留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同衬经纱占比的三维角联锁机织增强复合材料弯曲性能

王颖杰 王海楼 张伟

王颖杰, 王海楼, 张伟. 不同衬经纱占比的三维角联锁机织增强复合材料弯曲性能[J]. 复合材料学报, 2023, 40(6): 3291-3301. doi: 10.13801/j.cnki.fhclxb.20220811.005
引用本文: 王颖杰, 王海楼, 张伟. 不同衬经纱占比的三维角联锁机织增强复合材料弯曲性能[J]. 复合材料学报, 2023, 40(6): 3291-3301. doi: 10.13801/j.cnki.fhclxb.20220811.005
WANG Yingjie, WANG Hailou, ZHANG Wei. Bending properties of three-dimensional angle interlocking woven reinforced composites with different proportions of warp insertion[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3291-3301. doi: 10.13801/j.cnki.fhclxb.20220811.005
Citation: WANG Yingjie, WANG Hailou, ZHANG Wei. Bending properties of three-dimensional angle interlocking woven reinforced composites with different proportions of warp insertion[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3291-3301. doi: 10.13801/j.cnki.fhclxb.20220811.005

不同衬经纱占比的三维角联锁机织增强复合材料弯曲性能

doi: 10.13801/j.cnki.fhclxb.20220811.005
基金项目: 国家自然科学基金(11802144);江苏省高等学校基础科学(自然科学)重大项目(21 KJA540001);江苏高校“青蓝工程”National Natural Science Foundation of China (11802144); Major Program of Basic Science (Natural Science) of Higher Education of Jiangsu Province (21KJA540001); Jiangsu University “Qinglan Project”
详细信息
    通讯作者:

    王海楼,博士,副教授,硕士生导师,研究方向为纺织结构复合材料 E-mail: wanghl1130@ntu.edu.cn

  • 中图分类号: TB332

Bending properties of three-dimensional angle interlocking woven reinforced composites with different proportions of warp insertion

  • 摘要: 三维角联锁机织增强复合材料(3DAWCs)具有优异的结构整体性和力学性能。为探究3DAWCs中衬经纱对力学性能的影响,本文设计并制备不同衬经纱占比的3DAWCs,研究不同温度场中不同衬经纱占比3DAWCs的弯曲性能。衬经纱与经纱比例包括:0∶1、1∶1和2∶1。温度场包括:20℃、80℃和150℃。研究结果表明:衬经纱对3DAWCs厚度、纱线形态、载荷-挠度曲线形态、弯曲强度、损伤分布均影响显著;随衬经纱占比增加,3DAWCs的厚度和最大弯曲载荷增加,但1∶1型和2∶1型试样的弯曲强度相差较小;随温度升高,试样弯曲性能下降,但在不同温度场中,不同衬经占比试样的经纬向弯曲性能对温度的敏感性不同。

     

  • 图  1  织物结构和纱线排列

    Figure  1.  Textile structures and yarn arrangement

    图  2  三维角联锁机织物

    Figure  2.  Three-dimensional angle interlocking woven perform

    图  3  弯曲试样

    Figure  3.  Sample for bending test

    图  4  3DAWC中的纱线形态

    Figure  4.  Curve shape of yarn in 3DAWC

    图  5  3DAWC经向试样和纬向试样弯曲载荷-挠度曲线

    Figure  5.  Bending load-displacement curves of 3DAWC in warp and weft directions

    图  6  3DAWC经向试样和纬向试样最大弯曲载荷

    Figure  6.  Maximum bending load of 3DAWC in warp and weft directions

    图  7  3DAWC经向试样弯曲失效过程(20℃)

    Figure  7.  Bending failure process of 3DAWC in warp direction (20℃)

    图  12  3DAWC弯曲后的两个侧面形貌(20℃)

    Figure  12.  Two side surface morphologies of 3DAWC after bending (20℃)

    图  8  3DAWC纬向试样弯曲失效过程(20℃)

    Figure  8.  Bending failure process of 3DAWC in weft direction(20℃)

    图  9  3DAWC经纬向试样弯曲应力-应变曲线

    Figure  9.  Bending stress-strain curves of 3DAWC in warp and weft directions

    图  10  3DAWC经纬向试样弯曲强度

    Figure  10.  Bending strength of 3DAWC in warp and weft directions

    图  11  3DAWC经纬向试样弯曲模量

    Figure  11.  Bending modulus of 3DAWC in warp and weft directions

    图  13  不同温度下AWC1试样弯曲后两个侧面形貌

    Figure  13.  Two side surface morphologies of AWC1 after bending at different temperatures

    表  1  碳纤维性能参数

    Table  1.   Performance parameters of carbon fiber

    Density/
    (g·cm−3)
    Breakage elongation/%Tensile strength/MPaTensile modulus/GPa
    1.792.14900230
    下载: 导出CSV

    表  2  环氧树脂性能参数

    Table  2.   Performance parameters of epoxy resin

    Density/
    (g·cm−3)
    Compressive strength/MPaCompressive modulus/MPaGlass transition temperature/℃
    1.121172166110-120
    下载: 导出CSV

    表  3  三维角联锁机织物(3DAWF)的结构参数

    Table  3.   Structural parameters of three-dimensional angle interlocking woven (3DAWF)

    SymbolWarp insertion: WarpWeave density in weft direction/(ends·cm−1)Weave density in warp direction/(ends·cm−1)Warp yarn volume fraction/vol%Warp insertion yarn volume fraction/vol%
    AWF0 0∶1 20 20 20.6 0
    AWF1 1∶1 20 20 12.9 12.9
    AWF2 2∶1 20 20 7.8 13.2
    下载: 导出CSV

    表  4  不同衬经占比三维角联锁机织增强复合材料(3DAWC)厚度

    Table  4.   Thickness of three-dimensional angle interlocking woven reinforced composites (3DAWC) with different proportion of warp insertion

    SampleThickness/mm
    AWC04.05
    AWC14.14
    AWC25.15
    下载: 导出CSV
  • [1] 薛有松, 薛凌明, 孙宝忠, 等. 碳纤维三维角联锁机织复合材料弯曲作用下的力阻响应[J]. 复合材料学报, 2023, 40(3):1468-1476. doi: 10.13801/j.cnki.fhclxb.20220516.006

    XUE Yousong, XUE Lingming, SUN Baozhong, et al. Piezoresistive effect of carbon fiber three-dimensional angle interlocking woven composites under bending[J]. Acta Materiae Compositae Sinica,2023,40(3):1468-1476(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220516.006
    [2] 郭玉路, 关留祥, 李嘉禄, 等. 航空发动机复合材料叶片用3D机织预制体研究进展[J]. 复合材料学报, 2018, 35(10):748-759.

    GUO Yulu, GUAN Liuxiang, LI Jialu, et al. Research progress on 3D woven preforms for aero-engine composite blades[J]. Acta Materiae Compositae Sinica,2018,35(10):748-759(in Chinese).
    [3] 郭瑞卿, 张一帆, 吕庆涛, 等. 多层多向层联三维机织复合材料的拉伸性能[J]. 复合材料学报, 2020, 37(10):2409-2417.

    GUO Ruiqing, ZHANG Yifan, LU Qingtao, et al. Tensile properties of multilayer multidirectional laminated three-dimensional woven composites[J]. Acta Materiae Compositae Sinica,2020,37(10):2409-2417(in Chinese).
    [4] WIELHORSKI Y, MENDOZA A, RUBINO M, et al. Numerical modeling of 3D woven composite reinforcements: A review[J]. Composites Part A: Applied Science and Manufacturing,2022,154:106729. doi: 10.1016/j.compositesa.2021.106729
    [5] BANDARU A K, AHMAD S, BHATNAGAR N. Ballistic performance of hybrid thermoplastic composite armors reinforced with Kevlar and basalt fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2017, 97: 151-165.
    [6] DONG K, LIU K, PAN L, et al. Experimental and numerical investigation on the thermal conduction properties of 2.5D angle-interlock woven composites[J]. Composite Structures, 2016, 154: 319-333.
    [7] KUO W. The role of loops in 3D fabric composites[J]. Composites Science and Technology,2000,60(9):1835-1849. doi: 10.1016/S0266-3538(00)00075-0
    [8] LEE L, RUDOV-CLARK S, MOURITZ A P, et al. Effect of weaving damage on the tensile properties of three-dimensional woven composites[J]. Composite Structures,2002,57(1):405-413.
    [9] 王忠远, 蔡长春, 王振军, 等. 三维角联锁机织铝基复合材料面内拉伸力学行为与失效机制[J]. 复合材料学报, 2021, 38(9):2989-2999.

    WANG Zhongyuan, CAI Changchun, WANG Zhenjun, et al. In-plane tensile mechanical behavior and failure mechanism of three-dimensional angle interlocking woven aluminum matrix composites[J]. Acta Materiae Compositae Sinica,2021,38(9):2989-2999(in Chinese).
    [10] LAPEYRONNIE P, LE G P, BINETRUY C, et al. Homogenization of the elastic behavior of a layer-to-layer angle-interlock composite[J]. Composite Structures,2011,93(11):2795-2807. doi: 10.1016/j.compstruct.2011.05.025
    [11] JIN L, NIU Z, JIN B C, et al. Comparisons of static bending and fatigue damage between 3D angle-interlock and 3D orthogonal woven composites[J]. Journal of Reinforced Plastics and Composites,2012,31(14):935-945. doi: 10.1177/0731684412450626
    [12] 姚思远, 陈秀华. 三维机织复合材料在拉压循环载荷下的疲劳性能[J]. 复合材料学报, 2018, 35(10):2706-2714.

    YAO Siyuan, CHEN Xiuhua. Fatigue behaviors of 3D woven composites under tension-compression cyclic loading[J]. Acta Materiae Compositae Sinica,2018,35(10):2706-2714(in Chinese).
    [13] 王琦, 蒋秋梅, 杨旭锋, 等. 三维机织复合材料残余应力/应变多尺度分析及工艺参数优化[J]. 复合材料学报, 2021, 38(4):1167-1176.

    WANG Qi, JIANG Qiumei, YANG Xufeng, et al. Multiscale analysis and process parameters optimization of residual stress/strain of 3D woven composite[J]. Acta Materiae Compositae Sinica,2021,38(4):1167-1176(in Chinese).
    [14] 郭兴峰. 三维机织物[M]. 北京: 中国纺织出版社, 2015.

    GUO Xingfeng. 3D woven fabric[M]. Beijing: China Textile Press, 2015(in Chinese).
    [15] 陆慧中, 孙颖, 焦亚男, 等. 典型多向2.5D机织预制体近净形编织结构设计[J]. 复合材料学报, 2021, 38(9):3101-3109.

    LU Huizhong, SUN Ying, JIAO Yanan, et al. Design of near-net-shape braided structure of typical multi-directional 2.5D woven preform[J]. Acta Materiae Compositae Sinica,2021,38(9):3101-3109(in Chinese).
    [16] 冯古雨, 钱坤, 曹海建, 等. 衬经结构对角联锁机织复合材料拉伸力学性能的影响[J]. 玻璃钢/复合材料, 2017(7):45-48.

    FENG Guyu, QIAN Kun, CAO Haijian, et al. Effect of warp lining structure on tensile mechanical properties of angular interlocking woven composites[J]. Fiberglass/Composite Materials,2017(7):45-48(in Chinese).
    [17] 杨梦琪, 陈晓钢, 高强. 三维角联锁织物的可模塑性能研究[J]. 产业用纺织品, 2020, 38(5):27-31. doi: 10.3969/j.issn.1004-7093.2020.05.006

    YANG Mengqi, CHEN Xiaogang, GAO Qiang. Study on moldability of 3D corner interlocking fabrics[J]. Technical Textiles,2020,38(5):27-31(in Chinese). doi: 10.3969/j.issn.1004-7093.2020.05.006
    [18] LI J, FAN W, LIU T, et al. The temperature effect on the inter-laminar shear properties and failure mechanism of 3D orthogonal woven composites[J]. Textile Research Journal,2020,90:2806-2817.
    [19] DANG M, LI D, JIANG L. Temperature effects on mechanical response and failure mechanism of 3D angle-interlock woven carbon/epoxy composites[J]. Composites Communications,2020,18:37-42. doi: 10.1016/j.coco.2020.01.001
    [20] SONG L, WEN W, CUI H. Experimental and numerical investigation of mechanical behaviors of 2.5D woven composites at ambient and un-ambient temperatures[J]. Composite Structures, 2018.
    [21] SORRENTINO L, DE VASCONCELLOS D S, D'AURIA M, et al. Effect of temperature on static and low velocity impact properties of thermoplastic composites[J]. Composites Part B: Engineering,2017,113:100-110. doi: 10.1016/j.compositesb.2017.01.010
    [22] WANG S, ZHANG J, ZHOU Z, et al. Compressive and flexural behavior of carbon fiber-reinforced PPS composites at elevated temperature[J]. Mechanics of Advanced Materials and Structures,2020,27(4):286-294. doi: 10.1080/15376494.2018.1472334
    [23] RICCIARDI M R, PAPA I, IMPERO F, et al. Low-temperature effect on the impact and flexural behaviour of basalt composite laminates[J]. Composite Structures,2020,249:112607. doi: 10.1016/j.compstruct.2020.112607
    [24] VIEILLE B, CHABCHOUB M, GAUTRELET C. Influence of matrix ductility and toughness on strain energy release rate and failure behavior of woven-ply reinforced thermoplastic structures at high temperature[J]. Composite Part B: Engineering,2017,132:125-140.
    [25] WANG M, CAO M, WANG H, et al. Drop-weight impact behaviors of 3-D angle interlock woven composites after thermal oxidative aging[J]. Composite Structures,2017,82223(16):31556.
    [26] 中国国家标准化管理委员会. 纤维增强塑料弯曲性能实验方法: GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Test method for flexural properties of fiber-reinforced plastics: GB/T 1449—2005[S]. Beijing: China Standard Press, 2005(in Chinese).
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  674
  • HTML全文浏览量:  322
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 修回日期:  2022-07-12
  • 录用日期:  2022-07-31
  • 网络出版日期:  2022-08-12
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回