留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温后珊瑚海水海砂混凝土直剪力学性能及损伤演化

陈宇良 刘志华 叶培欢 陈宗平

陈宇良, 刘志华, 叶培欢, 等. 高温后珊瑚海水海砂混凝土直剪力学性能及损伤演化[J]. 复合材料学报, 2023, 40(7): 4128-4138. doi: 10.13801/j.cnki.fhclxb.20221024.002
引用本文: 陈宇良, 刘志华, 叶培欢, 等. 高温后珊瑚海水海砂混凝土直剪力学性能及损伤演化[J]. 复合材料学报, 2023, 40(7): 4128-4138. doi: 10.13801/j.cnki.fhclxb.20221024.002
CHEN Yuliang, LIU Zhihua, YE Peihuan, et al. Direct shear mechanical properties and damage evolution of coral seawater sea-sand concrete after high temperature[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4128-4138. doi: 10.13801/j.cnki.fhclxb.20221024.002
Citation: CHEN Yuliang, LIU Zhihua, YE Peihuan, et al. Direct shear mechanical properties and damage evolution of coral seawater sea-sand concrete after high temperature[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4128-4138. doi: 10.13801/j.cnki.fhclxb.20221024.002

高温后珊瑚海水海砂混凝土直剪力学性能及损伤演化

doi: 10.13801/j.cnki.fhclxb.20221024.002
基金项目: 中国博士后科学基金(2021 M693854);八桂学者专项经费资助项目([2019]79号);广西科技大学博士基金项目(校科博18 Z09)
详细信息
    通讯作者:

    陈宇良,博士,副教授,硕士生导师,研究方向为再生混凝土结构、钢-混凝土组合结构研究、海洋及近海混凝土结构等E-mail: ylchen@gxust.edu.cn

  • 中图分类号: TU528;TB333

Direct shear mechanical properties and damage evolution of coral seawater sea-sand concrete after high temperature

Funds: Postdoctoral Science Foundation of China (2021 M693854); Bagui Scholars Special Funding Project ([2019] No.79); Doctoral Fund Project of Guangxi University of Science and Technology (18 Z09)
  • 摘要: 为探究高温后珊瑚海水海砂混凝土(CSSC)直剪力学性能及其损伤本构关系,以经历最高温度T、恒温时长H为变化参数,设计并完成了高温后CSSC直剪试验。通过试验观察了高温后CSSC直剪破坏形态,获取了相应的应力-位移曲线,得到了TH对CSSC剪切强度、体积膨胀及质量损失的影响规律,对比分析了高温后CSSC损伤演变过程。研究结果表明:高温导致CSSC内部出现不均匀温度场,并出现表面龟裂、边角崩裂等现象;随着TH的增加,CSSC剪切承载力逐渐降低,体积膨胀率和质量损失率逐渐增大。当T > 400℃后剪切强度下降速率加快;T = 800℃时CSSC直剪强度仅为常温下的39%。最后,提出了高温后CSSC直剪强度计算方程及其损伤演化过程。

     

  • 图  1  时间-温度曲线

    Figure  1.  Time-high temperature curves

    图  2  加载装置

    Figure  2.  Test setup

    图  3  不同经历温度下CSSC直剪典型破坏形态

    Figure  3.  Direct shear typical failure patterns of CSSC under different high temperatures

    图  4  高温后CSSC直剪应力-位移曲线

    Figure  4.  Direct shear stress-displacement curves of CSSC under high temperatures

    图  5  不同经历温度下CSSC垂直位移-剪切位移曲线

    Figure  5.  Vertical displacement-shear displacement curves of CSSC under different high temperatures

    图  6  经历温度对CSSC剪切应力及体积膨胀率的影响

    Figure  6.  Effects of different high temperatures on CSSC's volume expansion and shear stress

    图  7  经历温度对CSSC质量损失的影响

    Figure  7.  Effect of high temperatures on CSSC's mass loss

    图  8  400℃恒温时长对CSSC剪应力及体积膨胀率的影响

    Figure  8.  Effects of 400℃ constant temperature duration on CSSC's shear stress and volume expansion

    图  9  400℃恒温时长对CSSC质量损失的影响

    Figure  9.  Effect of 400℃ constant temperature duration on CSSC's mass loss

    图  10  高温后CSSC损伤曲线

    Figure  10.  CSSC damage curves after high temperatures

    图  11  高温后CSSC直剪实测曲线-理论曲线对照

    Figure  11.  Comparison of direct shear test curve-theoretical curve of CSSC under different high temperatures

    Vτ—Direct shear load; s—Direct shear displacement

    表  1  珊瑚粗骨料(CA)物理性能

    Table  1.   Physical properties of coral coarse aggregate (CA)

    PropertyWater absorption/%Moisture content/%Bulk density/(kg·m−3)Apparent density/(kg·m−3)
    Value12.790.67879.901667.00
    下载: 导出CSV

    表  2  珊瑚海水海砂混凝土(CSSC)试验设计及其抗压强度

    Table  2.   Test design and compressive strength of coral seawater sea-sand concrete (CSSC)

    NumberT/℃H/hfcu T/MPa
    T25 2530.43
    T200-H1200127.08
    T300-H1300126.66
    T400-H1400122.38
    T400-H2400223.94
    T400-H3400322.12
    T500-H1500119.57
    T700-H1700110.47
    T600-H1600114.38
    T800-H18001 8.93
    Notes: fcu T—Cubic compressive strength of CSSC after high temperature; T—High temperature; H—Constant high temperature duration.
    下载: 导出CSV

    表  3  CSSC的配合比

    Table  3.   Mix ratio of CSSC kg·m−3

    W/CCoralSea-sandCementSeawaterAdditional seawaterWater reducing
    0.4655.8760.1535.0214.075.11.4
    Note: W/C—Water-cement ratio of CSSC.
    下载: 导出CSV

    表  4  高温后CSSC直剪强度数据对照

    Table  4.   Comparison of CSSC direct shear strength data after high temperatures

    T/℃fcu T/MPaτ1/MPaτ2/MPaτ3/MPaτA/MPaStandard deviationVarianceCoefficient of variationτ Τ/MPaτA/τ Τ
    20027.083.662.943.133.240.370.140.123.270.99
    30026.662.692.963.232.960.270.070.093.120.95
    40022.382.992.472.742.730.260.070.102.840.96
    50019.572.121.712.522.120.410.160.192.380.89
    60014.381.651.491.781.640.150.020.091.830.90
    70010.471.511.081.481.360.240.060.181.321.03
    8008.931.031.131.080.070.010.070.921.17
    Notes: τ1, τ2, τ3 —Shear test values of CSSC after high temperature; τA—Mean shear test value of CSSC after high temperature; τ Τ—Mean shear theory value of CSSC after high temperature.
    下载: 导出CSV
  • [1] 柴源, 牛勇, 李文杰, 等. 珊瑚骨料混凝土改性技术研究进展[J]. 材料导报, 2021, 35(15):15134-15142. doi: 10.11896/cldb.19100116

    CHAI Yuan, NIU Yong, LI Wenjie, et al. Research progress on improved technology of coral aggregate concrete[J]. Materials Reports,2021,35(15):15134-15142(in Chinese). doi: 10.11896/cldb.19100116
    [2] 李小伟, 曹旗. FRP配筋海水珊瑚骨料混凝土材料及构件力学性能研究进展[J]. 复合材料学报, 2022, 39(3):926-941. doi: 10.13801/j.cnki.fhclxb.20210902.004

    LI Xiaowei, CAO Qi. Research progress on mechanical properties of FRP reinforced seawater coral aggregate concrete materials and structural components[J]. Acta Materiae Compositae Sinica,2022,39(3):926-941(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210902.004
    [3] DA B, CHEN Y, YU H F, et al. Preparation technology, mechanical properties and durability of coral aggregate seawater concrete in the island-reef environment[J]. Journal of Cleaner Production,2022,339:130572. doi: 10.1016/j.jclepro.2022.130572
    [4] XIAO J Z, QIANG C B, NANNI A, et al. Use of sea-sand and seawater in concrete construction: Current status and future opportunities[J]. Construction and Building Materials,2017,155:1101-1111. doi: 10.1016/j.conbuildmat.2017.08.130
    [5] HANG Y J, LI X W, LU Y, et al. Effect of mix component on the mechanical properties of coral concrete under axial compression[J]. Construction and Building Materials, 2019, 223: 736-754.
    [6] MA L J, LI Z, LIU J G, et al. Mechanical properties of coral concrete subjected to uniaxial dynamic compression[J]. Construction and Building Materials,2019,199:244-255. doi: 10.1016/j.conbuildmat.2018.12.032
    [7] ARUMUGAM R A, RAMAMURTHY K. Study of compressive strength characteristics of coral aggregate concrete[J]. Magazine of Concrete Research,1996,48(176):141-148. doi: 10.1680/macr.1996.48.176.141
    [8] XIE Q H, XIAO J Z, ZONG Z L. Strength and microstructure of seawater and sea sand mortar after exposure to elevated temperatures[J]. Construction and Building Materials,2022,322:126451. doi: 10.1016/j.conbuildmat.2022.126451
    [9] LYU B C, WANG A G, ZHANG Z H, et al. Coral aggregate concrete: Numerical description of physical, chemical and morphological properties of coral aggregate[J]. Cement & Concrete Composites,2019,100:25-34.
    [10] 李雨珊, 尹世平, 刘运超. FRP筋与全珊瑚骨料海水混凝土界面粘结-滑移本构关系[J]. 复合材料学报, 2022, 39(8): 3950-3964.

    LI Yushan, YIN Shiping, LIU Yunchao. Bond-slip constitutive relation between FRP bars and coral aggregate seawater concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3950-3964(in Chinese).
    [11] HUANG Y J, HE X J, SUN H S, et al. Effects of coral, recycled and natural coarse aggregates on the mechanical properties of concrete[J]. Construction and Building Materials,2018,192:330-347. doi: 10.1016/j.conbuildmat.2018.10.111
    [12] WU Z Y, ZHANG J H, YU H F, et al. 3D mesoscopic analysis on the compressive behavior of coral aggregate concrete accounting for coarse aggregate volume and maximum aggregate size[J]. Composite Structures,2021,273:114271. doi: 10.1016/j.compstruct.2021.114271
    [13] YAO W J, PANG J Y, LIU Y S. Performance degradation and microscopic analysis of lightweight aggregate concrete after exposure to high temperature[J]. Materials,2020,13(7):1566. doi: 10.3390/ma13071566
    [14] 王怀亮, 朱建威. 高性能轻骨料混凝土高温后受压本构关系研究[J]. 建筑结构学报, 2019, 40(11):200-209.

    WANG Huailiang, ZHU Jianwei. Compressive behaviour of high performance lightweight concrete after high temperature[J]. Journal of Building Structures,2019,40(11):200-209(in Chinese).
    [15] 周春恒, 王君义, 王新堂, 等. 高温作用后GFRP筋与海水珊瑚混凝土粘结性能试验研究[J]. 复合材料学报, 2023, 40(4): 2224-2239.

    ZHOU Chunheng, WANG Junyi, WANG Xintang, et al. Experimental study on bond behavior of GFRP bar and seawater coral aggregate concrete after exposure to high temperatures[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2224-2239(in Chinese).
    [16] 余振鹏, 黄侨, 谢兴华, 等. 普通与轻集料砼压-剪复合受力性能试验研究[J]. 材料导报, 2018, 32(24):4269-4275. doi: 10.11896/j.issn.1005-023X.2018.24.011

    YU Zhenpeng, HUANG Qiao, XIE Xinghua, et al. Comparative study on compressive-shear behavior of ordinary concrete and lightweight aggregate concrete[J]. Materials Reports,2018,32(24):4269-4275(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.24.011
    [17] 李志卫, 肖建庄, 孙振平. 高温后高强混凝土剪切强度与细观结构[J]. 建筑材料学报, 2015, 18(6):953-957. doi: 10.3969/j.issn.1007-9629.2015.06.007

    LI Zhiwei, XIAO Jianzhuang, SUN Zhenping. Shear strength and meso-structure of high strength concrete after elevated temperatures[J]. Journal of Building Materials,2015,18(6):953-957(in Chinese). doi: 10.3969/j.issn.1007-9629.2015.06.007
    [18] 陈宗平, 戴上秦, 王成, 等. 栓钉连接件、锚固及降温方式对高温喷水后型钢再生混凝土界面剪力传递的影响[J]. 防灾减灾工程学报, 2022, 42(2):362-371.

    CHEN Zongping, DAI Shangqin, WANG Cheng, et al. Effect of stud connector, anchorage and cooling method on interfacial shear transfer of steel reinforced recycled concrete after high temperature water spraying[J]. Journal of Disaster Prevention and Mitigation Engineering,2022,42(2):362-371(in Chinese).
    [19] 冯峥, 李传习, 周佳乐, 等. UHPC键齿湿接缝直剪试验及湿接缝直剪承载力统一公式[J]. 土木工程学报, 2022, 55(6):79-91.

    FENG Zheng, LI Chuanxi, ZHOU Jiale, et al. Direct shear test on UHPC key-wet-joints and the unified calculation formula of direct shear capacity of UHPC wet-joints[J]. China Civil Engineering Journal,2022,55(6):79-91(in Chinese).
    [20] WONG R C K, MA S K Y, WONG R H C, et al. Shear strength components of concrete under direct shearing[J]. Cement and Concrete Research,2007,37(8):1248-1256. doi: 10.1016/j.cemconres.2007.02.021
    [21] 陈宇良, 姜锐, 陈宗平, 等. 直剪状态下再生混凝土的变形性能及损伤分析[J]. 材料导报, 2021, 35(19):19015-19021. doi: 10.11896/cldb.20090047

    CHEN Yuliang, JIANG Rui, CHEN Zongping, et al. Deformation performance and damage analysis of recycled concrete under direct shear condition[J]. Materials Reports,2021,35(19):19015-19021(in Chinese). doi: 10.11896/cldb.20090047
    [22] 中国国家标准化管理委员会. 轻集料及其试验方法, 第2部分: 轻集料试验方法: GB/T 17431.1—2010[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of the People's Republic of China. Lightweight aggregates and its test methods—Part 2: Test methods for lightweight aggregates: GB/T 17431.1—2010[S]. Beijing: Standards Press of China, 2010(in Chinese).
    [23] 中华人民共和国住房和城乡建设部. 轻骨料混凝土应用技术标准: JGJ/T 12—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical standard for application of lightweight aggregate concrete: JGJ/T 12—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).
    [24] 中国工程建设标准化协会. 珊瑚骨料混凝土应用技术规程: T/CECS 694—2020[S]. 北京: 中国计划出版社, 2020.

    China Association for Engineering Construction Standardization. Technical specification for coral aggregate concrete: T/CECS 694—2020[S]. Beijing: China Planning Press, 2020(in Chinese).
    [25] XIAO J Z, LI Z W, XIE Q H, et al. Effect of strain rate on compressive behaviour of high-strength concrete after exposure to elevated temperatures[J]. Fire Safety Journal,2016,83:25-37. doi: 10.1016/j.firesaf.2016.04.006
    [26] 过镇海, 时旭东. 钢筋混凝土的高温性能及其计算[M]. 北京: 清华大学出版社, 2003: 14.

    GUO Zhenhai, SHI Xudong. Behaviour of reinforced concrete at elevated temperature and its calculation[M]. Beijing: Tsinghua University Press, 2003: 14(in Chinese).
    [27] 肖洋, 彭刚, 黄超, 等. 压剪共同作用下混凝土的损伤演化研究[J]. 水利水运工程学报, 2018(2):112-119.

    XIAO Yang, PENG Gang, HUANG Chao, et al. Damage evolution study of concrete under joint action of compression and shear[J]. Hydro-Science and Engineering,2018(2):112-119(in Chinese).
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  564
  • HTML全文浏览量:  327
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-08
  • 修回日期:  2022-09-09
  • 录用日期:  2022-10-15
  • 网络出版日期:  2022-10-24
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回