留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

树脂涂层及海水浸泡对玄武岩纤维织物增强海水海砂混凝土力学性能的影响

朱德举 黄伟 郭帅成

朱德举, 黄伟, 郭帅成. 树脂涂层及海水浸泡对玄武岩纤维织物增强海水海砂混凝土力学性能的影响[J]. 复合材料学报, 2023, 42(0): 1-14.
引用本文: 朱德举, 黄伟, 郭帅成. 树脂涂层及海水浸泡对玄武岩纤维织物增强海水海砂混凝土力学性能的影响[J]. 复合材料学报, 2023, 42(0): 1-14.
ZHU Deju, HUANG Wei, GUO Shuaicheng. Effects of resin coating and seawater immersion on mechanical performance of basalt textile reinforced seawater sea sand concrete[J]. Acta Materiae Compositae Sinica.
Citation: ZHU Deju, HUANG Wei, GUO Shuaicheng. Effects of resin coating and seawater immersion on mechanical performance of basalt textile reinforced seawater sea sand concrete[J]. Acta Materiae Compositae Sinica.

树脂涂层及海水浸泡对玄武岩纤维织物增强海水海砂混凝土力学性能的影响

基金项目: 国家自然科学基金山东联合基金项目(U1806225)
详细信息
    通讯作者:

    朱德举,博士,教授,博士生导师,研究方向为生物材料多尺度力学行为及仿生、高性能纤维/织物增强水泥基和树脂基复合材料、防弹高性能纤维布的力学特性和有限元分析、冲击和高应变率试验技术 E-mail:dzhu@hnu.edu.cn

  • 中图分类号: TB332;TU599

Effects of resin coating and seawater immersion on mechanical performance of basalt textile reinforced seawater sea sand concrete

Funds: National Natural Science Foundation of China-Shandong Joint Fund (U1806225)
  • 摘要: 为了研究不同树脂(环氧树脂、呋喃树脂、乙烯基树脂)涂层及海水浸泡对玄武岩纤维织物增强海水海砂混凝土(BTR-SSC)力学性能的影响,采用万能试验机对各树脂涂层纤维束和海水浸泡不同时间下BTR-SSC试件进行静态拉伸试验,并通过拔出试验评估纤维-基体界面黏结性能。结合数字图像相关分析得到裂纹与应变分布,并采用扫描电镜分析损伤机理。通过界面黏结强度计算公式实现以裂纹分布和基体强度评估界面长期性能。结果表明:三种树脂对纤维束的增强效果显著且相近(32%左右),均可显著提升BTR-SSC力学性能,乙烯基树脂涂层表现最佳,抗拉性能和界面黏结性能分别提升77%和180%。海水浸泡下BTR-SSC试件力学性能明显劣化,未处理试件仅高温浸泡14 d后便脆断,环氧树脂、呋喃树脂和乙烯基树脂涂层试件浸泡7 d时相对未处理试件抗拉强度分别提升81%、48%和94%,浸泡28 d时仍呈多裂缝开展,界面黏结性能分别损失64%、57%和55%。该成果将有助于提升BTR-SSC在海洋环境中长期性能并促进其在海工结构中的应用。

     

  • 图  1  不同树脂涂层玄武岩纤维织物外观图

    Figure  1.  Surface morphology of basalt textile coated with different resins

    'CG' represents the untreated specimen, namely the control group, 'ER' represents the specimen coated with epoxy resin, 'FR' represents the specimen coated with furan resin, and 'VR 'represents the specimen coated with vinyl resin

    图  2  不同树脂涂层试件纤维束横截面

    Figure  2.  Cross section of fiber yarns in specimens with different resin coatings

    图  3  TRC拉伸试件(a)与拔出试件(b)

    Figure  3.  Tensile specimen of TRC(a) and pull-out specimen(b)

    图  4  不同树脂涂层玄武岩纤维束拉伸荷载-位移曲线

    Figure  4.  Tensile load-displacement curves of basalt fiber yarns with different resin coatings

    图  5  不同海水浸泡时间下不同树脂涂层BTR-SSC拉伸应力-应变关系曲线

    Figure  5.  Tensile stress-strain relationship curves of BTR-SSC with different resin coatings immersed in seawater for different time

    图  6  海水浸泡对不同树脂涂层BTR-SSC抗拉力学性能的影响

    Figure  6.  Effect of seawater immersion on tensile mechanical performance of BTR-SSC with different resin coatings

    图  7  不同海水浸泡时间下不同树脂涂层BTR-SSC裂纹和纵向应变分布

    Figure  7.  Cracks and longitudinal strain distribution of BTR-SSC with different resin coatings immersed in seawater for different time

    图  8  不同海水浸泡时间下不同树脂涂层BTR-SSC的平均裂纹数量和裂纹间距

    Figure  8.  Average crack number and average crack spacing of BTR-SSC with different resin coatings immersed in seawater for different time

    图  9  不同树脂涂层玄武岩纤维束拔出荷载-滑移曲线

    Figure  9.  Pull-out load-slip curves of basalt fiber yarns with different resin coatings

    图  10  不同树脂涂层BTR-SSC剪切黏结强度与等效黏结强度线性拟合

    Figure  10.  Linear fitting diagram of shear bond strength and equivalent bond strength of BTR-SSC with different resin coatings

    图  11  海水浸泡对不同树脂涂层BTR-SSC界面黏结性能的影响

    Figure  11.  Effect of seawater immersion on the interfacial bonding performance of BTR-SSC with different resin coatings

    图  12  海水浸泡28 d后不同树脂涂层BTR-SSC试件纤维微观形貌

    Figure  12.  Fiber micromorphology of BTR-SSC specimens with different resin coatings after seawater immersion for 28 days

    图  13  未浸泡时及海水浸泡28 d后BTR-SSC试件树脂表面微观形貌

    Figure  13.  Microscopic morphology of resin surface of BTR-SSC specimens before immersion and after seawater immersion for 28 days

    表  1  玄武岩纤维丝的物理及力学性能参数

    Table  1.   Physical and mechanical parameters of basalt fiber filaments

    TypeSpecificationTensile
    strength/
    MPa
    Elastic
    modulus/
    GPa
    Elongation /%Diameter /μm
    Basalt fiber3 K165085312
    下载: 导出CSV

    表  2  树脂的物理及力学性能参数

    Table  2.   Physical and mechanical parameters of resins

    TypeModelInitial viscosity after mixing/(mPa·s)Tensile strength/
    MPa
    Breaking
    Elongation/%
    Mass ratio
    Resin∶Curing agent∶
    Accelerator
    Epoxy resinJN-LS70468100∶40
    Vinyl resinCHEMPULSE 901350±10076-905-6100∶1.2∶0.2
    Furan resinGM-2200±1005-153-4100∶2
    下载: 导出CSV

    表  3  海水海砂混凝土配合比(kg/m3)

    Table  3.   Mix proportion of the seawater sea sand concrete(kg/m3)

    Water-binder ratioCementFly ashSeawaterSea sand(0-1.2 mm)DefoamerSuperplasticizerSuspension stabilizer
    0-0.6 mm0.6-1.2 mm
    0.376431612993647281.61.450.4
    下载: 导出CSV

    表  4  人工海水的化学组成

    Table  4.   Chemical composition of artificial seawater

    SolventNaClMgCl2Na2SO4CaCl2KClNaHCO3
    Concentration
    /(g·L−1)
    24.535.24.091.160.6950.201
    下载: 导出CSV

    表  5  不同树脂涂层玄武岩纤维束抗拉力学性能参数

    Table  5.   Tensile mechanical performance parameters of basalt fiber yarns with different resin coatings

    Specimen IDUltimate load/NTensile strength /MPaUltimate strain /%
    CG331.4(8.4)1077(27)3.17(0.12)
    ER456.5(13.3)1484(43)4.23(0.12)
    FR434.1(6.6)1411(22)4.04(0.17)
    VR426.3(6.5)1385(21)4.09(0.03)
    Note: The values in the parentheses are standard deviations.
    下载: 导出CSV

    表  6  不同海水浸泡时间下不同树脂涂层BTR-SSC抗拉力学性能参数

    Table  6.   Tensile mechanical performance parameters of BTR-SSC with different resin coatings immersed in seawater for different time

    Specimen IDImmersion time/daysFirst crack stress/MPaTensile strength /MPaStrength retention rate /%Peak strain /%Toughness /MPaCrack numberCrack spacing /mm
    CG-003.79(0.68)4.86(0.26)-0.58(0.36)0.036(0.010)3.3(0.5)34(9)
    ER-03.85(0.51)7.82(0.25)-1.71(0.11)0.096(0.010)6(0)20(1)
    FR-03.30(0.25)6.35(0.54)-1.26(0.29)0.063(0.017)6(0)20(1)
    VR-04.44(0.34)8.61(0.56)-1.77(0.35)0.109(0.025)7.3(0.6)16(2)
    CG-772.66(0.61)2.72(0.52)560.12(0.16)0.006(0.001)1.3(0.6)34(0)
    ER-73.39(1.00)4.93(0.02)630.78(0.12)0.031(0.007)3(0)34(5)
    FR-72.61(0.27)4.02(0.18)630.45(0.13)0.018(0.001)3(1)29(5)
    VR-72.88(1.42)5.28(0.40)611.32(0.10)0.051(0.008)3.7(0.6)33(5)
    CG-14143.26(0.59)3.26(0.59)brittle failure0.04(0.02)0.001(0.001)1(0)-
    ER-143.31(0.17)4.57(0.56)580.88(0.14)0.035(0.007)3.7(0.6)33(4)
    FR-143.38(0.43)3.54(0.23)560.23(0.18)0.011(0.004)2(1)48(14)
    VR-143.14(0.71)4.90(0.23)571.09(0.25)0.044(0.006)5(1)23(2)
    CG-28282.99(0.46)2.99(0.46)brittle failure0.03(0.00)0.001(0.000)1(0)-
    ER-282.81(0.27)3.93(0.54)500.70(0.44)0.033(0.017)3.3(1.2)39(14)
    FR-282.37(0.55)2.91(0.12)460.31(0.09)0.010(0.002)3(1)32(11)
    VR-282.49(0.78)4.02(0.61)470.94(0.14)0.029(0.004)4.7(1.2)25(5)
    Note: The values in the parentheses are standard deviations.
    下载: 导出CSV

    表  7  不同树脂涂层玄武岩纤维束拔出力学性能

    Table  7.   Pull-out mechanical performance of basalt fiber yarns with different resin coatings

    Specimen IDPull-out stiffness /(N·mm−1)Ultimate pull-
    out force /N
    τm /MPaPull-out work /10−3 J
    CG304(16)56(3)1.4113.3(13.3)
    ER253(40)122(6)2.2355.6(2.9)
    FR337(30)119(3)2.0571.7(10.8)
    VR369(50)157(1)2.76113.1(1.5)
    Note: The values in the parentheses are standard deviations.
    下载: 导出CSV

    表  8  不同海水浸泡时间下不同树脂涂层BTR-SSC界面黏结性能计算参数

    Table  8.   Parameters required for the calculation of interfacial bonding performance of BTR-SSC with different resin coatings immersed in seawater for different time

    Specimen IDσmu/MPax/mmr/mmVf/%K1τs/MPa
    CG-03.8340.3131.031.311.71
    ER-0200.4361.840.992.24
    FR-0200.4612.061.052.11
    VR-0160.4531.980.822.69
    CG-72.9340.3131.031.311.28
    ER-7340.4361.841.680.99
    FR-7290.4612.061.521.09
    VR-7330.4531.981.700.98
    CG-143.3-0.3131.03--
    ER-14330.4361.841.631.16
    FR-14480.4612.062.520.75
    VR-14230.4531.981.181.60
    CG-282.7-0.3131.03--
    ER-28390.4361.841.930.80
    FR-28320.4612.061.680.91
    VR-28250.4531.981.291.20
    Notes: σmu is the tensile strength of the matrix, x is the average crack spacing, r is the equivalent radius of fiber yarn, Vf is the fiber volume fraction, K1 is the bond strength factor, τs is the shear bonding strength.
    下载: 导出CSV
  • [1] FENG G, ZHU D, GUO S, et al. A review on mechanical properties and deterioration mechanisms of FRP bars under severe environmental and loading conditions[J]. Cement and Concrete Composites, 2022, 134: 104758. doi: 10.1016/j.cemconcomp.2022.104758
    [2] YI Y, ZHU D, RAHMAN M Z, et al. Tensile properties deterioration of BFRP bars in simulated pore solution and real seawater sea sand concrete environment with varying alkalinities[J]. Composites Part B:Engineering, 2022, 243: 110115. doi: 10.1016/j.compositesb.2022.110115
    [3] 朱德举, 李高升. 短切纤维及预应力对玄武岩织物增强水泥基复合材料拉伸力学性能的影响[J]. 复合材料学报, 2017, 34(11): 2631-2641. doi: 10.13801/j.cnki.fhclxb.20170301.003

    ZHU Deju, LI Gaosheng. Effect of short fibers and prestressing on the tensile mechanical properties of basalt textile reinforced cementitious matrix composite[J]. Acta Materiae Compositae Sinica, 2017, 34(11): 2631-2641(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170301.003
    [4] DONNINI J, CORINALDESI V, NANNI A. Mechanical properties of FRCM using carbon fabrics with different coating treatments[J]. Composites Part B:Engineering, 2016, 88: 220-228. doi: 10.1016/j.compositesb.2015.11.012
    [5] WILLIAMS PORTAL N, FLANSBJER M, JOHANNESSON P, et al. Tensile behaviour of textile reinforcement under accelerated ageing conditions[J]. Journal of Building Engineering, 2016, 5: 57-66. doi: 10.1016/j.jobe.2015.11.006
    [6] MICELLI F, AIELLO M A. Residual tensile strength of dry and impregnated reinforcement fibres after exposure to alkaline environments[J]. Composites Part B:Engineering, 2019, 159: 490-501. doi: 10.1016/j.compositesb.2017.03.005
    [7] HRISTOZOV D, WROBLEWSKI L, SADEGHIAN P. Long-term tensile properties of natural fibre-reinforced polymer composites: Comparison of flax and glass fibres[J]. Composites Part B:Engineering, 2016, 95: 82-95. doi: 10.1016/j.compositesb.2016.03.079
    [8] ÖZKAN Ş, DEMIR F. The hybrid effects of PVA fiber and basalt fiber on mechanical performance of cost effective hybrid cementitious composites[J]. Construction and Building Materials, 2020, 263: 120564. doi: 10.1016/j.conbuildmat.2020.120564
    [9] LI Y, ZHANG J, HE Y, et al. A review on durability of basalt fiber reinforced concrete[J]. Composites Science and Technology, 2022, 225: 109519. doi: 10.1016/j.compscitech.2022.109519
    [10] SILVA F d A, BUTLER M, HEMPEL S, et al. Effects of elevated temperatures on the interface properties of carbon textile-reinforced concrete[J]. Cement and Concrete Composites, 2014, 48: 26-34. doi: 10.1016/j.cemconcomp.2014.01.007
    [11] MESSORI M, NOBILI A, SIGNORINI C, et al. Mechanical performance of epoxy coated AR-glass fabric Textile Reinforced Mortar: Influence of coating thickness and formulation[J]. Composites Part B:Engineering, 2018, 149: 135-143. doi: 10.1016/j.compositesb.2018.05.023
    [12] ZAMIR M, SRIPADA R, PELED A. Hybrid fillers in carbon-fabric-reinforced cement-based composites[J]. Cement and Concrete Composites, 2019, 98: 113-124. doi: 10.1016/j.cemconcomp.2019.02.005
    [13] GUO S, REN J, YANG T, et al. Influences of surface treatment on the mechanical performances of carbon and basalt textiles-reinforced concretes under harsh environments[J]. Composites Part B:Engineering, 2022, 246: 110195. doi: 10.1016/j.compositesb.2022.110195
    [14] ZHU D, BAI X, YAO Q, et al. Effects of volume fraction and surface coating of textile yarns on the tensile performance of AR-glass textile reinforced concrete[J]. Journal of Building Engineering, 2023, 71: 106420. doi: 10.1016/j.jobe.2023.106420
    [15] BENMOKRANE B, ELGABBAS F, AHMED E A, et al. Characterization and Comparative Durability Study of Glass/Vinylester, Basalt/Vinylester, and Basalt/Epoxy FRP Bars[J]. Journal of Composites for Construction, 2015, 19(6): 04015008. doi: 10.1061/(ASCE)CC.1943-5614.0000564
    [16] IPAKCHI H, SHEGEFT A, REZADOUST A M, et al. Bio-resourced furan resin as a sustainable alternative to petroleum-based phenolic resin for making GFR polymer composites[J]. Iranian Polymer Journal, 2020, 29(4): 287-299. doi: 10.1007/s13726-020-00793-w
    [17] ELDRIDGE A, FAM A. Environmental Aging Effect on Tensile Properties of GFRP Made of Furfuryl Alcohol Bioresin Compared to Epoxy[J]. Journal of Composites for Construction, 2014, 18(5): 04014010. doi: 10.1061/(ASCE)CC.1943-5614.0000467
    [18] FILIPPOU C A, CHRYSOSTOMOU C Z. Analytical model for textile reinforced mortar under monotonic loading[J]. Construction and Building Materials, 2020, 258: 120178. doi: 10.1016/j.conbuildmat.2020.120178
    [19] AVESTON J, KELLY A. Theory of multiple fracture of fibrous composites[J]. Journal of Materials Science, 1973, 8(3): 352-362. doi: 10.1007/BF00550155
    [20] ACI 549.4 R-13 Guide to Design and Construction of Externally Bonded FabricReinforced Cementitious Matrix (FRCM) Systems for repair and strengthening concrete and masonry structures: [S]. American: American Concrete Institute, 2013.
    [21] 徐虹, 张可, 卢岩, 等. 玄武岩纤维-碳纤维混杂平纹织物增强环氧树脂基复合材料的制备与力学性能[J]. 复合材料学报, 2018, 35(04): 767-773. doi: 10.13801/j.cnki.fhclxb.20170704.001

    XU Hong, ZHANG Ke, LU Yan, WANG Xianghui, LIU Shuan, DOU Yanli. Preparation and mechanical properties of carbon-basalt hybrid fiber plain fabric reinforced epoxy resin matrix composites[J]. Acta Materiae Compositae Sinica, 2018, 35(04): 767-773(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170704.001
    [22] ASTM D1141-1998(2008) Standard Practice for the Preparation of Substitute Ocean Water: [S]. American: American Society for Testing and Materials, 1998.
    [23] 朱德举, 李新亮, 李安令. 经纬向纤维体积分数对耐碱玻璃纤维织物增强混凝土拉伸力学性能的影响[J]. 复合材料学报, 2022, 39(01): 322-334. doi: 10.13801/j.cnki.fhclxb.20210306.002

    ZHU Deju, LI Xinliang, LI Anling. Influence of warp and weft fiber volume fractions on tensile mechanical properties of alkali-resistant glass textile reinforced concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(01): 322-334(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210306.002
    [24] 中国国家标准化管理委员会. 碳纤维复丝拉伸性能试验方法: GB/T 3362-2017: [S]. 北京: 中国标准出版社, 2017.

    Standardization Administration of the People’s Republic of China. Test methods for tensile properties of carbon fiber multifilament: GB/T 3362—2017[S]. Beijing: China Standards Press, 2017(in Chinese).
    [25] YI Y, ZHU D, GUO S, et al. A review on the deterioration and approaches to enhance the durability of concrete in the marine environment[J]. Cement and Concrete Composites, 2020, 113: 103695. doi: 10.1016/j.cemconcomp.2020.103695
    [26] DONG Z, WU G, ZHAO X-L, et al. Durability test on the flexural performance of seawater sea-sand concrete beams completely reinforced with FRP bars[J]. Construction and Building Materials, 2018, 192: 671-682. doi: 10.1016/j.conbuildmat.2018.10.166
    [27] DU Y, ZHANG M, ZHOU F, et al. Experimental study on basalt textile reinforced concrete under uniaxial tensile loading[J]. Construction and Building Materials, 2017, 138: 88-100. doi: 10.1016/j.conbuildmat.2017.01.083
    [28] WEI B, CAO H, SONG S. Degradation of basalt fibre and glass fibre/epoxy resin composites in seawater[J]. Corrosion Science, 2011, 53(1): 426-431. doi: 10.1016/j.corsci.2010.09.053
    [29] LOPEZ DE VERGARA U, SARRIONANDIA M, GONDRA K, et al. Polymerization and curing kinetics of furan resins under conventional and microwave heating[J]. Thermochimica Acta, 2014, 581: 92-99. doi: 10.1016/j.tca.2014.02.017
    [30] GUO X, XIONG C, JIN Z, et al. A review on mechanical properties of FRP bars subjected to seawater sea sand concrete environmental effects[J]. Journal of Building Engineering, 2022, 58: 105038. doi: 10.1016/j.jobe.2022.105038
  • 加载中
计量
  • 文章访问数:  150
  • HTML全文浏览量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-20
  • 修回日期:  2023-10-24
  • 录用日期:  2023-11-21
  • 网络出版日期:  2023-12-01

目录

    /

    返回文章
    返回