留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D打印纤维增强复合材料工艺和力学性能研究进展

龙昱 李岩 付昆昆

龙昱, 李岩, 付昆昆. 3D打印纤维增强复合材料工艺和力学性能研究进展[J]. 复合材料学报, 2022, 39(9): 1-17 doi: 10.13801/j.cnki.fhclxb.20220530.003
引用本文: 龙昱, 李岩, 付昆昆. 3D打印纤维增强复合材料工艺和力学性能研究进展[J]. 复合材料学报, 2022, 39(9): 1-17 doi: 10.13801/j.cnki.fhclxb.20220530.003
Yu LONG, Yan LI, Kunkun FU. Recent advances in 3D printed fiber reinforced composites: processing technique and mechanical performance[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 1-17. doi: 10.13801/j.cnki.fhclxb.20220530.003
Citation: Yu LONG, Yan LI, Kunkun FU. Recent advances in 3D printed fiber reinforced composites: processing technique and mechanical performance[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 1-17. doi: 10.13801/j.cnki.fhclxb.20220530.003

3D打印纤维增强复合材料工艺和力学性能研究进展

doi: 10.13801/j.cnki.fhclxb.20220530.003
基金项目: 国家自然科学基金重点项目(12132011);国家自然科学基金委中英牛顿高级学者(12061130201);上海市国际科技合作基金项目(19520713000)
详细信息
    通讯作者:

    李岩,博士,教授,博士生导师,研究方向为复合材料设计和制造 E-mail: liyan@tongji.edu.cn

    付昆昆,博士,教授,博士生导师,研究方向为复合材料损伤评估和增材制造 E-mail:1984fukunkun@tongji.edu.cn

  • 中图分类号: TB320

Recent advances in 3D printed fiber reinforced composites: processing technique and mechanical performance

  • 摘要: 3D打印可实现纤维增强复合材料复杂结构的一体化成型,无需模具,可显著降低先进复合材料的制造时间和成本。本文综述了3D打印纤维增强复合材料工艺和力学性能的最新研究进展,对纤维增强复合材料3D打印工艺、打印设备、打印材料和力学性能等方面开展了详细的分析和阐述,重点介绍了熔融沉积工艺成型连续纤维增强复合材料的最新研究进展,并与传统工艺制备的复合材料力学性能进行了对比和分析。最后,针对纤维增强复合材料3D打印技术的未来发展进行了展望。

     

  • 图  1  基于FFF工艺制备的连续纤维热塑性复合材料的打印工艺示意图:((a)~(b)) 单喷嘴打印[18-19];(c) 双喷嘴打印[20]

    Figure  1.  Schematic diagram of printing process of continuous fibre thermoplastic composites based on FFF: ((a)-(b)) Single nozzle printing[18-19]; (c) Double nozzle printing[20]

    图  2  打印设备及制品图片:(a) 斐帛科技桌面级打印机COMBOT-I[37];(b) Markforged公司的桌面级打印机MarkTwo[9];((c)、(d)) Arevo公司的多自由度打印系统AQUA及其打印的自行车架 [12];(e) 按比例缩小的悬挂板的拓扑分析过程;(f) 悬挂板的打印路径和3D打印的悬浮板[39]

    Figure  2.  Photos of printing equipments and products: (a) Fibertech desktop printer COMBOT-I [37]; (b) Markforged's desktop printer MarkTwo [9]; ((c),(d)) Multi-degree-of-freedom printing system AQUA from Arevo and its 3D printed bike frame[12]; (e) Topological analyzing process of the scaled-down suspension plate; (f) Printing path of the suspension plate and 3D printed suspension plate[39]

    图  3  不同纤维形貌图:(a) 植物纱线表面[56];(b) 植物纱线截面[57];(c) 碳纤维表面[58];(d) 碳纤维截面[36]

    Figure  3.  Images of different fibre morphologies: (a) Surface of plant yarn[56]; (b) Cross-section of plant yarn[57]; (c) Surface of carbon fibre[58]; (d) Cross-section of carbon fibre[36]

    图  4  (a) 不同层厚、纤维含量的层间剪切强度(ILSS)样品;(b) 不同层厚、纤维含量和构建方向的缺口冲击样品[78,79]

    Figure  4.  (a) Interlaminar shear strength (ILSS) samples with different layer thicknesses and fibre volume contents; (b) Notched impact samples with different build orientations, layer thicknesses and fibre volume contents[78,79]

    Lt—Layer thicknesses

    图  5  不同方向的连续碳纤维/尼龙复合材料的SEM图像:(a) 俯视图;(b) 截面图;(c) 打印的碳纤维丝束在转弯处的纤维断裂;((d)~(f)) 打印复合材料中存在的孔隙[63]

    Figure  5.  SEM images of different views of carbon fiber/Nylon composites: (a) Top view; (b) Cross-sectional view; (c) Single carbon fiber printed layer with fiber breakage at the curvature; ((d)-(f)) Magnified cross-section showing porosity[63]

    图  6  由二级拉-挤系统组成的连续点阵制造(CLF)打印头:(a) CLF打印头照片;(b) CLF过程示意图[86]

    Figure  6.  Continuous lattice fabrication (CLF) head is comprised of a two-stage pultrusion-extrusion system: (a) Photograph of CLF head; (b) Schematic of the CLF process[86]

    $\dot{Q} $—Heat flow

    图  7  3D压实打印头的示意图[87]

    Figure  7.  Schematic of the 3D compaction printer head[87]

    DZZ-directional relative displacement

    图  8  通过各种传统和增材制造(AM)技术制造的部件的抗拉强度与纤维体积分数对比图[15]

    Figure  8.  Tensile strength versus fibre volume fraction of parts manufactured via various conventional and additive manufacturing (AM) techniques[15]

    RTM—Resin transfer molding; ATL—Automated tape-laying

    表  1  3D打印纤维增强复合材料的制备工艺、材料类型和优缺点[15]

    Table  1.   Summary of 3D printed fibre-reinforced composites for processing techniques, material types, advantages and disadvantages[15]

    Processing techniquesMaterial typesAdvantagesDisadvantages
    Material extrusion
    (FFF, LDM)
    FFF
    Continuous filaments of
    thermoplastic polymers
    LDM
    A concentrated dispersion
    of particles in liquid
    Low cost,
    Easy fabrication,
    Multi-material capability
    Obvious layer-
    by-layer effect,
    Nozzle clogging at high
    fibre volume
    Vat photopoly-
    merization
    (SLA)
    A resin with
    photoactive
    monomers
    Fine resolution,
    Random alignment of discontinuous fibres for isotropic mechanical property
    Very limited materials,
    Fibre sedimentation in resin,
    UV penetration issue,
    Bubble formation causing
    pores to form
    Powder bed fusion
    (SLS)
    Compacted fine
    powders
    Fine resolution,
    Unused powder
    can be reused,
    High loading of reinforcement
    Slow printing,
    Expensive,
    High porosity in the
    binder method,
    Long and continuous fibre reinforcement not possible,
    Rough surface
    Laminated object
    manufacturing
    (LOM, CBAM)
    Polymer composite
    in sheet
    High-strength parts can be produced,
    Low cost,
    No post processing,
    No need for support structures
    High material wastage,
    Difficult to build complex
    internal cavities
    Notes: FFF—Fused wire manufacturing; LDM—Liquid deposition molding; SLA—Solid light curing; SLS—Selective laser sintering; LOM—Laminated solid manufacturing technology; CBAM—Composite material based additive manufacturing technology.
    下载: 导出CSV

    表  2  一些用于3D打印材料的物理性能

    Table  2.   Physical properties of some materials used for 3D printing

    MaterialsPhysical and mechanical propertiesResource
    Density/
    (g·cm−3)
    Diameter of printing filament/mmTensile modulus/
    GPa
    Flexural modulus/
    GPa
    MatrixPA61.101.750.92.9[42]
    PLA1.241.752.00.8[42]
    ABS1.041.751.02.40[42]
    PEEK1.301.753.73.6[43]
    E-54[22]
    EP-671[23]
    Continuous fiberCarbon fiber1.300.4054.051.0[42]
    Glass fiber2.400.3021.022.0[42]
    Kevlar fiber1.200.3027.026.0[42]
    Jute fiber1.460.805.0[42]
    Flax fiber1.35-1.500.3023.0[40, 44]
    Notes: PA6—Nylon 6; PLA—Poly lactic acid; ABS—Styrene-acrylonitrile-polybutadiene copolymer; PEEK—Polyether-ether-ketone; EP—Epoxy.
    下载: 导出CSV

    表  3  ILSS样品的打印参数和层间剪切强度[79]

    Table  3.   Printing parameters and interlaminar shear strength of ILSS samples[79]

    SampleFiber volume fraction
    (vol%, number of fiber layers/number of layers)
    ILSS/MPa
    Carbon
    fiber
    Type A26.8(18/48)22.2
    Type B72.4(46/48)31.9
    Kevlar
    fiber
    Type A27.5(22/60)13.7
    Type B73.8(58/60)14.3
    Glass
    fiber
    Type A27.2(22/60)13.9
    Type B73.4(58/60)21.0
    下载: 导出CSV

    表  4  缺口冲击样品的打印参数和冲击强度[78]

    Table  4.   Printing parameters and impact strength of notched impact samples[78]

    Sample
    Build orientation
    Fiber volume
    fraction/vol%
    Impact strength/
    (kJ·m−2)
    FlatOn-edgeFlatOn-edge
    Carbon
    fiber
    Type A 3.4 3.4 22.2 24.7
    Type B 24.9 24.8 33.2 59.8
    Type C 53.2 33.2 57.5 82.3
    Kevlar
    fiber
    Type A 8.6 7.8 30.1 36.4
    Type B 29.5 29.5 83.7 95.1
    Type C 56.1 34.7 125.5 184.8
    Glass
    fiber
    Type A 8.4 7.8 74.2 86.3
    Type B 29.2 29.7 206.7 246.2
    Type C 55.6 34.3 271.2 281.0
    下载: 导出CSV

    表  5  注塑、模压与3D打印工艺成型的碳纤维增强复合材料的力学性能对比

    Table  5.   Comparison of mechanical properties of carbon fibre composites by injection molding, compression molding and 3D printing

    SampleFiber volume fraction/vol%Tensile modulus/
    GPa
    Tensile strength/
    MPa
    Flexural modulus/
    GPa
    Flexural strength/
    MPa
    Mode I
    GIC−i/
    (J·m−2)
    Mode I
    GIC−p/
    (J·m−2)
    Ref.
    CCF/ABS-3DP10127147[85]
    CCF/ABS-IM140200
    CCF/PA6-3DP3561.076735.8546118.51467[83]
    CCF/PA6-3DP-CM83.294057.31052225.1472
    3DP3552.1583[87]
    3DP-CM69.2950
    Notes: CCF—Continuous carbon fiber; ABS—Acrylonitrile butadiene styrene; PA6—Polyamide 6; 3DP—3D powder bonding; GIC−i—Interlaminar fracture toughness values for delamination initiation; GIC−p—Interlaminar fracture toughness after molding; IM—Injection molding; CM—Compression moulding.
    下载: 导出CSV
  • [1] VAN DE WERKEN N, TEKINALP H, KHANBOLOUKI P, et al. Additively manufactured carbon fiber-reinforced composites: State of the art and perspective[J]. Additive Manufacturing,2020,31:100962. doi: 10.1016/j.addma.2019.100962
    [2] ABDELWAHAB M A, TAYLOR S, MISRA M, et al. Thermo-mechanical characterization of bioblends from polylactide and poly(butylene adipate-co-terephthalate) and lignin[J]. Macromolecular Materials and Engineering,2015,300(3):299-311. doi: 10.1002/mame.201400241
    [3] ABANILLA M A, KARBHARI V M, LI Y. Interlaminar and intralaminar durability characterization of wet layup carbon/epoxy used in external strengthening[J]. Composites Part B: Engineering,2006,37(7-8):650-661. doi: 10.1016/j.compositesb.2006.02.023
    [4] ABANILLA M A, LI Y, KARBHARI V M. Durability characterization of wet layup graphite/epoxy composites used in external strengthening[J]. Composites Part B: Engineering,2006,37(2-3):200-212.
    [5] HAN S H, OH H J, KIM S S. Evaluation of the impregnation characteristics of carbon fiber-reinforced composites using dissolved polypropylene[J]. Composites Science and Technology,2014,91:55-62. doi: 10.1016/j.compscitech.2013.11.021
    [6] ABDALLA F H, MUTASHER S A, KHALID Y A, et al. Design and fabrication of low cost filament winding machine[J]. Materials & Design,2007,28(1):234-239.
    [7] CHEN C H, MA C C M. Pultruded fiber-reinforced polyurethane composites. 3. Static mechanical, thermal, and dynamic-mechanical properties[J]. Composites Science and Technology,1994,52(3):427-432. doi: 10.1016/0266-3538(94)90177-5
    [8] PAPARGYRIS D A, DAY R J, NESBITT A, et al. Comparison of the mechanical and physical properties of a carbon fibre epoxy composite manufactured by resin transfer moulding using conventional and microwave heating[J]. Composites Science and Technology,2008,68(7-8):1854-1861. doi: 10.1016/j.compscitech.2008.01.010
    [9] Markforged. The backbone of aluminum-strength composite parts [EB/OL]. (2021)[2021-06-11] https://markforged.com/materials/continuous-fibers/continuous-carbon-fiber
    [10] DICKSON A N, BARRY J N, MCDONNELL K A, et al. Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing[J]. Additive Manufacturing,2017,16:146-152. doi: 10.1016/j.addma.2017.06.004
    [11] Desktop Metal. Press release-desktop metal set to transform continuous fiber 3d printing[EB/OL]. (2020) [2020-06-11]https://www.desktopmetal.com/press/press-release-desktop-metal-set-to-transform-continuous-fiber-3d-printing
    [12] AREVO. Robots with ded technology[EB/OL]. (2021) [2021-06-11]https://www.arevo.com/technology?lang=en
    [13] 9TLABS. Red seriesTM, your all-in-one solution for digital composite production[EB/OL]. (2021) [2021-06-11]https://www.9tlabs.com/news/2020/3/13/red-series
    [14] Anisoprint. CCF&CBF[EB/OL]. (2021) [2021-06-11]https://anisoprint.com/product-cf
    [15] GOH G D, YAP Y L, AGARWALA S, et al. Recent progress in additive manufacturing of fiber reinforced polymer composite[J]. Advanced Materials Technologies,2019,4(1):1800271. doi: 10.1002/admt.201800271
    [16] TURNER B N, STRONG R, GOLD S A. A review of melt extrusion additive manufacturing processes: I. Process design and modeling[J]. Rapid Prototyping Journal,2014,20(3):192-204. doi: 10.1108/RPJ-01-2013-0012
    [17] TURNER B N, GOLD S A. A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness[J]. Rapid Prototyping Journal,2015,21(3):250-261. doi: 10.1108/RPJ-02-2013-0017
    [18] SINGH S, SINGH G, PRAKASH C, et al. Current status and future directions of fused filament fabrication[J]. Journal of Manufacturing Processes,2020,55:288-306. doi: 10.1016/j.jmapro.2020.04.049
    [19] MATSUZAKI R, UEDA M, NAMIKI M, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation[J]. Scientific Reports,2016,6:1-7. doi: 10.1038/s41598-016-0001-8
    [20] MEI H, ALI Z, YAN Y K, et al. Influence of mixed isotropic fiber angles and hot press on the mechanical properties of 3D printed composites[J]. Additive Manufacturing,2019,27:150-158. doi: 10.1016/j.addma.2019.03.008
    [21] COMPTON B G, LEWIS J A. 3D-printing of lightweight cellular composites[J]. Additive Manufacturing,2014,26(34):5930-5935.
    [22] HAO W, LIU Y, ZHOU H, et al. Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites[J]. Polymer Testing,2018,65:29-34. doi: 10.1016/j.polymertesting.2017.11.004
    [23] MING Y, ZHANG S, HAN W, et al. Investigation on process parameters of 3D printed continuous carbon fiber-reinforced thermosetting epoxy composites[J]. Additive Manu-facturing,2020,33:101184. doi: 10.1016/j.addma.2020.101184
    [24] MING Y K, DUAN Y G, ZHANG S Q, et al. Self-heating 3D printed continuous carbon fiber/epoxy mesh and its application in wind turbine deicing[J]. Polymer Testing,2020,82:106309. doi: 10.1016/j.polymertesting.2019.106309
    [25] MELCHELS F P W, FEIJEN J, GRIJPMA D W. A review on stereolithography and its applications in biomedical engineering[J]. Biomaterials,2010,31(24):6121-6130. doi: 10.1016/j.biomaterials.2010.04.050
    [26] RENAULT T, OGALE A, DOOLEY R L, et al. Photolithography for composites manufacturing. Continuous glass fiber/polycrylate composites[J]. SAMPE Quarterly (Society of Aerospace Material and Process Engineers),1991,22:2.
    [27] INVERNIZZI M, NATALE G, LEVI M, et al. UV-assisted 3D printing of glass and carbon fiber-reinforced dual-cure polymer composites[J]. Materials,2016,9(7):538. doi: 10.3390/ma9070538
    [28] Continuous Composites. Into free space with CF3D[EB/OL]. (2021)[2021-06-11].https://www.continuouscomposites.com
    [29] HABERER M, ZAK G, PARK C B, et al. Fluid mechanics of slot-coating in photopolymer-based rapid composites manufacturing[J]. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science,2003,217(1):65-79. doi: 10.1243/095440603762554622
    [30] WANG Y, XU Z, WU D, et al. Current status and prospects of polymer powder 3D printing technologies[J]. Materials,2020,13(10):2046.
    [31] ATHREYA S R, KALAITZIDOU K, DAS S. Mechanical and microstructural properties of Nylon-12/carbon black composites: Selective laser sintering versus melt compounding and injection molding[J]. Composites Science and Technology,2011,71(4):506-510. doi: 10.1016/j.compscitech.2010.12.028
    [32] ARAI S, TSUNODA S, KAWAMURA R, et al. Comparison of crystallization characteristics and mechanical properties of poly(butylene terephthalate) processed by laser sintering and injection molding[J]. Materials & Design,2017,113:214-222.
    [33] KLOSTERMAN D, CHARTOFF R, GRAVES G, et al. Interfacial characteristics of composites fabricated by laminated object manufacturing[J]. Composites Part A: Applied Science and Manufacturing,1998,29(9-10):1165-1174. doi: 10.1016/S1359-835X(98)00088-8
    [34] CHAPIRO M. Current achievements and future outlook for composites in 3D printing[J]. Reinforced Plastics,2016,60(6):372-375. doi: 10.1016/j.repl.2016.10.002
    [35] TEKINALP H L, KUNC V, VELEZ-GARCIA G M, et al. Highly oriented carbon fiber-polymer composites via additive manufacturing[J]. Composites Science and Technology,2014,105:144-150. doi: 10.1016/j.compscitech.2014.10.009
    [36] TIAN X Y, LIU T, YANG C, et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A: Applied Science and Manufacturing,2016,88:198-205. doi: 10.1016/j.compositesa.2016.05.032
    [37] HOU Z H, TIAN X Y, ZHENG Z Q, et al. A constitutive model for 3D printed continuous fiber reinforced composite structures with variable fiber content[J]. Composites Part B: Engineering,2020,189:107893. doi: 10.1016/j.compositesb.2020.107893
    [38] HOU Z H, TIAN X, ZHANG J, et al. 3D printed continuous fibre reinforced composite corrugated structure[J]. Composite Structures,2018,184:1005-1010. doi: 10.1016/j.compstruct.2017.10.080
    [39] LI N Y, LINK G, WANG T, et al. Path-designed 3D printing for topological optimized continuous carbon fibre reinforced composite structures[J]. Composites Part B: Engineering,2020,182:107612. doi: 10.1016/j.compositesb.2019.107612
    [40] LE DUIGOU A, BARBE A, GUILLOU E, et al. 3D printing of continuous flax fibre reinforced biocomposites for structural applications[J]. Materials & Design,2019,180:1-8.
    [41] OMRANI F, WANG P, SOULAT D, et al. Mechanical properties of flax-fibre-reinforced preforms and composites: Influence of the type of yarns on multi-scale characterisations[J]. Composites Part A: Applied Science and Manufacturing,2017,93:72-81. doi: 10.1016/j.compositesa.2016.11.013
    [42] KABIR S M F, MATHUR K, SEYAM A F M. A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties[J]. Composite Structures,2020,232:111476.
    [43] LI W J, SANG L, JIAN X G, et al. Influence of sanding and plasma treatment on shear bond strength of 3D-printed PEI, PEEK and PEEK/CF[J]. International Journal of Adhesion and Adhesives,2020,100:102614. doi: 10.1016/j.ijadhadh.2020.102614
    [44] RAMESH M. Flax (Linum usitatissimum L. ) fibre reinforced polymer composite materials: A review on preparation, properties and prospects[J]. Progress in Materials Science,2019,102:109-166. doi: 10.1016/j.pmatsci.2018.12.004
    [45] MATSUZAKI R, NAKAMURA T, SUGIYAMA K, et al. Effects of set curvature and fiber bundle size on the printed radius of curvature by a continuous carbon fiber composite 3D printer[J]. Additive Manufacturing,2018,24:93-102. doi: 10.1016/j.addma.2018.09.019
    [46] BILLAH K M M, LORENZANA F A R, MARTINEZ N L, et al. Thermomechanical characterization of short carbon fiber and short glass fiber-reinforced ABS used in large format additive manufacturing[J]. Additive Manufacturing,2020,35:101299. doi: 10.1016/j.addma.2020.101299
    [47] 邓斌, 黄文艺, 邓鑫. 3D打印用聚合物材料的进展[J]. 塑料, 2019, 48(4):127-131.

    DEND Bin, HUANG Wenyi, DENG Xin, et al. Research progress of polymer materials for 3D printing[J]. Plastics,2019,48(4):127-131(in Chinese).
    [48] 蔡云冰, 刘志鹏, 张子龙, 等. 聚乳酸材料在3D打印中的研究与应用进展[J]. 应用化工, 2019, 48(4):127-131.

    CAI Yunbing, LIU Zhipeng, ZHANG Zilong, et al. Research and application of polylactic acid in 3D Printing[J]. Applied Chemical Industry,2019,48(4):127-131(in Chinese).
    [49] HEIDARI-RARANI M, RAFIEE-AFARANI M, ZAHEDI A M. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites[J]. Composites Part B: Engineering,2019,175:107147. doi: 10.1016/j.compositesb.2019.107147
    [50] 梁晓静, 于晓燕. 3D打印用高分子材料及其复合材料的研究进展[J]. 高分子通报, 2018, 04:27-35.

    LIANG Xiaojing, YU Xiaoyan. Research progress of polymer and polymer composite materials for 3D printing[J]. Polymer Bulletin,2018,04:27-35(in Chinese).
    [51] LIAO G X, LI Z X, CHENG Y C, et al. Properties of oriented carbon fiber/polyamide 12 composite parts fabricated by fused deposition modeling[J]. Materials & Design,2018,139:283-292.
    [52] YANG C C, WANG B J, LI D C, et al. Modelling and characterisation for the responsive performance of CF/PLA and CF/PEEK smart materials fabricated by 4 D printing[J]. Virtual and Physical Prototyping,2017,12:69-76. doi: 10.1080/17452759.2016.1265992
    [53] 齐俊梅, 姚雪丽, 陈辉辉, 等. 3D打印聚合物材料的研究进展[J]. 热固性树脂, 2019, 34(2):60-63.

    QI Junmei, YAO Xueli, CHEN Huihui, et al. Research progress of polymer and polymer composite materials for 3D printing technology[J]. Thermosetting Resin,2019,34(2):60-63(in Chinese).
    [54] 陈杰, 马春柳, 刘邦, 等. 热固性树脂及其固化剂的研究进展[J]. 塑料科技, 2019, 47(2):95-102.

    CHEN Jie, MA Chunliu, LIU Bang, et al. Research progress of thermosetting resins and their curing agents[J]. Plastics Science and Technology,2019,47(2):95-102(in Chinese).
    [55] SHI B, SHANG Y, ZHANG P, et al. Dynamic capillary-driven additive manufacturing of continuous carbon fiber composite[J]. Matter,2020,2(6):1594-1604. doi: 10.1016/j.matt.2020.04.010
    [56] MA H, LI Y, SHEN Y, et al. Effect of linear density and yarn structure on the mechanical properties of ramie fiber yarn reinforced composites[J]. Composites Part A: Applied Science and Manufacturing,2016,87:98-108. doi: 10.1016/j.compositesa.2016.04.012
    [57] SAAIDIA A, BEZAZI A, BELBAH A, et al. Mechano-physical properties and statistical design of jute yarns[J]. Measurement,2017,111:284-294. doi: 10.1016/j.measurement.2017.07.054
    [58] GIORGINI L, BENELLI T, MAZZOCCHETTI L, et al. Pyrolysis as a way to close a CFRC life cycle: Carbon fibers recovery and their use as feedstock for a new composite production [C]//7th Internatinal Conference on Times of Polymers and Composites (Top). Ischia: AIP Conference Proceedings, 2014: 354-357.
    [59] LONG Y, ZHANG Z, FU K, et al. Efficient plant fibre yarn pre-treatment for 3D printed continuous flax fibre/poly(lactic) acid composites[J]. Composites Part B: Engineering,2021,227:109389. doi: 10.1016/j.compositesb.2021.109389
    [60] KOUSHKI P, KWOK T H, HOF L, et al. Reinforcing silicone with hemp fiber for additive manufacturing[J]. Composites Science and Technology,2020,194:108139. doi: 10.1016/j.compscitech.2020.108139
    [61] AZAROV A V, ANTONOV F K, VASIL’EV V V, et al. Development of a two-matrix composite material fabricated by 3D printing[J]. Polymer Science, Series D,2017,10(1):87-90. doi: 10.1134/S1995421217010026
    [62] 周典瑞, 高亮, 霍红宇, 等. 热塑性树脂基复合材料用碳纤维上浆剂研究进展[J]. 复合材料学报, 2020, 37(8):1785-1795.

    ZHOU Dianrui, GAO Liang, HUO Hongyu, et al. Research of carbon fiber sizing agents for thermoplastic composites[J]. Acta Materiae Compositae Sinica,2020,37(8):1785-1795(in Chinese).
    [63] LI N Y, LI Y G, LIU S T. Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing[J]. Journal of Materials Processing Technology,2016,238:218-225. doi: 10.1016/j.jmatprotec.2016.07.025
    [64] LIU T F, TIAN X Y, ZHANG M Y, et al. Interfacial performance and fracture patterns of 3D printed continuous carbon fiber with sizing reinforced PA6 composites[J]. Composites Part A: Applied Science and Manufacturing,2018,114:368-376. doi: 10.1016/j.compositesa.2018.09.001
    [65] AEGERTER N, VOLK M, MAIO C, et al. Pultrusion of hybrid bicomponent fibers for 3D printing of continuous fiber reinforced thermoplastics[J]. Advanced Industrial and Engineering Polymer Research,2021,4(4):224-234.
    [66] 刘腾飞, 田小永, 薛莲. 连续碳纤维增强尼龙6复合材料3D打印装备与参数调控[J]. 机械工业标准化与质量, 2020, 3:27-30, 38. doi: 10.3969/j.issn.1007-6905.2020.08.008

    LIU Tengfei, TIAN Xiaoyong, XUE Lian. Continuous carbon fiber reinforced nylon 6 composite: 3D printing equipment and parameter control[J]. Journal of Standardization and Quality in the Machinery Industry,2020,3:27-30, 38(in Chinese). doi: 10.3969/j.issn.1007-6905.2020.08.008
    [67] FERNANDEZ-VICENTE M, CALLE W, FERRANDIZ S, et al. Effect of Infill parameters on tensile mechanical behavior in desktop 3D printing[J]. 3D Printing and Additive Manufacturing,2016,3(3):183-192. doi: 10.1089/3dp.2015.0036
    [68] VAEZI M, CHUA C K. Effects of layer thickness and binder saturation level parameters on 3D printing process[J]. International Journal of Advanced Manufacturing Technology,2011,53(1-4):275-284. doi: 10.1007/s00170-010-2821-1
    [69] ADUMITROAIE A, ANTONOV F, KHAZIEV A, et al. Novel continuous fiber Bi-matrix composite 3D printing technology[J]. Materials,2019,12(18):3011. doi: 10.3390/ma12183011
    [70] AKHOUNDI B, BEHRAVESH A H, SAED A B. Improving mechanical properties of continuous fiber-reinforced thermoplastic composites produced by FDM 3D printer[J]. Journal of Reinforced Plastics and Composites,2019,38(3):99-116. doi: 10.1177/0731684418807300
    [71] HU Q X, DUAN Y C, ZHANG H G, et al. Manufacturing and 3D printing of continuous carbon fiber prepreg filament[J]. Journal of Materials Science,2018,53(3):1887-1898. doi: 10.1007/s10853-017-1624-2
    [72] CHEN K, YU L G, CUI Y H, et al. Optimization of printing parameters of 3D-printed continuous glass fiber reinforced polylactic acid composites[J]. Thin-Walled Structures,2021,164:107717. doi: 10.1016/j.tws.2021.107717
    [73] UEDA M, WATANABE Y, MUKAI Y, et al. Three-dimensional printing of locally bendable short carbon fiber reinforced polymer composites[J]. Advanced Industrial and Engineering Polymer Research,2021,4(4):264-269.
    [74] MEI H, ALI Z, ALI I, et al. Tailoring strength and modulus by 3D printing different continuous fibers and filled structures into composites[J]. Advanced Composites and Hybrid Materials,2019,2(2):312-319. doi: 10.1007/s42114-019-00087-7
    [75] PENG Y, WU Y Y, LI S X, et al. Tailorable rigidity and energy-absorption capability of 3D printed continuous carbon fiber reinforced polyamide composites[J]. Composites Science and Technology,2020,199:108337. doi: 10.1016/j.compscitech.2020.108337
    [76] KRZIKALLA D, MESICEK J, HALAMA R, et al. On flexural properties of additive manufactured composites: Experimental, and numerical study[J]. Composites Science and Technology,2022,218:109182. doi: 10.1016/j.compscitech.2021.109182
    [77] ARAYA-CALVO M, LOPEZ-GOMEZ I, CHAMBERLAIN-SIMON N, et al. Evaluation of compressive and flexural properties of continuous fiber fabrication additive manufacturing technology[J]. Additive Manufacturing,2018,22:157-164.
    [78] CAMINERO M A, CHACON J M, GARCIA-MORENO I, et al. Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling[J]. Composites Part B: Engineering,2018,148:93-103. doi: 10.1016/j.compositesb.2018.04.054
    [79] CAMINERO M A, CHACON J M, GARCIA-MORENO I, et al. Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling[J]. Polymer Testing,2018,68:415-423. doi: 10.1016/j.polymertesting.2018.04.038
    [80] IRAGI M, PASCUAL-GONZALEZ C, ESNAOLA A, et al. Ply and interlaminar behaviours of 3D printed continuous carbon fibre-reinforced thermoplastic laminates; effects of processing conditions and microstructure[J]. Additive Manufacturing,2019,30:100884.
    [81] HE Q, WANG H, FU K, et al. 3D printed continuous CF/PA6 composites: Effect of microscopic voids on mechanical performance[J]. Composites Science and Technology,2020,191:108077. doi: 10.1016/j.compscitech.2020.108077
    [82] NING F D, CONG W L, HU Y B, et al. Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: Effects of process parameters on tensile properties[J]. Journal of Composite Materials,2017,51(4):451-462. doi: 10.1177/0021998316646169
    [83] YANG C, TIAN X, LIU T, et al. 3D printing for continuous fiber reinforced thermoplastic composites: Mechanism and performance[J]. Rapid Prototyping Journal,2017,23(1):209-215. doi: 10.1108/RPJ-08-2015-0098
    [84] GOH G D, DIKSHIT V, NAGALINGAM A P, et al. Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics[J]. Materials & Design,2018,137:79-89.
    [85] PARANDOUSH P, TUCKER L, ZHOU C, et al. Laser assisted additive manufacturing of continuous fiber reinforced thermoplastic composites[J]. Materials& Design,2017,131:186-195.
    [86] EICHENHOFER M, WONG J C H, ERMANNI P. Exploiting cyclic softening in continuous lattice fabrication for the additive manufacturing of high performance fibre-reinforced thermoplastic composite materials[J]. Composites Science and Technology,2018,164:248-259. doi: 10.1016/j.compscitech.2018.05.033
    [87] UEDA M, KISHIMOTO S, YAMAWAKI M, et al. 3D compaction printing of a continuous carbon fiber reinforced thermoplastic[J]. Composites Part A: Applied Science and Manufacturing,2020,137:105985. doi: 10.1016/j.compositesa.2020.105985
    [88] LI H M, LIU B S, GE L, et al. Mechanical performances of continuous carbon fiber reinforced PLA composites printed in vacuum[J]. Composites Part B: Engineering,2021,225:109277. doi: 10.1016/j.compositesb.2021.109277
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  73
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 录用日期:  2022-05-15
  • 修回日期:  2022-05-12
  • 网络出版日期:  2022-05-31
  • 刊出日期:  2022-09-15

目录

    /

    返回文章
    返回