留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于锌离子混合电容器的N、P共掺杂多孔炭/MnO2复合材料

邹振羽 金鑫 吴晓雨 李豪杰 李朋娟 李晓丽

邹振羽, 金鑫, 吴晓雨, 等. 用于锌离子混合电容器的N、P共掺杂多孔炭/MnO2复合材料[J]. 复合材料学报, 2025, 42(1): 7110-7118.
引用本文: 邹振羽, 金鑫, 吴晓雨, 等. 用于锌离子混合电容器的N、P共掺杂多孔炭/MnO2复合材料[J]. 复合材料学报, 2025, 42(1): 7110-7118.
ZOU Zhen Yu, JIN Xin, WU Xiao Yu, et al. N, P co-doped porous carbon /MnO2 composites for zinc-ion hybrid capacitors[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 7110-7118.
Citation: ZOU Zhen Yu, JIN Xin, WU Xiao Yu, et al. N, P co-doped porous carbon /MnO2 composites for zinc-ion hybrid capacitors[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 7110-7118.

用于锌离子混合电容器的N、P共掺杂多孔炭/MnO2复合材料

基金项目: 黑龙江省自然科学基金联合引导项目(批准号: LH2020C040)
详细信息
    通讯作者:

    李晓丽,博士,副教授,硕士生导师,研究方向为生物质碳材料的制备与性能研究、磷腈衍生物合成与阻燃性能研究 E-mail: lixiaoli0903@163.com

  • 中图分类号: TQ424.1;TB333

N, P co-doped porous carbon /MnO2 composites for zinc-ion hybrid capacitors

Funds: Natural Science Foundation of Heilongjiang Province of China (LH2020C040)
  • 摘要: 使用化石燃料导致的环境问题日益严重,清洁能源装置与可再生能源的发展已经成为必然趋势。本文以咖啡渣为碳源,通过简单的一步活化法制备出咖啡渣炭/MnO2复合材料,并探讨了其在锌离子混合电容器(ZHSC)领域的应用。BET测试表明:咖啡渣炭/MnO2复合材料的比表面积为550.25 m2/g,总孔体积为0.6284 cm3/g。电化学测试结果表明,电极材料在电流密度为0.5 A/g时其比电容为401.5 F/g,在20 A/g的大电流密度下比电容达到264 F/g,具有良好的倍率性能。组装的ZHSC在0.5 A/g的电流密度下达到74.2 mA·h/g,能量密度为39.1 W·h/kg,功率密度为4264 W/kg;在10 A/g电流密度下,5000次充放电循环测试后其电容保持率为98%,库伦效率为98.7%,表明其有良好的循环稳定性和可逆性。因此,咖啡渣炭/MnO2复合材料为生物质炭与MnO2复合材料的探索提供了新思路。

     

  • 图  1  不同炭材料的SEM图片(a) NP/MnO2, (b) K-WCG, (c) KNP/MnO2-1.38, (d) KNP/MnO2-2.38

    Figure  1.  SEM images of NP/MnO2 (a), K-WCG (b), KNP/MnO2-1.38 (c) and KNP/MnO2-2.38(d)

    NP/MnO2 is a coffee grounds carbon/MnO2 composite with only hexaldehyde-phenoxy-cyclotriphosphonitrile (HAPCP) and KMnO4 activation. K-WCG is a pure KOH activated carbon material. KNP/MnO2-2.38 is a composite material activated by 2.38 g KMnO4 and 2 g KOH. KNP/MnO2-2.38 is a composite material activated by 2.38 g KMnO4 and 2 g KOH.

    图  2  KNP/MnO2-1.38-2的元素映射图(a) N, (b) P, (c) Mn

    Figure  2.  KNP/MnO2-1.38-2 of elemental mappings of N(a), P(b) and Mn(c)

    图  3  不同炭材料的N2吸附/脱附等温线(a)和BJH介孔孔径分布图(插图为HK微孔孔径分布图) (b)

    Figure  3.  N2 adsorption/desorption isotherms of different carbon materials (a) and BJH mesoporous pore size distribution maps (illustrated as HK pore size distribution maps) (b)

    图  4  不同炭材料的(a)XRD曲线和(b)拉曼光谱

    Figure  4.  (a) XRD and (b) Raman spectra of different carbon materials

    图  5  (a)不同炭材料的XPS谱图; KNP/MnO2-1.38的XPS高分辨率谱图, (b) N 1s拟合谱图, (c) P 2p拟合谱图, (d) Mn 2p拟合谱图

    Figure  5.  XPS survey spectra of carbon materials (a) and N 1s (b), P 2p (c) and Mn 2p (d) spectra of KNP/MnO2-1.38

    图  6  不同炭材料在三电极体系中的电化学性能:(a) 20 mV/s时的CV曲线, (b)1 A/g时的GCD曲线, (c)倍率性能图, (d) Nyquist图, (e) KNP/MnO2-1.38在不同扫速下的CV图, (f) KNP/MnO2-1.38在不同电流密度下的GCD图

    Figure  6.  CV of carbon materials at a scan rate of 20 mV/s (a), GCD of arbon materials at a current density of 1 A/g (b), specific capacitance of carbon materials at different current densities (c), Nyquist plots of carbon materials (d), CV of KNP/MnO2-1.38 at different scan rates (e) and GCD of KNP/MnO2-1.38 at different current densities (f)

    图  7  KNP/MnO2-1.38//Zn的(a)不同电流密度下CV曲线; (b)不同电流密度下GCD曲线; (c) Ragone图; (d) 10 A/g电流密度下循环5000次的电容保持率

    Figure  7.  KNP/MnO2-1.38 //Zn of (a) CV curves at different current densities; (b) GCD curves at different current densities; (c) the Ragone plot; (d) cycling stability at current density of 10 A/g

    表  1  表1 咖啡渣炭/MnO2复合材料的孔结构参数

    Table  1.   Pore structure parameters of coffee grounds based porous carbon materials

    Sample SBET/(m2·g−1) VTotal/(cm3·g−1) Vmeso/(cm3·g−1) Vmico/(cm3·g−1)
    NP/MnO2 133.45 0.1402 0.0970 0.0512
    KNP/MnO2-1.38 550.35 0.6284 0.2256 0.4028
    KNP/MnO2-2.38 526.78 0.4214 0.1710 0.2504
    K-WCG 851.87 0.3752 0.0712 0.3040
    Notes:SBET is surface area; VTotal is total pore volume; Vmeso is mesopore volume obtained by subtracting Vmicro from Vt; Vmico is micropore volume determined by using the t-plot methods.
    下载: 导出CSV

    表  2  不同复合材料的元素含量表

    Table  2.   Element content table of different composite materials

    SampleN/at%O/at%P/at%Mn/at%
    NP/MnO21.4611.721.090.6
    KNP/MnO2-1.384.6715.051.281.77
    KNP/MnO2-2.383.7516.391.251.65
    K-WCG1.5412.580.23
    下载: 导出CSV
  • [1] DONG L B, YANG W, YANG W, et al. Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors[J]. Journal of Materials Chemistry A, 2019, 7(23): 13810-13832 doi: 10.1039/C9TA02678A
    [2] LIU Y, WANG S, HUANG Z W, et al. Recent advances and promise of zinc-ion energy storage devices based on MXenes[J]. Journal of Materials Science, 2022, 57(29): 13817-13844 doi: 10.1007/s10853-022-07448-6
    [3] LIU Y, WU L J. Recent advances of cathode materials for zinc-ion hybrid capacitors[J]. Nano Energy, 2023, 109: 35
    [4] WANG Y Y, SUN S R, WU X L, et al. Status and Opportunities of Zinc Ion Hybrid Capacitors: Focus on Carbon Materials, Current Collectors, and Separators[J]. Nano-Micro Letters, 2023, 15(1): 39 doi: 10.1007/s40820-022-01005-1
    [5] WEI F, ZENG Y S, GUO Y C, et al. Recent progress on the heteroatom-doped carbon cathode for zinc ion hybrid capacitors[J]. Chemical Engineering Journal, 2023, 468: 18
    [6] MA Y P, HOU C X, KIMURA H, et al. Recent advances in the application of carbon-based electrode materials for high-performance zinc ion capacitors: a mini review[J]. Advanced Composites and Hybrid Materials, 2023, 6(2): 17
    [7] ALAM S, FIAZ F, KHAN M I, et al. Recent advancements in the performance of MXene and its various composites as an electrode material in asymmetric supercapacitors[J]. Journal of Alloys and Compounds, 2023, 961: 20
    [8] ARUMUGAM B, MAYAKRISHNAN G, MANICKAVASAGAM S K S, et al. An Overview of Active Electrode Materials for the Efficient High-Performance Supercapacitor Application[J]. Crystals, 2023, 13(7): 28
    [9] BANSAL S, SINGH A, PODDAR D, et al. A review on green approaches utilizing phytochemicals in the synthesis of vanadium nano particles and their applications[J]. Preparative Biochemistry & Biotechnology, 2023: 23
    [10] LIU M X, GAN L H, XIONG W, et al. Development of MnO2/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes[J]. Journal of Materials Chemistry A, 2014, 2(8): 2555-2562 doi: 10.1039/C3TA14445C
    [11] NAM K W, KIM K H, LEE E S, et al. Pseudocapacitive properties of electrochemically prepared nickel oxides on 3-dimensional carbon nanotube film substrates[J]. Journal of Power Sources, 2008, 182(2): 642-652 doi: 10.1016/j.jpowsour.2008.03.090
    [12] YUAN C Z, WU H B, XIE Y, et al. Mixed Transition-Metal Oxides: Design, Synthesis, and Energy-Related Applications[J]. Angewandte Chemie-International Edition, 2014, 53(6): 1488-1504 doi: 10.1002/anie.201303971
    [13] WANG H J, PENG C, PENG F, et al. Facile synthesis of MnO2/CNT nanocomposite and its electrochemical performance for supercapacitors[J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2011, 176(14): 1073-1078
    [14] WANG H, WANG M, TANG Y B. A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications[J]. Energy Storage Materials, 2018, 13: 1-7 doi: 10.1016/j.ensm.2017.12.022
    [15] ZOU Z M, LUO X L, WANG L, et al. Highly mesoporous carbons derived from corn silks as high performance electrode materials of supercapacitors and zinc ion capacitors[J]. Journal of Energy Storage, 2021, 44: 7
    [16] NGUYEN H C, NGUYEN M L, WANG F M, et al. Using switchable solvent as a solvent and catalyst for in situ transesterification of spent coffee grounds for biodiesel synthesis[J]. Bioresource Technology, 2019, 289: 4
    [17] ROCHA M V P, DE MATOS L, DE LIMA L P, et al. Ultrasound-assisted production of biodiesel and ethanol from spent coffee grounds[J]. Bioresource Technology, 2014, 167: 343-348 doi: 10.1016/j.biortech.2014.06.032
    [18] TUNTIWIWATTANAPUN N, TONGCUMPOU C. Sequential extraction and reactive extraction processing of spent coffee grounds: An alternative approach for pretreatment of biodiesel feedstocks and biodiesel production[J]. Industrial Crops and Products, 2018, 117: 359-365 doi: 10.1016/j.indcrop.2018.03.025
    [19] XU G, XU M, LAI T, et al. Synthesis and Flame Retardant Properties of a Novel Cyclotriphosphazene-based Epoxy Resin[J]. Chinese Journal of Synthetic Chemistry, 2014, 22(3): 331-334
    [20] QIN C, WANG S R, WANG Z P, et al. Hierarchical porous carbon derived from Gardenia jasminoides Ellis flowers for high performance supercapacitor[J]. Journal of Energy Storage, 2021, 33: 10
    [21] GONG Y N, LI D L, LUO C Z, et al. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors[J]. Green Chemistry, 2017, 19(17): 4132-4140 doi: 10.1039/C7GC01681F
    [22] WANG J A, WANG M F, LIANG Y, et al. Effects of N-doping and oxygen vacancies on electronic structure of LiFePO4[J]. Physica B-Condensed Matter, 2023, 648: 6
    [23] WANG Q, WANG Y, ZENG J J, et al. Nitrogen and phosphorus co-doped carbon for improving capacity and rate performances of potassium ion batteries[J]. Flatchem, 2022, 34: 8
    [24] CUI M W, KANG L T, SHI M J, et al. Explore the influence of agglomeration on electrochemical performance of an amorphous MnO2/C composite by controlling drying process[J]. Applied Surface Science, 2017, 416: 241-247 doi: 10.1016/j.apsusc.2017.04.141
    [25] WEI Y D, LUO W L, LI X, et al. PANI-MnO2 and Ti3C2Tx (MXene) as electrodes for high-performance flexible asymmetric supercapacitors[J]. Electrochimica Acta, 2022, 406: 10
    [26] CHEN Z Y, ZHENG L Y, ZHU T, et al. All-Solid-State Flexible Asymmetric Supercapacitors Fabricated by the Binder-Free Hydrophilic Carbon Cloth@MnO2 and Hydrophilic Carbon Cloth@Polypyrrole Electrodes[J]. Advanced Electronic Materials, 2019, 5(3): 9
    [27] YU G H, HU L B, LIU N A, et al. Enhancing the Supercapacitor Performance of Graphene/MnO2 Nanostructured Electrodes by Conductive Wrapping[J]. Nano Letters, 2011, 11(10): 4438-4442 doi: 10.1021/nl2026635
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  83
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-18
  • 修回日期:  2024-04-07
  • 录用日期:  2024-04-14
  • 网络出版日期:  2024-05-13
  • 刊出日期:  2025-01-15

目录

    /

    返回文章
    返回