N, P co-doped porous carbon /MnO2 composites for zinc-ion hybrid capacitors
-
摘要: 使用化石燃料导致的环境问题日益严重,清洁能源装置与可再生能源的发展已经成为必然趋势。本文以咖啡渣为碳源,通过简单的一步活化法制备出咖啡渣炭/MnO2复合材料,并探讨了其在锌离子混合电容器(ZHSC)领域的应用。BET测试表明:咖啡渣炭/MnO2复合材料的比表面积为550.25 m2/g,总孔体积为
0.6284 cm3/g。电化学测试结果表明,电极材料在电流密度为0.5 A/g时其比电容为401.5 F/g,在20 A/g的大电流密度下比电容达到264 F/g,具有良好的倍率性能。组装的ZHSC在0.5 A/g的电流密度下达到74.2 mA·h/g,能量密度为39.1 W·h/kg,功率密度为4264 W/kg;在10 A/g电流密度下,5000 次充放电循环测试后其电容保持率为98%,库伦效率为98.7%,表明其有良好的循环稳定性和可逆性。因此,咖啡渣炭/MnO2复合材料为生物质炭与MnO2复合材料的探索提供了新思路。Abstract: Environmental problems caused by the use of fossil fuels have become increasingly serious, and the development of clean energy devices and renewable energy has become an inevitable trend. In this paper, coffee grounds carbon/MnO2 composite was prepared by a simple one-step activation method, and its application in zinc-ion hybrid capacitors (ZHSC) field was discussed. BET test showed that the specific surface area of coffee grounds carbon /MnO2 composite was 550.25 m2/g, and the total pore volume was0.6284 cm3/g. Electrochemical tests showed that electrode displayed excellent specific capacitance of 401.5 F/g at a current density of 0.5 A/g and 264 F/g at a current density of 20 A/g, which revealed good rate capability. Meanwhile, ZHSC reaches 74.2 mA·h/g, energy density is 39.1 W·h/kg and power density is4264 W/kg at 0.5A/g current density. Furthermore, the capacitance retention rate is 98% and the Coulomb efficiency is 98.7% after5000 charge-discharge cycles, at the current density of 10 A/g, which indicating it has good cyclic stability and reversibility. Therefore, coffee grounds carbon/MnO2 composites provide a new idea for the exploration of biomass carbon and MnO2 composites. -
图 1 不同炭材料的SEM图片(a) NP/MnO2, (b) K-WCG, (c) KNP/MnO2-1.38, (d) KNP/MnO2-2.38
Figure 1. SEM images of NP/MnO2 (a), K-WCG (b), KNP/MnO2-1.38 (c) and KNP/MnO2-2.38(d)
NP/MnO2 is a coffee grounds carbon/MnO2 composite with only hexaldehyde-phenoxy-cyclotriphosphonitrile (HAPCP) and KMnO4 activation. K-WCG is a pure KOH activated carbon material. KNP/MnO2-2.38 is a composite material activated by 2.38 g KMnO4 and 2 g KOH. KNP/MnO2-2.38 is a composite material activated by 2.38 g KMnO4 and 2 g KOH.
图 6 不同炭材料在三电极体系中的电化学性能:(a) 20 mV/s时的CV曲线, (b)1 A/g时的GCD曲线, (c)倍率性能图, (d) Nyquist图, (e) KNP/MnO2-1.38在不同扫速下的CV图, (f) KNP/MnO2-1.38在不同电流密度下的GCD图
Figure 6. CV of carbon materials at a scan rate of 20 mV/s (a), GCD of arbon materials at a current density of 1 A/g (b), specific capacitance of carbon materials at different current densities (c), Nyquist plots of carbon materials (d), CV of KNP/MnO2-1.38 at different scan rates (e) and GCD of KNP/MnO2-1.38 at different current densities (f)
表 1 表1 咖啡渣炭/MnO2复合材料的孔结构参数
Table 1. Pore structure parameters of coffee grounds based porous carbon materials
Sample SBET/(m2·g−1) VTotal/(cm3·g−1) Vmeso/(cm3·g−1) Vmico/(cm3·g−1) NP/MnO2 133.45 0.1402 0.0970 0.0512 KNP/MnO2-1.38 550.35 0.6284 0.2256 0.4028 KNP/MnO2-2.38 526.78 0.4214 0.1710 0.2504 K-WCG 851.87 0.3752 0.0712 0.3040 Notes:SBET is surface area; VTotal is total pore volume; Vmeso is mesopore volume obtained by subtracting Vmicro from Vt; Vmico is micropore volume determined by using the t-plot methods. 表 2 不同复合材料的元素含量表
Table 2. Element content table of different composite materials
Sample N/at% O/at% P/at% Mn/at% NP/MnO2 1.46 11.72 1.09 0.6 KNP/MnO2-1.38 4.67 15.05 1.28 1.77 KNP/MnO2-2.38 3.75 16.39 1.25 1.65 K-WCG 1.54 12.58 0.23 - -
[1] DONG L B, YANG W, YANG W, et al. Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors[J]. Journal of Materials Chemistry A, 2019, 7(23): 13810-13832 doi: 10.1039/C9TA02678A [2] LIU Y, WANG S, HUANG Z W, et al. Recent advances and promise of zinc-ion energy storage devices based on MXenes[J]. Journal of Materials Science, 2022, 57(29): 13817-13844 doi: 10.1007/s10853-022-07448-6 [3] LIU Y, WU L J. Recent advances of cathode materials for zinc-ion hybrid capacitors[J]. Nano Energy, 2023, 109: 35 [4] WANG Y Y, SUN S R, WU X L, et al. Status and Opportunities of Zinc Ion Hybrid Capacitors: Focus on Carbon Materials, Current Collectors, and Separators[J]. Nano-Micro Letters, 2023, 15(1): 39 doi: 10.1007/s40820-022-01005-1 [5] WEI F, ZENG Y S, GUO Y C, et al. Recent progress on the heteroatom-doped carbon cathode for zinc ion hybrid capacitors[J]. Chemical Engineering Journal, 2023, 468: 18 [6] MA Y P, HOU C X, KIMURA H, et al. Recent advances in the application of carbon-based electrode materials for high-performance zinc ion capacitors: a mini review[J]. Advanced Composites and Hybrid Materials, 2023, 6(2): 17 [7] ALAM S, FIAZ F, KHAN M I, et al. Recent advancements in the performance of MXene and its various composites as an electrode material in asymmetric supercapacitors[J]. Journal of Alloys and Compounds, 2023, 961: 20 [8] ARUMUGAM B, MAYAKRISHNAN G, MANICKAVASAGAM S K S, et al. An Overview of Active Electrode Materials for the Efficient High-Performance Supercapacitor Application[J]. Crystals, 2023, 13(7): 28 [9] BANSAL S, SINGH A, PODDAR D, et al. A review on green approaches utilizing phytochemicals in the synthesis of vanadium nano particles and their applications[J]. Preparative Biochemistry & Biotechnology, 2023: 23 [10] LIU M X, GAN L H, XIONG W, et al. Development of MnO2/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes[J]. Journal of Materials Chemistry A, 2014, 2(8): 2555-2562 doi: 10.1039/C3TA14445C [11] NAM K W, KIM K H, LEE E S, et al. Pseudocapacitive properties of electrochemically prepared nickel oxides on 3-dimensional carbon nanotube film substrates[J]. Journal of Power Sources, 2008, 182(2): 642-652 doi: 10.1016/j.jpowsour.2008.03.090 [12] YUAN C Z, WU H B, XIE Y, et al. Mixed Transition-Metal Oxides: Design, Synthesis, and Energy-Related Applications[J]. Angewandte Chemie-International Edition, 2014, 53(6): 1488-1504 doi: 10.1002/anie.201303971 [13] WANG H J, PENG C, PENG F, et al. Facile synthesis of MnO2/CNT nanocomposite and its electrochemical performance for supercapacitors[J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2011, 176(14): 1073-1078 [14] WANG H, WANG M, TANG Y B. A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications[J]. Energy Storage Materials, 2018, 13: 1-7 doi: 10.1016/j.ensm.2017.12.022 [15] ZOU Z M, LUO X L, WANG L, et al. Highly mesoporous carbons derived from corn silks as high performance electrode materials of supercapacitors and zinc ion capacitors[J]. Journal of Energy Storage, 2021, 44: 7 [16] NGUYEN H C, NGUYEN M L, WANG F M, et al. Using switchable solvent as a solvent and catalyst for in situ transesterification of spent coffee grounds for biodiesel synthesis[J]. Bioresource Technology, 2019, 289: 4 [17] ROCHA M V P, DE MATOS L, DE LIMA L P, et al. Ultrasound-assisted production of biodiesel and ethanol from spent coffee grounds[J]. Bioresource Technology, 2014, 167: 343-348 doi: 10.1016/j.biortech.2014.06.032 [18] TUNTIWIWATTANAPUN N, TONGCUMPOU C. Sequential extraction and reactive extraction processing of spent coffee grounds: An alternative approach for pretreatment of biodiesel feedstocks and biodiesel production[J]. Industrial Crops and Products, 2018, 117: 359-365 doi: 10.1016/j.indcrop.2018.03.025 [19] XU G, XU M, LAI T, et al. Synthesis and Flame Retardant Properties of a Novel Cyclotriphosphazene-based Epoxy Resin[J]. Chinese Journal of Synthetic Chemistry, 2014, 22(3): 331-334 [20] QIN C, WANG S R, WANG Z P, et al. Hierarchical porous carbon derived from Gardenia jasminoides Ellis flowers for high performance supercapacitor[J]. Journal of Energy Storage, 2021, 33: 10 [21] GONG Y N, LI D L, LUO C Z, et al. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors[J]. Green Chemistry, 2017, 19(17): 4132-4140 doi: 10.1039/C7GC01681F [22] WANG J A, WANG M F, LIANG Y, et al. Effects of N-doping and oxygen vacancies on electronic structure of LiFePO4[J]. Physica B-Condensed Matter, 2023, 648: 6 [23] WANG Q, WANG Y, ZENG J J, et al. Nitrogen and phosphorus co-doped carbon for improving capacity and rate performances of potassium ion batteries[J]. Flatchem, 2022, 34: 8 [24] CUI M W, KANG L T, SHI M J, et al. Explore the influence of agglomeration on electrochemical performance of an amorphous MnO2/C composite by controlling drying process[J]. Applied Surface Science, 2017, 416: 241-247 doi: 10.1016/j.apsusc.2017.04.141 [25] WEI Y D, LUO W L, LI X, et al. PANI-MnO2 and Ti3C2Tx (MXene) as electrodes for high-performance flexible asymmetric supercapacitors[J]. Electrochimica Acta, 2022, 406: 10 [26] CHEN Z Y, ZHENG L Y, ZHU T, et al. All-Solid-State Flexible Asymmetric Supercapacitors Fabricated by the Binder-Free Hydrophilic Carbon Cloth@MnO2 and Hydrophilic Carbon Cloth@Polypyrrole Electrodes[J]. Advanced Electronic Materials, 2019, 5(3): 9 [27] YU G H, HU L B, LIU N A, et al. Enhancing the Supercapacitor Performance of Graphene/MnO2 Nanostructured Electrodes by Conductive Wrapping[J]. Nano Letters, 2011, 11(10): 4438-4442 doi: 10.1021/nl2026635