Biosynthesis and properties of AgNPs /chitosan composite antibacterial agent
-
摘要:
纳米银(AgNPs)在水产养殖等抑菌领域中有着广阔的应用前景,但AgNPs粒径小、比表面积大容易产生团聚,且直接穿透正常的细胞膜,存在一定的细胞毒性。为解决上述问题本文以腊梅花瓣提取液生物合成纳米银,并与具有良好生物相容性的天然高分子材料壳聚糖(CS)络合制备出纳米银复合抑菌剂AgNPs/CS。制备出的产品能提高AgNPs的抑菌活性和稳定性,并具有理想的生物安全性,为AgNPs在水产养殖领域的应用开辟了新的途径。浓度为0.4 μg/mL的AgNPs/CS可使灿烂弧菌生物膜形成量减少74.5%;浓度为0.8 μg/mL的AgNPs/CS处理组可使生物膜形成量减少84.4%。因此,AgNPs/CS对灿烂弧菌生物膜具有显著的清除作用,为打破病原菌耐药性的瓶颈奠定基础。 AgNPs/CS 对灿烂弧菌生物膜的影响 AgNPs/CS对293T细胞的毒性实验表明,在MIC和MBC分别为0.43 μg/mL和0.87 μg/mL的有效使用浓度下,细胞毒性评级为1级,具有较为理想的生物安全性。AgNPs/CS浓度对体外细胞相对增值率和细胞毒性评级的影响 Concentration(μg/mL) OD value RGR(%) cytotoxicity 0 0.896±0.126 100.00 0 0.25 0.847±0.085 94.534 1 0.5 0.832±0.073 92.818 1 1.0 0.768±0.094 85.707 1 5.0 0.639±0.082 71.317 2 10.0 0.568±0.065 63.393 2 20.0 0.492±0.071 54.911 2 40.0 0.061±0.041 6.885 4 80.0 0.046±0.023 5.154 4 Abstract: In order to prepare a new type of safe, stable and efficient nano silver composite antibacterial agent, silver nanoparticles/chitosan (AgNPs/CS) was biosynthesized by by one-step method using Chimonanthus praeco petal extract and chitosan as reducing agent and stabilizing agent, respectively. The optimal preparation procedure was determined by single factor experiment. The products were characterized by UV-vis absorption spectroscopy, transmission electron microscopy and X-ray diffraction, and their antibacterial activity, anti-drug resistance, stability as well as biological safety were comprehensively evaluated. The experimental results showed that the AgNPs/CS had the characteristic absorption peak of AgNPs at 451 nm, and the evenly dispersed AgNPs were spherical with average diameter of 12.83 nm, and the crystals had a face-centered cubic structure. The AgNPs/CS show antibacterial activity against aquatic pathogens both in vitro and in vivo, and had excellent anti-drug resistance, biosafety and stability. Therefore, AgNPs/CS is an ideal composite antibacterial agent, which has a prospective application in aquaculture field.-
Key words:
- Silver nanoparticles /
- Chitosan /
- Biosynthesis /
- Antibacterial activity /
- Drug resistance /
- Stability
1) 吴承宗和魏亚楠为共同第一作者,对本文具有同等贡献 -
1 AgNPs/CS浓度对体外细胞相对增值率和细胞毒性评级的影响
Concentration(μg/mL) OD value RGR(%) cytotoxicity 0 0.896±0.126 100.00 0 0.25 0.847±0.085 94.534 1 0.5 0.832±0.073 92.818 1 1.0 0.768±0.094 85.707 1 5.0 0.639±0.082 71.317 2 10.0 0.568±0.065 63.393 2 20.0 0.492±0.071 54.911 2 40.0 0.061±0.041 6.885 4 80.0 0.046±0.023 5.154 4 表 1 对6种病原菌的抑菌圈直径(n=3)
Table 1. Diameter of inhibition zone against 6 pathogens(n=3)
Strain Inhibition zone diameter AgNPs/CS AgNPs Amp A.punctata 19.24±0.47 16.73±0.53 16.25±0.86 V.alginolyticus 23.39±1.03 21.07±0.19 15.72±0.28 V.parahaemolyticus 24.52±0.76 23.35±1.08 23.17±0.10 V.anguillarum 22.01±0.37 19.93±0.11 15.35±0.28 V.harveyi 18.11±0.25 17.98±0.66 9.03±0.34 V.splendidus 26.59±0.65 22.93±2.26 21.2±1.47 表 2 AgNPs对灿烂弧菌的最小抑菌浓度和最小杀菌浓度(n=3)
Table 2. MIC and MBC tests of AgNPs against V.splendidus(n=3)
Numbering Concentration/(μg·mL−1) AgNPs/CS Concentration/(μg·mL−1) AgNPs 24 h 48 h 24 h 48 h 1 112.5 − − 33.33 − − 2 56.3 − − 16.67 − − 3 28.1 − − 8.33 − − 4 14.1 − − 4.17 − − 5 7.03 − − 2.08 − − 6 3.51 − − 1.04 − − 7 1.75 − − 0.52 − + 8 0.87 − − 0.26 + + 9 0.43 − + 0.13 + + 10 0.21 + + 0.07 + + 表 3 AgNPs/CS对多次传代灿烂弧菌最小抑菌浓度的研究(n=3)
Table 3. MIC tests of AgNPs/CS against multigenerational V.splendidus
Passage number MIC/(μg·mL−1) AgNPs/CS Amp 1 0.43 9.76 2 0.43 19.53 3 0.43 19.53 4 0.43 39.06 5 0.43 78.13 6 0.87 78.13 7 0.87 312.5 8 0.87 312.5 9 0.87 312.5 10 0.87 625 11 0.87 625 12 0.87 625 13 0.87 625 14 0.87 1250 15 0.87 1250 16 0.87 1250 17 0.87 1250 18 0.87 1250 19 0.87 1250 20 0.87 1250 表 4 AgNPs/CS浓度对体外细胞相对增值率和细胞毒性评级的影响
Table 4. Effect of AgNPs/CS concentration on relative proliferation rate and cytotoxicity rating of cells in vitro
Concentration/(μg·mL−1) OD value RGR(%) cytotoxicity 0 0.896±0.126 100.00 0 0.25 0.847±0.085 94.534 1 0.5 0.832±0.073 92.818 1 1.0 0.768±0.094 85.707 1 5.0 0.639±0.082 71.317 2 10.0 0.568±0.065 63.393 2 20.0 0.492±0.071 54.911 2 40.0 0.061±0.041 6.885 4 80.0 0.046±0.023 5.154 4 -
[1] 王秋水, 刘悦, 邓婕, 等. 动物性水产品及其养殖环境中抗生素抗性基因的研究进展[J]. 食品安全质量检测学报, 2022, 13(5):1453-1461. doi: 10.3969/j.issn.2095-0381.2022.5.spaqzljcjs202205013WANG Qiushui, LIU Yue, DENG Jie, et al. Research progress of antibiotic resistance genes in animal aquatic products and their breeding environment[J]. Chinese Journal of Food Safety and Quality,2022,13(5):1453-1461(in Chinese). doi: 10.3969/j.issn.2095-0381.2022.5.spaqzljcjs202205013 [2] 孙宇洁, 孟令轩, 朱琳, 等. 水产养殖尾水中抗生素抗性基因的去除及磺胺类耐药细菌研究[J]. 环境科学学报, 2022, 42(5):286-295.SUN Yujie, MENG Lingxuan, ZHU Lin, et al. Removal of antibiotic resistance genes and study on sulfonamine-resistant bacteria in aquaculture tail water[J]. Chinese Journal of Environmental Science,2022,42(5):286-295(in Chinese). [3] SCHAR D, ZHAO C, WANG Y, et al. Twenty-year trends in antimicrobial resistance from aquaculture and fisheries in Asia[J]. Nature Publishing Group,2021(1):1-10. [4] 樊晨, 倪琦, 朱婷, 等. 纳米银抗菌材料的研究进展 [J]. 化工新型材料, 2022, 50(09): 229-234+241.FAN C, NI Q, ZHU T, et al. Research progress of nano-silver antibacterial materials [J]. New Chemical Materials, 2022, 50(09): 229-234+ 241 (in Chinese). [5] DUTTA T, GHOSH N N, DAS M, et al. Green synthesis of antibacterial and antifungal silver nanoparticles using Citrus limetta peel extract: Experimental and theoretical studies[J]. Journal of Environmental Chemical Engineering,2020,8(4):104019. doi: 10.1016/j.jece.2020.104019 [6] NOURI A, YARAKI M T, LAJEVARD A, et al. Ultrasonic-assisted green synthesis of silver nanoparticles using Mentha aquatica leaf extract for enhanced antibacterial properties and catalytic activity[J]. Colloid and Interface Science Communications,2020,35:100252. doi: 10.1016/j.colcom.2020.100252 [7] KUBAVAT K, TRIVEDI P, ANSARI H, et al. Green synthesis of silver nanoparticles using dietary antioxidant rutin and its biological contour[J]. Beni-Suef University Journal of Basic and Applied Sciences,2022,11(1):1-14. doi: 10.1186/s43088-021-00184-x [8] 姚圣楠, 徐冉, 王安琪, 等. 树莓果渣多酚纳米银的制备、表征及抗菌活性研究[J]. 食品科技, 2022, 47(06): 290-297.YAO Shengnan, XU Ran, WANG Anqi, et al. Preparation, characterization and antibacterial activity of nano-silver polyphenol from Raspberry residue [J]. Food Science and Technology, 202, 47(06): 290-297 (in Chinese). [9] GUL A R, SHAHEEN F, RAFIQUE R, et al. Grass-mediated biogenic synthesis of silver nanoparticles and their drug delivery evaluation: A biocompatible anti-cancer therapy[J]. Chemical Engineering Journal,2021,407:127202. doi: 10.1016/j.cej.2020.127202 [10] 包善思, 姚瑶, 孙博瑞, 等. 腊梅花抗氧化活性物质微波辅助提取的响应面优化研究[J]. 食品科技, 2019, 44(10):229-234.BAO Shansi, YAO Yao, SUN Borui, et al. Study on response surface optimization of microwave-assisted extraction of antioxidant active substances from Wintersweet[J]. Food Science and Technology,2019,44(10):229-234(in Chinese). [11] CU T S, CAO V D, NGUYEN C K, et al. Preparation of silver core-chitosan shell nanoparticles using catechol-functionalized chitosan and antibacterial studies[J]. Macromolecular Research,2014,22(4):418-423. doi: 10.1007/s13233-014-2054-5 [12] SHARIFI-RAD M, POHL P. Synthesis of biogenic silver nanoparticles (AgCl-NPs) using a pulicaria vulgaris gaertn. aerial part extract and their application as antibacterial, antifungal and antioxidant agents[J]. Nanomaterials,2020,10(4):638. doi: 10.3390/nano10040638 [13] SULIMAN Y A O, ALI D, ALARIFI S, et al. Evaluation of cytotoxic, oxidative stress, proinflammatory and genotoxic effect of silver nanoparticles in human lung epithelial cells[J]. Environmental toxicology,2015,30(2):149-160. doi: 10.1002/tox.21880 [14] 郝和平. 医疗器械生物学评价标准实施指南 [M]. 中国标准出版社, 2000.HAO Heping. Implementation Guide of Biological Evaluation Standards for Medical Devices [M]. Standards Press of China, 2000 (in Chinese). [15] 刘冲冲, 王磊, 徐慧, 等. 姜提取物生物合成纳米银抑菌活性的研究[J]. 食品与生物技术学报, 2017, 36(6):590-597. doi: 10.3969/j.issn.1673-1689.2017.06.005LIU Chong, WANG Lei, XU Hui, et al. Study on antibacterial activity of silver nanoparticles synthesized from ginger extract[J]. Chinese Journal of Food and Biotechnology,2017,36(6):590-597(in Chinese). doi: 10.3969/j.issn.1673-1689.2017.06.005 [16] 薛海燕, 张颖, 张宝艳, 等. 安石榴苷还原壳聚糖/纳米银溶胶制备表征及其抑菌性能[J]. 农业工程学报, 2018, 34(4):306-314.XUE Haiyan, ZHANG Ying, ZHANG Baoyan, et al. Characterization of chitosan/silver nanosol reduced by andrographolide and its antibacterial properties[J]. Journal of Agricultural Engineering,2018,34(4):306-314(in Chinese). [17] 邢亚阁, 廖兴梅, 李文秀, 等. 不同制备条件对纳米银绿色合成的影响[J]. 食品与发酵工业, 2022, 48(7):231-237.XING Yagge, LIAO Xingmei, LI Wenxiu, et al. Effect of different preparation conditions on the green synthesis of silver nanoparticles[J]. Food and Fermentation Industry,2022,48(7):231-237(in Chinese). [18] MUNIR T, MAHMOOD A, SHAFIQ F, et al. Experimental and theoretical analyses of nano-silver for antibacterial activity based on differential crystal growth temperatures[J]. Saudi Journal of Biological Sciences,2021,28(12):7561-7566. doi: 10.1016/j.sjbs.2021.09.058 [19] 李晖, 廖跃华, 徐晓慧, 等. 纳米材料修饰电化学生物传感器在食品检测中的应用[J]. 分析科学学报, 2020, 36(6):900-905.LI Hui, LIAO Yuehua, XU Xiaohui, et al. Application of nanomaterial-modified electrochemical biosensors in food detection[J]. Journal of Analytical Sciences,2020,36(6):900-905(in Chinese). [20] SADEGHI B, GHOLANHOSEINPOOR F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2015,134:310-315. doi: 10.1016/j.saa.2014.06.046 [21] SAHARIAH P, MASSON M. Antimicrobial chitosan and chitosan derivatives: a review of the structure–activity relationship[J]. Biomacromolecules,2017,18(11):3846-3868. doi: 10.1021/acs.biomac.7b01058 [22] JUNLABHUT P, BOONRUANG S, Mekprasart W, et al. Ag nanoparticle-doped SiO2/TiO2 hybrid optical sensitive thin film for optical element applications[J]. Surface and Coatings Technology,2016,306:262-266. doi: 10.1016/j.surfcoat.2016.06.033 [23] MIRI A, SARANI M, BAZAZ M R, et al. Plant-mediated biosynthesis of silver nanoparticles using Prosopis farcta extract and its antibacterial properties[J]. Spectrochimica acta part a:molecular and biomolecular spectroscopy,2015,141:287-291. doi: 10.1016/j.saa.2015.01.024 [24] MOSTAFA M, RAMADAN H E, EL-AMIR M A. Sorption and desorption studies of radioiodine onto silver chloride via batch equilibration with its aqueous media[J]. Journal of Environmental Radioactivity,2015,150:9-19. doi: 10.1016/j.jenvrad.2015.07.022 [25] 崔升, 袁美玉, 付俊杰, 等. 抗菌用壳聚糖及其金属粒子复合材料研究进展[J]. 精细化工, 2021, 38(9):1757-1764+1778.CUI Sheng, YUAN Meiyu, Fu Junjie, et al. Research progress of antibacterial chitosan and metal particle composites[J]. Fine Chemical Industry,2021,38(9):1757-1764+1778(in Chinese). [26] ZHANG T, PAN J F, HUNT D E, et al. Organic matter modifies biochemical but not most behavioral responses of the clam Ruditapes philippinarum to nanosilver exposure[J]. Marine environmental research,2018,133:105-113. doi: 10.1016/j.marenvres.2017.10.016 [27] 郭峻宁, 邓雪婷, 高蓉蓉, 等. 细菌生物膜在农田土壤污染修复中的应用研究进展[J]. 微生物学通报, 2022, 49(9):3919-3932.GUO Junning, DENG Xueting, GAO Rongrong, et al. Advances in the application of bacterial biofilms in the remediation of agricultural soil pollution[J]. Microbiology Bulletin,2022,49(9):3919-3932(in Chinese). [28] OTARI S V, PATIL R M, GHOSH S J, et al. Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2015,136:1175-1180. doi: 10.1016/j.saa.2014.10.003 [29] XU L, YI-YI W, HUANG J, et al. Silver nanoparticles: Synthesis, medical applications and biosafety[J]. Theranostics,2020,10(20):8996. doi: 10.7150/thno.45413 [30] 熊玲, 蒋学华, 陈亮, 等. 不同粒径银粒子的体外细胞毒性比较[J]. 中国生物医学工程学报, 2007(4):600-604. doi: 10.3969/j.issn.0258-8021.2007.04.023XIONG Ling, JIANG Xuehua, CHEN Liang, et al. Comparison of cytotoxicity of silver particles with different particle sizes in vitro[J]. Chinese Journal of Biomedical Engineering,2007(4):600-604(in Chinese). doi: 10.3969/j.issn.0258-8021.2007.04.023 [31] 张富强, 佘文珺, 傅远飞. 六种纳米载银无机抗菌剂的体外细胞毒性比较[J]. 中华口腔医学杂志, 2005(6):69-72.ZHANG Fuqiang, SHE Wenjun, FU Yuanfei. In vitro cytotoxicity comparison of six inorganic antibacterial agents containing silver nanoparticles[J]. Chin J Stomatol,2005(6):69-72(in Chinese). [32] 马守栋, 李明春, 叶勇, 等. 纳米银的制备与表征[J]. 中国药学杂志, 2011, 46(13):1007-1010.MA Shoudong, LI Mingchun, YE Yong, et al. Preparation and characterization of silver nanoparticles[J]. Chinese Pharmaceutical Journal,2011,46(13):1007-1010(in Chinese). [33] 蔡运成. 银纳米复合物的制备与性能研究 [D]. 华中科技大学, 2017.CAI Yuncheng. Preparation and properties of silver nanocomplexes [D]. Huazhong University of Science and Technology, 2017 (in Chinese). [34] 秦社宣, 童细焱, 孙林煌, 等. 新型纳米银体外广谱抗菌作用及机制[J]. 中国微生态学杂志, 2018, 30(9):1024-1028.QIN Shexuan, TONG Shiyan, SUN Linhuang, et al. In vitro broad-spectrum antibacterial effects and mechanisms of novel nanosilver[J]. Chinese Journal of Microecology,2018,30(9):1024-1028(in Chinese). [35] VAIIAPA N, WIARACHAI O, THONGCHUL N, et al. Enhancing antibacterial activity of chitosan surface by heterogeneous quaternization[J]. Carbohydrate polymers,2011,83(2):868-875. doi: 10.1016/j.carbpol.2010.08.075 [36] AZIZ N, FARAZ M, PANDEY R, et al. Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties[J]. Langmuir,2015,31(42):11605-11612. doi: 10.1021/acs.langmuir.5b03081 [37] 何臣臣, 刘源森, 徐长安, 等. 微波辅助合成载银蒙脱土/水性聚氨酯纳米复合抗菌材料的制备及表征[J]. 高分子材料科学与工程, 2018, 34(7):162-166.HE Chenchen, LIU Yuansen, XU Changan, et al. Preparation and characterization of microwave-assisted synthesis of silver-loaded montmorillonite/waterborne polyurethane nanocomposite antibacterial materials[J]. Polymer Materials Science and Engineering,2018,34(7):162-166(in Chinese). [38] 莫尊理, 胡惹惹, 王雅雯, 等. 抗菌材料及其抗菌机理[J]. 材料导报, 2014, 28(1):50-52+90.MO Zunli, HU Jajia, WANG Yawen, et al. Antibacterial materials and their antibacterial mechanisms[J]. Materials Direct,2014,28(1):50-52+90(in Chinese). [39] DANANJAYA S H S, ERANDANI W, KIM C H, et al. Comparative study on antifungal activities of chitosan nanoparticles and chitosan silver nano composites against Fusarium oxysporum species complex[J]. International journal of biological macromolecules,2017,105:478-488. doi: 10.1016/j.ijbiomac.2017.07.056 [40] GRITSCH L, LOVELL C, GOLDMANN W H, et al. Fabrication and characterization of copper (II)-chitosan complexes as antibiotic-free antibacterial biomaterial[J]. Carbohydrate polymers,2018,179:370-378. doi: 10.1016/j.carbpol.2017.09.095 -

计量
- 文章访问数: 162
- HTML全文浏览量: 80
- 被引次数: 0