留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温后珊瑚海水海砂混凝土直剪力学性能及损伤演化

陈宇良 刘志华 叶培欢 陈宗平

陈宇良, 刘志华, 叶培欢, 等. 高温后珊瑚海水海砂混凝土直剪力学性能及损伤演化[J]. 复合材料学报, 2023, 40(7): 4125-4136
引用本文: 陈宇良, 刘志华, 叶培欢, 等. 高温后珊瑚海水海砂混凝土直剪力学性能及损伤演化[J]. 复合材料学报, 2023, 40(7): 4125-4136
CHEN Yuliang, LIU Zhihua, YE Peihuan, CHEN Zongping. Direct shear mechanical properties and damage evolution of coral seawater sea-sand concrete after high temperature[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4125-4136.
Citation: CHEN Yuliang, LIU Zhihua, YE Peihuan, CHEN Zongping. Direct shear mechanical properties and damage evolution of coral seawater sea-sand concrete after high temperature[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4125-4136.

高温后珊瑚海水海砂混凝土直剪力学性能及损伤演化

基金项目: 中国博士后科学基金(2021M693854);八桂学者专项经费资助项目([2019]79号);广西科技大学博士基金项目(校科博18Z09)
详细信息
    通讯作者:

    陈宇良,副教授,硕士生导师,研究方向为再生混凝土结构、钢-混凝土组合结构研究、海洋及近海混凝土结构等 E-mail:ylchen@gxust.edu.cn

  • 中图分类号: TU528

Direct shear mechanical properties and damage evolution of coral seawater sea-sand concrete after high temperature

Funds: Postdoctoral Science Foundation of China (2021 M693854); Bagui Scholars Special Funding Project ([2019] No.79); Doctoral Fund Project of Guangxi University of Science and Technology (18 Z09)
  • 摘要: 在远海岛礁建设中,珊瑚海水海砂混凝土(CSSC)中的珊瑚、海砂、海水可就地取材,有效解决了施工过程中混凝土骨料运输成本高、工期难以保证等问题,CSSC投入使用为我国滨海建设取材提供了新方向。但珊瑚骨料存在疏松多孔、内部孔隙结构复杂、吸水率高等缺点,导致其制作而成的珊瑚混凝土强度低、脆性大、抗高温性能差,这严重阻碍了它在一些重要结构构件中的应用。本文通过将珊瑚粗骨料、海砂、海水与水泥结合,制备了CSSC,观察了CSSC高温后的表面特征及剪切破坏形态,分析了不同温度后CSSC的剪切应力-位移曲线及垂直位移-剪切位移曲线,如图1图2所示。根据试验结果,探究了不同经历温度及不同恒温时长对CSSC剪切应力、体积膨胀率、质量损失率等的影响规律,如图3,建立了高温后CSSC剪切强度计算方程。结果表明:800℃时剪切应力仅为常温的39%;体积膨胀率、质量损失率分别为7%、12%。最后,基于普通混凝土高温后损伤本构模型,建立了高温后CSSC损伤演化及直剪荷载-位移全曲线模型。不同经历温度下CSSC应力-位移曲线Stress-displacement curves of CSSC under different high temperatures不同经历温度下CSSC垂直位移-剪切位移曲线Vertical displacement-shear displacement curves of CSSC under different high temperatures不同经历温度对CSSC剪切应力及体积膨胀率的影响Effects of different high temperatures on CSSC's volume expansion and shear stress

     

  • 图  1  时间-温度曲线

    Figure  1.  Time-high temperature curves

    图  2  加载装置

    Figure  2.  Test Setup

    图  3  不同经历温度下CSSC直剪典型破坏形态

    Figure  3.  Direct shear typical failure patterns of CSSC under different high temperatures

    图  4  高温后CSSC直剪应力-位移曲线

    Figure  4.  Direct shear stress-displacement curves of CSSC under high temperatures

    图  5  不同经历温度下CSSC垂直位移-剪切位移曲线

    Figure  5.  Vertical displacement-shear displacement curves of CSSC under different high temperatures

    图  6  经历温度对CSSC剪切应力及体积膨胀率的影响

    Figure  6.  Effects of different high temperatures on CSSC's volume expansion and shear stress

    图  7  经历温度对CSSC质量损失的影响

    Figure  7.  Effect of high temperatures on CSSC's mass loss

    图  8  400℃恒温时长对CSSC剪应力及体积膨胀率的影响

    Figure  8.  Effects of 400℃ constant temperature duration on CSSC's shear stress and volume expansion

    图  9  400℃恒温时长对CSSC质量损失的影响

    Figure  9.  Effect of 400℃ constant temperature duration on CSSC's mass loss

    图  10  高温后CSSC损伤曲线

    Figure  10.  CSSC damage curves after high temperature

    图  11  高温后CSSC直剪实测曲线-理论曲线对照

    Figure  11.  Direct shear test curve-theoretical curve control curves of CSSC under different high temperatures

    表  1  珊瑚粗骨料物理性能

    Table  1.   Physical properties of coral coarse aggregate

    PropertyWater absorption/%Moisture content/%Bulk density/(kg·m−3)Apparent density/(kg·m−3)
    Value12.790.67879.901667.00
    Note:CA—Coral coarse aggregate.
    下载: 导出CSV

    表  2  珊瑚海水海砂混凝土(CSSC)试验设计及其抗压强度

    Table  2.   Test design and compressive strength of coral seawater sea-sand concrete (CSSC)

    NumberT / ℃H / hfcuT / MPaNumberT / ℃H / hfcuT / MPa
    T252530.43T400-H3400322.12
    T200-H1200127.08T500-H1500119.57
    T300-H1300126.66T600-H1600114.38
    T400-H1400122.38T700-H1700110.47
    T400-H2400223.94T800-H180018.93
    Notes:fcuT is the cubic compressive strength of coral seawater sand concrete after high temperature; T is the high temperature; H is the constant high temperature duration.
    下载: 导出CSV

    表  3  珊瑚海水海砂混凝土配合比

    Table  3.   Coral seawater sea-sand concrete mix ratio kg/m3

    W/CCoralSea-sandCementSeawaterAdditional SeawaterWater reducing
    Coral seawater sea-sand concrete0.4655.8760.1535.0214.075.11.4
    Note:W/C is the water-cement ratio of coral seawater sand concrete.
    下载: 导出CSV

    表  4  高温后CSSC直剪强度数据对照

    Table  4.   Comparison of CSSC direct shear strength data after high temperature

    T /℃fcuT/MPaτ1/MPaτ2/MPaτ3/MPaτA/MPaStandard deviationVarianceCoefficient of variationτΤ/MPaτA/τΤ
    20027.083.662.943.133.240.370.140.123.270.99
    30026.662.692.963.232.960.270.070.093.120.95
    40022.382.992.472.742.730.260.070.102.840.96
    50019.572.121.712.522.120.410.160.192.380.89
    60014.381.651.491.781.640.150.020.091.830.90
    70010.471.511.081.481.360.240.060.181.321.03
    8008.931.031.131.080.070.010.070.921.17
    Notes:τ1τ2τ3 are the shear test values of CSSC after high temperature; τA is the mean shear test value of CSSC after high temperature; τΤ is the mean shear theory value of CSSC after high temperature.
    下载: 导出CSV
  • [1] 柴源, 牛勇, 李文杰, 等. 珊瑚骨料混凝土改性技术研究进展[J]. 材料导报, 2021, 35(15):15134-15142. doi: 10.11896/cldb.19100116

    CHAI Y, NIU Y, Li W J, et al. Research Progress on Improved Technology of Coral Aggregate Concrete[J]. Materials Reports,2021,35(15):15134-15142(in Chinese). doi: 10.11896/cldb.19100116
    [2] 李小伟, 曹旗. FRP配筋海水珊瑚骨料混凝土材料及构件力学性能研究进展[J]. 复合材料学报, 2022, 39(3):926-941. doi: 10.13801/j.cnki.fhclxb.20210902.004

    LI X W, CAO Q. Research progress on mechanical properties of FRP reinforced seawater coral aggregate concrete materials and structural components[J]. Acta Materiae Compositae Sinica,2022,39(3):926-941(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210902.004
    [3] DA B, CHEN Y, YU H F, et al. Preparation technology, mechanical properties and durability of coral aggregate seawater concrete in the island-reef environment[J]. Journal of Cleaner Production,2022,339:130572. doi: 10.1016/j.jclepro.2022.130572
    [4] XIAO J Z, QIANG C B, Antonio Nanni, et al. Use of sea-sand and seawater in concrete construction: Current status and future opportunities[J]. Construction and Building Materials,2017,155:1101-1111. doi: 10.1016/j.conbuildmat.2017.08.130
    [5] HANG Y J, LI X W, LU Y, et al. Effect of mix component on the mechanical properties of coral concrete under axial compression[J]. Construction and Building Materials, 2019, 223 736–754.
    [6] MA L J, LI Z, Liu J G, et al. Mechanical properties of coral concrete subjected to uniaxial dynamic compression[J]. Construction and Building Materials,2019,199:244-255. doi: 10.1016/j.conbuildmat.2018.12.032
    [7] R. A. Arumugam, K. Ramamurthy. Study of compressive strength characteristics of coral aggregate concrete[J]. Magazine of Concrete Research,1996,48(176):141-148. doi: 10.1680/macr.1996.48.176.141
    [8] XIE Q H, XIAO J Z, ZONG Z L. Strength and microstructure of seawater and sea sand mortar after exposure to elevated temperatures[J]. Construction and Building Materials,2022,322:126451. doi: 10.1016/j.conbuildmat.2022.126451
    [9] LYU Bangcheng, WANG A G, ZHANG Z H, et al. Coral aggregate concrete: Numerical description of physical, chemical and morphological properties of coral aggregate[J]. Cement & Concrete Composites,2019,100:25-34.
    [10] 李雨珊, 尹世平, 刘运超. FRP筋与全珊瑚骨料海水混凝土界面粘结-滑移本构关系[J/OL]. 复合材料学报: 1-16. DOI: 10.13801/j.cnki.fhclxb.20210927.004.

    LI Y S, YIN S P, LIU Y C. Bond-slip constitutive relation between FRP bars and coral aggregate seawater concrete[J/OL]. Acta Materiae Compositae Sinica, : 1- 16 (in Chinese).
    [11] HUANG Y J, HE X J, SUN H S, et al. Effects of coral, recycled and natural coarse aggregates on the mechanical properties of concrete[J]. Construction and Building Materials,2018,192:330-347. doi: 10.1016/j.conbuildmat.2018.10.111
    [12] WU Z Y, ZHANG J H, YU H F, et al. 3 D mesoscopic analysis on the compressive behavior of coral aggregate concrete accounting for coarse aggregate volume and maximum aggregate size[J]. Composite Structures,2021,273:114271. doi: 10.1016/j.compstruct.2021.114271
    [13] YAO W J, PANG J Y, LIU Y S. Performance degradation and microscopic analysis of lightweight aggregate concrete after exposure to high temperature [J]. Materials 2020, 13 (07): 1566.
    [14] 王怀亮, 朱建威. 高性能轻骨料混凝土高温后受压本构关系研究[J]. 建筑结构学报, 2019, 40(11):200-209.

    WANG H L, ZHU J W. Compressive behaviour of high performance lightweight concrete after high temperature[J]. Journal of Building Structures,2019,40(11):200-209(in Chinese).
    [15] 周春恒, 王君义, 王新堂, 等. 高温作用后GFRP筋与海水珊瑚混凝土粘结性能试验研究[J/OL]. 复合材料学报: 1-14. DOI: 10.13801/j.cnki.fhclxb.20220623.001.

    ZHOU C H, WANG J Y, WANG X T, et al. Experimental study on bond behavior of GFRP bar and seawater coral aggregate concrete after exposure to high temperatures[J/OL]. Acta Materiae Compositae Sinica, 1-14 (in Chinese).
    [16] 余振鹏, 黄侨, 谢兴华, 等. 普通与轻集料砼压-剪复合受力性能试验研究[J]. 材料导报, 2018, 32(24):4269-4275. doi: 10.11896/j.issn.1005-023X.2018.24.011

    YU Z P, HUANG Q, XIE X H, et al. Comparative Study on Compressive-Shear Behavior of Ordinary Concrete and Lightweight Aggregate Concrete[J]. Materials Reports,2018,32(24):4269-4275(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.24.011
    [17] 李志卫, 肖建庄, 孙振平. 高温后高强混凝土剪切强度与细观结构[J]. 建筑材料学报, 2015, 18(6):953-957. doi: 10.3969/j.issn.1007-9629.2015.06.007

    LI Z W, XIAO J Z, SUN Z P. Shear Strength and Meso-structure of High Strength Concrete after Elevated Temperatures[J]. Journal of Building Materials,2015,18(6):953-957(in Chinese). doi: 10.3969/j.issn.1007-9629.2015.06.007
    [18] 陈宗平, 戴上秦, 王成, 等. 栓钉连接件、锚固及降温方式对高温喷水后型钢再生混凝土界面剪力传递的影响[J]. 防灾减灾工程学报, 2022, 42(2):362-371.

    CHEN Z P, DAI S Q, WANG C, et al. Effect of Stud Connector, Anchorage and Cooling Method on Interfacial Shear Transfer of Steel Reinforced Recycled Concrete after High Temperature Water Spraying[J]. Journal of Disaster Prevention and Mitigation Engineering,2022,42(2):362-371(in Chinese).
    [19] 冯峥, 李传习, 周佳乐, 等. UHPC键齿湿接缝直剪试验及湿接缝直剪承载力统一公式[J]. 土木工程学报, 2022, 55(6):79-91.

    FENG Z, LI C X, ZHOU J L, et al. Direct shear test on UHPC key-wet-joints and the unified calculation formula of direct shear capacity of UHPC wet-joints[J]. China Civil Engineering Journal,2022,55(6):79-91(in Chinese).
    [20] R. C[J]. K. Wong, S. K. Y. Ma, R. H. C. Wong, et al. Shear strength components of concrete under direct shearing, Cement and Concrete Research,2007,37(8):1248-1256.
    [21] 陈宇良, 姜锐, 陈宗平, 等. 直剪状态下再生混凝土的变形性能及损伤分析[J]. 材料导报, 2021, 35(19):19015-19021. doi: 10.11896/cldb.20090047

    CHEN Y L, JIANG R, CHEN Z P, et al. Deformation Performance and Damage Analysis of Recycled Concrete Under Direct Shear Condition[J]. Materials Reports,2021,35(19):19015-19021(in Chinese). doi: 10.11896/cldb.20090047
    [22] 中国国家标准化管理委员会. 轻集料及其试验方法, 第2部分: 轻集料试验方法: GB/T 17431.1-2010[S]. 中国标准出版社, 2010.

    Standardization Administration of the People's Republic of China. Lightweight aggregates and its test methods—Part 2: Test methods for lightweight aggregates: GB/T 17431.1-2010[S]. China Quality and Standards Publishing & Media Co. , Ltd, 2010 (in Chinese).
    [23] 中华人民共和国住房和城乡建设部. 轻骨料混凝土应用技术标准: JGJ/T12-2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical standard for application of lightweight aggregate concrete: JGJ/T12-2019[S]. Beijing: China Architecture & Building Press, 2019 (in Chinese).
    [24] 中国工程建设标准化协会. 珊瑚骨料混凝土应用技术规程: T/CECS 694-2020[S]. 中国计划出版社, 2020.

    China Association for Engineering Construction Standardization. Technical specification for coral aggregate concrete: T/CECS 694-2020[S]. China Planning Press, 2020 (in Chinese).
    [25] XIAO J Z, LI Z W, XIE Q H, et al. Effect of strain rate on compressive behaviour of high-strength concrete after exposure to elevated temperatures[J]. Fire Safety Journal,2016:83.
    [26] 过镇海, 时旭东. 钢筋混凝土的高温性能及其计算[M]. 清华大学出版社, 2003.

    GUO Z H, SHI X D. High Temperature Performance and Calculation of Reinforced Concrete[M]. Tsinghua University Press, 2003 (in Chinese).
    [27] 肖洋, 彭刚, 黄超, 等. 压剪共同作用下混凝土的损伤演化研究[J]. 水利水运工程学报, 2018(2):112-119.

    XIAO Y, PENG G, HUANG C, et al. Damage evolution study of concrete under joint action of compression and shear[J]. Hydro-Science and Engineering,2018(2):112-119(in Chinese).
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  163
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-08
  • 修回日期:  2022-09-09
  • 录用日期:  2022-10-15
  • 网络出版日期:  2022-10-28
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回