
  • 修回日期:  2024-03-13
  • 录用日期:  2024-04-03
  • 网络出版日期:  2024-04-19
  • 刊出日期:  2024-09-15

目录

    /

    返回文章
    返回