留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维三维编织-铺层混合结构复合材料管的轴向压缩性能

孙厚礼 孙琳 王晓波 崔健 李哲瑞 查一斌 秦成 闫红霞 刘勇 张辉 俞建勇

孙厚礼, 孙琳, 王晓波, 等. 碳纤维三维编织-铺层混合结构复合材料管的轴向压缩性能[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 孙厚礼, 孙琳, 王晓波, 等. 碳纤维三维编织-铺层混合结构复合材料管的轴向压缩性能[J]. 复合材料学报, 2024, 42(0): 1-10.
SUN Houli, SUN Lin, WANG Xiaobo, et al. Axial compressive property of 3 D braided-unidirectional hybrid tubes[J]. Acta Materiae Compositae Sinica.
Citation: SUN Houli, SUN Lin, WANG Xiaobo, et al. Axial compressive property of 3 D braided-unidirectional hybrid tubes[J]. Acta Materiae Compositae Sinica.

碳纤维三维编织-铺层混合结构复合材料管的轴向压缩性能

基金项目: 国家重点研发计划(2022 YFB3704500);企业合作项目,典型变截面大厚度三维编织预成型体RTM工艺技术研究及横侧梁固化成型制品检测技术研究(SF/GY-梁字-2021-092);下一代列车轻量化关键技术和部件研发(山东省重点研发计划,2021 ZDPT02)
详细信息
    通讯作者:

    孙厚礼,硕士,工程师,研究方向为复合材料 E-mail: sunhouli@cqsf.com

    张辉,博士,研究员,博士生导师,研究方向为纤维增强树脂复合材料关键中间体材料、成型工艺及结构与功能 E-mail: zhanghui@dhu.edu.cn

  • 中图分类号: TB333

Axial compressive property of 3 D braided-unidirectional hybrid tubes

Funds: National Key R&D Program of China (2022 YFB3704500); Enterprise cooperation project, Research on RTM technology of typical variable section and large thickness 3 D braided preform and testing technology of cured products of transverse and side beams (SF/GY-梁字-2021-092); Research and Development of Key Technologies and Components for Lightweight Next-Generation Trains (Key R&D Program of Shandong Province, 2021 ZDPT02)
  • 摘要: 采用准静态轴向压缩实验和有限元仿真相结合的方法,对三维编织(3 dimensional braided,3D)-单向铺层(unidirectional ply, UD)混合的碳纤维复合材料管的轴向压缩性能和破坏机制进行了研究。实验表明,3D-UD混合管具有更稳定的压缩吸能模式;相比UD管,混合管的峰值载荷、总吸能和比吸能分别提高了20.3%、109.2%和67.1%。进一步对3D-UD混合管的破坏过程进行了有限元仿真分析,仿真得到的载荷-位移曲线与实验结果吻合较好,验证了仿真模型的有效性。结合实验结果与混合管损伤变形的仿真分析,发现由于外层3D和内层3D对夹层UD的束缚和支撑作用抑制了UD管管壁因弯折过大而断裂,同时由于夹层UD管的稳定破坏吸能使得3D管未发生严重的编织层卷曲现象,因此3D-UD混合管可以有效抵抗管壁变形,提高轴向压缩下的稳定性和吸能性。

     

  • 图  1  试件尺寸及诱导角示意图

    Figure  1.  Specimen size and induction angle diagram

    图  2  3 D-UD混合结构复合材料管制备过程

    Figure  2.  3 D-UD hybrid tubes preparation process

    图  3  复合材料管的准静态轴向压缩示意图

    Figure  3.  Quasi-static axial compression diagram

    图  4  复合材料管轴向压缩实验过程

    Figure  4.  Experimental process under axial compression

    图  5  复合材料管轴向压缩实验的载荷-位移曲线

    Figure  5.  Load-displacement curve of specimens

    图  6  3 D-UD混合管轴向压缩重复性试验结果

    Figure  6.  Axial compression repeatability test results

    图  7  三种不同混杂结构复合材料管的最终破坏模式:(a)UD18;(b)3 D3;(c)3 D-UD6-3 D

    Figure  7.  Final failure modes of three different hybrid composite tubes: (a) UD18; (b) 3 D3; (c) 3 D-UD6-3 D

    图  8  网格划分(a)及Cohesive单元建立((b)、(c))

    Figure  8.  Grid division (a) and cohesive unit establishment ((b), (c))

    图  9  边界条件施加示意图

    Figure  9.  Schematic diagram of boundary condition application

    图  10  实验/仿真载荷-位移对比曲线:(a)3 D3;(b)UD18;(c)3 D-UD6-3 D

    Figure  10.  Experimental/simulation load-displacement contrast curves: (a) 3 D3; (b) UD18; (c) 3 D-UD6-3 D

    图  11  3 D-UD6-3 D混合管的损伤变量云图:(a) 整体损伤变量; (b) 外3 D层;(c) 内UD层;(d) 内3 D层

    Figure  11.  Damage variable cloud of 3 D-UD6-3 D hybrid tube:(a) Integral damage variable; (b) Outer 3 D layer; (c) Inner UD layer; (d) Inner 3 D layer

    图  12  典型时刻(5 mm)3 D-UD6-3 D混合管的剪应力分布云图

    Figure  12.  Shear stress distribution cloud of 3 D-UD6-3 D hybrid tube at typical time (5 mm)

    表  1  试件的几何结构参数

    Table  1.   Geometric structure parameters of specimens

    3 D/UDratioLayerFormThickness/mmTrigger modefiber volume fraction/%
    1:03[3 D/3 D/3 D]4.045°bevel53.4
    2:18[3 D-UD6-3 D]4.045°bevel54.2
    0:118[UD18]4.045°bevel55.7
    下载: 导出CSV

    表  2  复合材料管的径向压缩实验结果

    Table  2.   Axial compression test results of composite tubes

    Specimen Pmax /kN ECF/% E/J SEA/(J·g−1)
    3 D3 100.1 80.3 2807.0 56.5
    UD18 82.9 45.3 1095.5 31.4
    3 D-UD6-3 D 120.2 54.5 2292.5 52.5
    下载: 导出CSV

    表  3  T700 12 K/环氧树脂复合材料材料参数

    Table  3.   Material parameters of T700 12 K/epoxy resin composite material

    Property Value Property Value
    Xt/Yt /MPa 1384/30 G12/ G13/G23/GPa 3.6
    E1 t/E2 t /GPa 138/7 τ12 /MPa 67.4
    υ12 0.317 τ13/τ23 /MPa 67.4
    υ13/υ23 0.3 GⅠt/ G/(MN·m-1) 1/8
    Xc/Yc /MPa 652/87.5 Gft/Gfc/Gs/(MN·m-1) 60/50/2
    Notes:E1 t and E2 t are Young's modulus in X and Y directions, respectively;Xt is the tensile strength in the X directionYt is the tensile strength in the Y direction; Xc is the compression strength in the X direction;Yc is the compressive strength in the Y direction;G12, G13 and G23 are shear modulus in X, Y and Z directions, respectively;υ12, υ13 and υ23 are Poisson's ratios in X, Y and Z directions respectively;τ12 is the in-plane shear strengthτ13 and τ23 are the interlaminar shear strength in the direction of 13 and the shear strength in the direction of 23 respectively;GⅠt and G are Fracture energy release rate of type I and type II;Gft, Gfc and Gs are the release rates of fiber tens compression and shear failure energy, respectively.
    下载: 导出CSV

    表  4  各复合材料管实验/仿真性能参数误差对比

    Table  4.   Error comparison of experimental/simulation performance parameters for composite tubes

    Specimen Pmax(EXP)/kN Pmax(FEM)/kN Error/% E(EXP)/J E(FEM) /J Error /%
    3 D3 100.1 98.0 2.1 2807.0 2699.6 3.8
    UD18 82.9 89.6 8.1 1095.5 1220.2 11.3
    3 D-UD6-3 D 120.3 121.9 1.3 2292.5 2131.5 7.1
    下载: 导出CSV
  • [1] 孙政, 付艳恕, 詹博文, 等. 复合材料吸能圆管轴向准静态压缩失效机制研究[J]. 塑料科技, 2017, 45(4): 36-40.

    Sun Zheng, Fu Yanshu, Zhan Bowen, et al. Study on Failure Mechanism of Axially Quasi-static Compression of Composite Energy-absorption Circular Tube[J]. Plastics Science and Technology, 2017, 45(4): 36-40. (In Chinese
    [2] 马其华, 查一斌, 周天俊. Al-CFRP复合管的径向压缩性能[J]. 工程塑料应用, 2019, 47(11): 99-104. doi: 10.3969/j.issn.1001-3539.2019.11.018

    Ma Qihua, Zha Yibin, Zhou Tianjun. Radial compressive properties of Al-CFRP composite tubes[J]. Engineering Plastics Application, 2019, 47(11): 99-104. (In Chinese doi: 10.3969/j.issn.1001-3539.2019.11.018
    [3] Liu Q , Lin Y Z , Zone, Z J , et al. Lightweight design of carbon twill weave fabric composite body structure for electric vehicle[J]. Composite Structures, 2013, 97: 231-238.
    [4] 乔阳阳, 白远利. 纤维增强复合材料断裂模型综述(英文)[J]. 汽车安全与节能学报, 2018, 9(1): 1-10. doi: 10.3969/j.issn.1674-8484.2018.01.001

    Qiao Yangyang, Bai Yuanli. A Review on Failure Modeling Methods of Fiber Reinforced Polymer Matrix Composites[J]. Journal of Automotive Safety and Energy, 2018, 9(1): 1-10. (In Chinese doi: 10.3969/j.issn.1674-8484.2018.01.001
    [5] 查一斌, 马其华, 周天俊. 准静态径向压缩载荷下碳纤维缠绕薄壁铝管吸能特性分析[J]. 机械强度, 2020, 42(6): 1430-1437.

    Zha Yinin, Ma Qihua, Zhou Tianjun. Analysis of Energy Absorption Characteristics of Al-CFRP Hybrid Tubes under Qusic-static Radial Compression[J]. Journal of Mechanical Strength, 2020, 42(6): 1430-1437. (In Chinese
    [6] MOURITZ A P, BANNISTER M K, FALZON P J, et al. Review of applications for advanced three-dimensional fibre textile composites[J]. Composites Part A:Applied Science and Manufacturing, 1999, 30(12): 1445-1461. doi: 10.1016/S1359-835X(99)00034-2
    [7] DRANSFIELD K, BAILLIE C, MAI Y-W. Improving the delamination resistance of CFRP by stitching-a review[J]. Composites Science and Technology, 1994, 50(3): 305-317. doi: 10.1016/0266-3538(94)90019-1
    [8] LADANI R B, NGUYEN A T T, WANG C H, et al. Mode II interlaminar delamination resistance and healing performance of 3D composites with hybrid z-fibre reinforcement[J]. Composites Part A:Applied Science and Manufacturing, 2019, 120: 21-32. doi: 10.1016/j.compositesa.2019.02.010
    [9] HOFFMANN J, SCHARR G. Mechanical properties of composite laminates reinforced with rectangular z-pins in monotonic and cyclic tension[J]. Composites Part A:Applied Science and Manufacturing, 2018, 109: 163-170. doi: 10.1016/j.compositesa.2018.03.004
    [10] 李政宁, 陈革, KO Frank. 三维编织工艺及机械的研究现状与趋势[J]. 玻璃钢/复合材料, 2018, (5): 109-115.

    Li Zhengning, Chen Ge, Frank Ko. The Development and Tendency of 3D Braiding Technology and Machinegy[J]. Fiber Reinforced Plastics/ Composites, 2018, (5): 109-115. (In Chinese
    [11] 孙梦尧, 张典堂, 钱坤. 三维五向编织复合材料低速冲击损伤区域的量化表征[J]. 复合材料学报: 2023, 40(09): 5411-5422.

    Sun Mengyao, Zhang Diantang, Qian Kun. Quantitative characterization of low-velocity impact damage in three dimensional five- directional braided composites[J]. Acta Materiae Compositae Sinica: 2023, 40(09): 5411-5422. (In Chinese
    [12] 张超, 许希武, 许晓静. 三维多向编织复合材料宏细观力学性能有限元分析研究进展[J]. 复合材料学报, 2015, 32(5): 1241-1251.

    Zhang Chao, Xu Xiwu, Xu Xiaojing. Research progress in finite element analysis on macro-meso mechanical properties of 3D multi-directional braided composites.[J]. Acta Materiae Compositae Sinica, 2015, 32(5): 1241-1251. (In Chinese)
    [13] 张徐梁, 阳玉球, 阎建华, 等. 碳纤维-玻璃纤维混杂增强环氧树脂三维编织复合材料薄壁圆管压溃吸能特性与损伤机制[J]. 复合材料学报, 2021, 38(9): 2814-2821.

    Zhang Xuliang, Yang Yuqiu, Yan Jianhua, et al. Crushing energy absorption characteristics and damage mechanism of carbon fiber-glass fiber hybrid reinforced epoxy 3D braided composite thin-walled circular tube[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2814-2821. (In Chinese
    [14] Kostar TD, Chou TW, Popper P. Characterization and comparative study of three-dimensional braided hybrid composites[J]. Journal of Materials Science, 2000, 35(9): 2175-2183. doi: 10.1023/A:1004710522640
    [15] Wan YZ, Huang Y, He F, et al. Tribological properties of three-dimensional braided carbon/Kevlar/epoxy hybrid composites under dry and lubricated conditions[J]. Materials Science & Engineering A, 2007, 452-453: 202-209.
    [16] Swolfs Y, Mcmeeking RM, Rajan VP, et al. Global load-sharing model for unidirectional hybrid fibre-reinforced composites[J]. Journal of the Mechanics and Physics of Solids, 2015, 84: 380-94. doi: 10.1016/j.jmps.2015.08.009
    [17] Nisini E, Santulli C, Liverani A. Mechanical and impact characterization of hybrid composite laminates with carbon, basalt and flax fibres[J]. Composites Part B:Engineering, 2017, 127: 92-9. doi: 10.1016/j.compositesb.2016.06.071
    [18] Zfaa B, Mnma A. Investigation on energy absorption of natural and hybrid fiber under axial static crushing[J]. Composites Science and Technology, 2017, 151: 52-61. doi: 10.1016/j.compscitech.2017.07.028
    [19] Swolfs Y, Gorbatikh L, Verpoest I. Fibre hybridisation in polymer composites: A review[J]. Composites Part A:Applied Science & Manufacturing, 2014, 67(67): 181-200.
    [20] 谷元慧, 刘晓东, 钱坤, 等. 三维编织复合材料圆管力学性能研究进展[J]. 化工新型材料, 2020, 48(2): 258-262.

    Gu Yuanhui, Liu Xiaodong, Qian Kun, et al. Research process on mechanical property of 3D braided composite circular tube[J]. New Chemical Materials, 2020, 48(2): 258-262. (In Chinese
    [21] 熊信发, 王校培, 王坤, 等. 三维编织复合材料圆管轴向压缩性能及破坏机理[J]. 南京航空航天大学学报, 2023, 55(4): 702-710.

    Xiong Xinfa, Wang Xiaopei, Wang kun, et al. Axial compression properties and failure mechanism of 3D braided composite tube[J]. Journal of Nanjing University of Aeronautics & Astromautics, 2023, 55(4): 702-710. (In Chinese
  • 加载中
计量
  • 文章访问数:  92
  • HTML全文浏览量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-24
  • 修回日期:  2024-01-19
  • 录用日期:  2024-01-28
  • 网络出版日期:  2024-03-14

目录

    /

    返回文章
    返回