留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料夹芯结构褶皱增强理论和有限元方法

张森林 吴振 任晓辉

张森林, 吴振, 任晓辉. 复合材料夹芯结构褶皱增强理论和有限元方法[J]. 复合材料学报, 2023, 40(8): 4840-4848. doi: 10.13801/j.cnki.fhclxb.20221110.002
引用本文: 张森林, 吴振, 任晓辉. 复合材料夹芯结构褶皱增强理论和有限元方法[J]. 复合材料学报, 2023, 40(8): 4840-4848. doi: 10.13801/j.cnki.fhclxb.20221110.002
ZHANG Senlin, WU Zhen, REN Xiaohui. Enhanced theory and finite element method for wrinkling analysis of composite sandwich structure[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4840-4848. doi: 10.13801/j.cnki.fhclxb.20221110.002
Citation: ZHANG Senlin, WU Zhen, REN Xiaohui. Enhanced theory and finite element method for wrinkling analysis of composite sandwich structure[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4840-4848. doi: 10.13801/j.cnki.fhclxb.20221110.002

复合材料夹芯结构褶皱增强理论和有限元方法

doi: 10.13801/j.cnki.fhclxb.20221110.002
基金项目: 国家自然科学基金(12172295)
详细信息
    通讯作者:

    吴振,博士,教授,博士生导师,研究方向为复合材料结构力学 E-mail: wuzhenhk@nwpu.edu.cn

  • 中图分类号: TB333

Enhanced theory and finite element method for wrinkling analysis of composite sandwich structure

Funds: National Natural Science Foundation of China (12172295)
  • 摘要: 复合材料软核夹芯结构承受面内载荷,面板可能出现褶皱。一旦面板出现褶皱,夹芯结构将失去承载能力。因此,需要发展准确的理论模型预测软核夹芯结构褶皱行为。夹芯结构褶皱是典型三维(3D)问题,鲜有高阶模型能准确预测此类问题。为此,提出考虑局部形变和三维效应的增强型高阶模型。基于此理论,推导了梁单元公式,并分析了不同边界条件复合材料夹芯结构的起皱行为。通过与准三维弹性解和三维有限元解对比,提出方法的准确性得到验证。为了提高夹芯结构抗起皱能力,尝试使用复合材料面板代替金属面板。数值分析结果表明,发展的增强型高阶模型可以准确分析复合材料夹芯结构褶皱行为,并且使用复合材料面板可有效提升夹芯结构抗起皱能力。

     

  • 图  1  三层夹芯梁截面

    tc—Thickness of the core layer; tf—Thickness of the panel layer

    Figure  1.  Three-layer sandwich beam section

    图  2  构建的高阶单元收敛率

    BE18—Enhanced higher-order model; 3D-FEM—Three-dimensional finite element method

    Figure  2.  Convergence rate of constructed higher-order elements

    图  3  三层铝面板夹芯梁屈曲和褶皱载荷(芯材与面板厚度之比tc/tf =50,夹芯梁长厚比a/h=2)

    Figure  3.  Buckling and wrinkling loads for three-layer sandwich beam with aluminum face sheets (Ratio of core thickness to panel thickness is tc/tf=50, ratio of length to thickness is a/h=2)

    图  4  使用当前模型和3D有限元模型(3D-FEM)计算得到的三层铝面板夹芯梁屈曲行为的位移模态

    Figure  4.  Displacement modes for buckling behaviors of a three-layer aluminum panel sandwich beam calculated by using the current model and 3D finite element method (3D-FEM)

    m—Number of half waves

    图  5  使用当前模型和3D-FEM计算得到的三层铝面板夹芯梁褶皱行为的位移模态

    Figure  5.  Displacement modes for wrinkling behaviors of a three-layer aluminum panel sandwich beam calculated by using the current model and 3D-FEM

    图  6  材料参数和几何参数对三层铝面板夹芯梁屈曲和褶皱载荷影响

    Figure  6.  Influence of material properties and geometric parameters on buckling and wrinkling loads of three-layer sandwich beam with aluminum face sheets

    图  7  几何参数对三层铝面板夹芯梁屈曲和褶皱载荷影响

    Figure  7.  Influence of geometric parameters on buckling and wrinkling loads of three-layer sandwich beam with aluminum face sheets

    表  1  3D有限元边界条件

    Table  1.   Boundary condition for 3D finite element

    x=0x=ay=0y=1
    U2=U3=UR3=0U3=UR3=0U2=0U2=0
    Notes: a—Length of the sandwich beam; U2, U3, UR3—Translational and rotational degrees of freedom in ABAQUS, respectively.
    下载: 导出CSV

    表  2  三层铝面板夹芯梁屈曲载荷

    Table  2.   Buckling load of three-layer sandwich beam with aluminum panels

    tc/tfa/h3D-FEM
    (270000 elements)
    BE18
    (64 elements)
    HYF11[20]HYF21[20]HOST[21]Allen[22]
    5 2 6.6111 6.7131(1.54) 6.2220(5.89) 37.551(468.00) 37.238(463.26) 6.3544(3.88)
    5 14.7065 14.838(0.89) 14.320(2.63) 159.0500(981.49) 159.3200(983.33) 14.385(2.19)
    10 41.6580 41.8190(0.39) 41.0840(1.38) 329.6300(691.28) 321.2600(671.18) 41.1150(1.30)
    25 2 1.5342 1.5600(1.68) 1.5299(0.28) 2.3207(51.26) 2.3112(50.64) 1.5923(3.79)
    5 9.0749 9.1046(0.33) 9.0314(0.48) 13.1300(44.68) 13.1130(44.50) 9.0971(0.24)
    10 31.6490 31.6550(0.02) 31.0960(1.75) 42.4330(34.07) 42.4360(34.08) 31.1590(1.55)
    50 2 1.4432 1.4640(1.44) 1.4419(0.09) 1.8335(27.04) 1.8301(26.81) 1.5074(4.45)
    5 8.5657 8.6504(0.99) 8.5553(0.12) 10.3110(20.38) 10.3010(20.26) 8.6191(0.62)
    10 27.5850 27.5220(0.23) 26.7620 (2.98) 30.7460(11.46) 30.7690(11.54) 26.8490(2.67)
    Notes: tc/tf—Core and panel thickness ratio; a/h—Span thickness ratio of sandwich beam; BE18—Present model; HYF11—Quasi-3D model; HYF21 and HOST—Higher-order models; Allen represents the model proposed by Allen.
    下载: 导出CSV

    表  3  三层铝面板夹芯梁褶皱载荷

    Table  3.   Wrinkling loads of three-layer sandwich beam with aluminum panels

    tc/tfa/h3D-FEM
    ( 270000 elements)
    BE18
    (480 elements)
    HYF11[20]HYF21[20]Allen[22]
    50 2 0.7311 (5) 0.7632 (5) 0.7073 (6) 0.8074 1.3020 (9)
    5 4.5097 (13) 4.7147 (14) 4.3583 (14) 5.0048 8.1376 (23)
    10 18.0910 (27) 18.8830 (27) 17.4330 (28) 20.0190
    100 2 0.2610 (9) 0.2845 (9) 0.2517 (9) 0.3121 0.6638(9)
    5 1.6318 (22) 1.7768 (22) 1.5736 (23) 1.9480 4.1486 (22)
    10 6.5273 (44) 7.1612 (43) 6.2921 (45) 7.7921 16.594 (45)
    Note: Numbers in brackets represent half-wave numbers.
    下载: 导出CSV

    表  4  三层复合材料夹芯梁屈曲载荷

    Table  4.   Buckling load of three-layer composite sandwich beam

    tc/tfa/h3D-FEM
    (270000 elements)
    BE18
    (240 elements)
    BHSDT[24]RHSDT[25]
    25 2 11.301 11.457 14.951 15.525
    5 64.288 64.441 85.873 89.282
    10 239.100 239.200 313.650 325.220
    50 2 10.016 10.135 13.442 12.360
    5 61.853 61.978 80.805 73.963
    10 222.560 222.510 280.980 259.830
    Notes: BHSDT—Higher order model proposed by Babu et al[24]; RHSDT—Higher-order model proposed by Reddy[25].
    下载: 导出CSV

    表  5  三层复合材料夹芯梁褶皱载荷

    Table  5.   Wrinkling load of three-layer composite sandwich beam

    tc/tfa/hSSCC
    3D-FEM
    (270000 elements)
    BE18
    (480 elements)
    3D-FEM
    (270000 elements)
    BE18
    (480 elements)
    50 2 7.5768 (4) 8.0174 (4) 8.0246 (4) 8.5964 (4)
    5 46.4130 (11) 49.2650 (11) 47.1010 (11) 50.0860 (11)
    10 185.7200 (22) 197.4900 (22) 186.4300 (21) 198.3100 (21)
    100 2 2.7004 (7) 2.8531 (7) 2.7806 (7) 2.9505 (7)
    5 16.8350 (18) 17.8290 (18) 16.9290 (18) 17.9370 (18)
    10 7.3330 (36) 1.7410 (36) 7.4410 (36) 1.8490 (36)
    Notes: SS—Simply supported boundary conditions; CC—Clamped supported boundary conditions; Numbers in brackets represent half-wave numbers.
    下载: 导出CSV
  • [1] 杜冰, 刘后常, 潘鑫, 等. 热塑性复合材料夹芯结构熔融连接研究进展[J]. 复合材料学报, 2022, 39(7):3044-3058. doi: 10.13801/j.cnki.fhclxb.20220228.001

    DU Bing, LIU Houchang, PAN Xin, et al. Progress in fusion bonding of thermoplastic composite sandwich structures[J]. Acta Materiae Compositae Sinica,2022,39(7):3044-3058(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220228.001
    [2] 熊健, 李志彬, 刘惠彬, 等. 航空航天轻质复合材料壳体结构研究进展[J]. 复合材料学报, 2021, 38(6):1629-1650. doi: 10.13801/j.cnki.fhclxb.20210107.002

    XIONG Jian, LI Zhibin, LIU Huibin, et al. Advances in aerospace lightweight composite shell structure[J]. Acta Materiae Compositae Sinica,2021,38(6):1629-1650(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210107.002
    [3] JI W, WAAS A M. Global and local buckling of a sandwich beam[J]. Journal of Engineering Mechanics,2007,133(2):230-237. doi: 10.1061/(ASCE)0733-9399(2007)133:2(230)
    [4] VADAKKE V, CARLSSON L A. Experimental investigation of compression failure of sandwich specimens with face/core debond[J]. Composites Part B: Engineering,2004,35:583-590. doi: 10.1016/j.compositesb.2003.10.004
    [5] KHALILI S M R, KHEIRIKHAH M M, FARD K M. Buckling analysis of composite sandwich plates with flexible core using improved high-order theory[J]. Mechanics of Advanced Materials and Structures,2015,22(4):233-247. doi: 10.1080/15376494.2012.736051
    [6] BENSON A S, MAYERS J. General instability and face wrinkling of sandwich plates-Unified theory and applications[J]. AIAA Journal, 1967, 5(4): 729-739.
    [7] HADI B K, MATTHEWS F L. Development of Benson-Mayers theory on the wrinkling of anisotropic sandwich panels[J]. Composite Structures,2000,49(4):425-434. doi: 10.1016/S0263-8223(00)00077-5
    [8] DAFEDAR J B, DESAI Y M, MUFTI A A. Stability of sandwich plates by mixed, higher-order analytical formulation[J]. International Journal of Solids and Structures,2003,40(17):4501-4517. doi: 10.1016/S0020-7683(03)00283-X
    [9] LOPATIN A V, MOROZOV E V. Symmetrical facing wrinkling of composite sandwich panels[J]. Journal of Sandwich Structures & Materials,2008,10(6):475-497.
    [10] JI W, WAAS A M. Wrinkling and edge buckling in orthotro-pic sandwich beams[J]. Journal of Engineering Mechanics,2008,134(6):455-461. doi: 10.1061/(ASCE)0733-9399(2008)134:6(455)
    [11] HU H, BELOUETTAR S, POTIER-FERRY M, et al. A novel finite element for global and local buckling analysis of sandwich beams[J]. Composite Structures,2009,90(3):270-278. doi: 10.1016/j.compstruct.2009.02.002
    [12] YU K, HU H, TANG H, et al. A novel two-dimensional finite element to study the instability phenomena of sandwich plates[J]. Computer Methods in Applied Mechanics and Engineering,2015,283:1117-1137. doi: 10.1016/j.cma.2014.08.006
    [13] DOUVILLE M A, LE GROGNEC P. Exact analytical solutions for the local and global buckling of sandwich beam-columns under various loadings[J]. International Journal of Solids and Structures,2013,50:2597-2609. doi: 10.1016/j.ijsolstr.2013.04.013
    [14] D'OTTAVIO M, POLIT O. Linearized global and local buckling analysis of sandwich struts with a refined quasi-3D model[J]. Acta Mechanica,2015,226(1):81-101. doi: 10.1007/s00707-014-1169-2
    [15] D'OTTAVIO M, POLIT O, JI W, et al. Benchmark solutions and assessment of variable kinematics models for global and local buckling of sandwich struts[J]. Composite Structures,2016,156:125-134. doi: 10.1016/j.compstruct.2016.01.019
    [16] VESCOVINI R, D'OTTAVIO M, DOZIO L, et al. Buckling and wrinkling of anisotropic sandwich plates[J]. International Journal of Engineering Science,2018,130:136-156. doi: 10.1016/j.ijengsci.2018.05.010
    [17] HUANG Q, LIU Y, HU H, et al. A Fourier-related double scale analysis on the instability phenomena of sandwich plates[J]. Computer Methods in Applied Mechanics and Engineering,2017,318:270-295. doi: 10.1016/j.cma.2017.01.021
    [18] CHEN X, NIE G, WU Z. Global buckling and wrinkling of variable angle tow composite sandwich plates by a modified extended high-order sandwich plate theory[J]. Composite Structures,2022,292:115639. doi: 10.1016/j.compstruct.2022.115639
    [19] 朱秀杰, 郑坚, 熊超, 等. 基于精确板理论的复合材料格栅/波纹夹芯结构屈曲特性[J]. 复合材料学报, 2022, 39(1):399-411. doi: 10.13801/j.cnki.fhclxb.20210309.003

    ZHU Xiujie, ZHENG Jian, XIONG Chao, et al. Buckling characteristics of composite grid/corrugated sandwich structure based on refined plate theory[J]. Acta Materiae Compositae Sinica,2022,39(1):399-411(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210309.003
    [20] DAFEDAR J B, DESAI Y M. Stability of composite and sandwich struts by mixed formulation[J]. Journal of Engineering Mechanics,2004,130(7):762-770. doi: 10.1061/(ASCE)0733-9399(2004)130:7(762)
    [21] KANT T, PATIL H S. Buckling loads of sandwich columns with a higher-order theory[J]. Journal of Reinforced Plastics and Composites,1991,10(1):102-109. doi: 10.1177/073168449101000107
    [22] ALLEN H G. Analysis and design of structural sandwich panels[M]. Oxford: Pergamon Press, 1969.
    [23] SZE K Y, CHEN R, CHEUNG Y K. Finite element model with continuous transverse shear stress for composite laminates in cylindrical bending[J]. Finite Elements in Analysis & Design,1998,31(2):153-164.
    [24] BABU R T, VERMA S, SINGH B N, et al. Dynamic analysis of flat and folded laminated composite plates under hygrothermal environment using a nonpolynomial shear deformation theory[J]. Composite Structures,2021,274:114327. doi: 10.1016/j.compstruct.2021.114327
    [25] REDDY J N. A simple higher-order theory for laminated composite plates[J]. Journal of Applied Mechanics,1984,51(12):745-752.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  778
  • HTML全文浏览量:  285
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-22
  • 修回日期:  2022-10-19
  • 录用日期:  2022-11-02
  • 网络出版日期:  2022-11-11
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回