留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物合成纳米银/壳聚糖复合抑菌剂的制备与性能

吴承宗 魏亚楠 黄婷 苗雨颖 张译丹 刘煜扬 刘小莉 赵彦翠 乔洪金 王磊

吴承宗, 魏亚楠, 黄婷, 等. 生物合成纳米银/壳聚糖复合抑菌剂的制备与性能[J]. 复合材料学报, 2023, 40(10): 5871-5883. doi: 10.13801/j.cnki.fhclxb.20230117.003
引用本文: 吴承宗, 魏亚楠, 黄婷, 等. 生物合成纳米银/壳聚糖复合抑菌剂的制备与性能[J]. 复合材料学报, 2023, 40(10): 5871-5883. doi: 10.13801/j.cnki.fhclxb.20230117.003
WU Chengzong, WEI Ya'nan, HUANG Ting, et al. Biosynthesis and properties of AgNPs/chitosan composite antibacterial agent[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5871-5883. doi: 10.13801/j.cnki.fhclxb.20230117.003
Citation: WU Chengzong, WEI Ya'nan, HUANG Ting, et al. Biosynthesis and properties of AgNPs/chitosan composite antibacterial agent[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5871-5883. doi: 10.13801/j.cnki.fhclxb.20230117.003

生物合成纳米银/壳聚糖复合抑菌剂的制备与性能

doi: 10.13801/j.cnki.fhclxb.20230117.003
基金项目: 山东省自然科学基金项目(ZR2021MC102);烟台市科技发展计划(2022XDRH010)
详细信息
    通讯作者:

    王磊,博士,教授,硕士生导师,研究方向为纳米技术在病害防控中的应用 E-mail: wanglei9909@163.com

  • 吴承宗和魏亚楠为共同第一作者,对本文具有同等贡献
  • 中图分类号: TB333

Biosynthesis and properties of AgNPs/chitosan composite antibacterial agent

Funds: Shandong Natural Science Foundation Project (ZR2021MC102); Science and Technology Development Plan of Yantai (2022XDRH010)
  • 摘要: 为制备安全、稳定、高效的新型纳米银抑菌剂,本文分别以腊梅花瓣提取液和壳聚糖作为还原剂和稳定剂采用一步法生物合成纳米银/壳聚糖(AgNPs/CS)复合抑菌剂。通过单因素实验确定了最佳制备工艺,制备的产品利用紫外-可见吸收光谱、TEM、X 射线衍射等技术进行表征,并对其抑菌活性、抗耐药性、稳定性及生物安全性进行全面的评价。实验结果表明:AgNPs/CS在451 nm处有AgNPs的特征吸收峰,AgNPs呈球形,均匀分散,平均粒径为12.83 nm,为面心立方结构晶体。AgNPs/CS在离体和活体抑菌实验中对水产病原菌均表现出显著的抑菌活性,并表现出优良的抗耐药性、生物安全性和稳定性。因此,AgNPs/CS是一种理想的复合抑菌剂,在水产养殖领域中具有广阔的应用前景。

     

    1)  吴承宗和魏亚楠为共同第一作者,对本文具有同等贡献
  • 图  1  纳米银反应条件的优化

    Figure  1.  Optimization of AgNPs reaction conditions

    图  2  腊梅提取液、壳聚糖和纳米银/壳聚糖(AgNPs/CS)溶液的照片(a)及紫外吸收光谱图(b)

    Figure  2.  Photograph (a) and UV-vis absorption spectra (b) of Chimonanthus praecox extracts, chitosan and silver nanoparticles/chitosan (AgNPs/CS)

    图  3  AgNPs/CS的TEM图像(a)和粒径分布图(b)

    Figure  3.  TEM image (a) and particle size distribution (b) of AgNPs/CS

    图  4  AgNPs/CS的XRD图谱

    Figure  4.  XRD pattern of AgNPs/CS

    图  5  AgNPs/CS对6种水产病原菌的抑菌圈实验

    Figure  5.  Inhibition zone test of AgNPs/CS against 6 aquatic pathogens

    1—AgNPs/CS; 2—AgNPs; 3—Chimonanthus praecox extracts; 4—Amp; 5—Normal saline

    图  6  AgNPs/CS不同浓度下灿烂弧菌攻毒处理菲律宾蛤仔的死亡率

    Figure  6.  Fatality rate of Ruditapes philippinarum challenged with Vibrio splendidus at different concentrations of AgNPs/CS

    *—Significant difference; **—Highly significant difference

    图  7  AgNPs/CS 对灿烂弧菌生物膜的影响

    Figure  7.  Effect of the AgNPs/CS on biofilm formation by Vibrio splendidus

    图  8  不同存放时间 AgNPs/CS (a)和AgNPs (b)紫外吸收光谱图

    Figure  8.  UV-vis absorption spectra of AgNPs/CS (a) and AgNPs (b) at different storage time

    图  9  不同存放时间AgNPs/CS (a)和AgNPs (b)的Zeta电位图

    Figure  9.  Zeta potential of the biosynthesized AgNPs/CS (a) and AgNPs (b) at different storage time

    表  1  AgNPs/CS浓度对体外细胞相对增值率和细胞毒性评级的影响

    Concentration(μg/mL)OD valueRGR(%)cytotoxicity
    00.896±0.126100.000
    0.250.847±0.08594.5341
    0.50.832±0.07392.8181
    1.00.768±0.09485.7071
    5.00.639±0.08271.3172
    10.00.568±0.06563.3932
    20.00.492±0.07154.9112
    40.00.061±0.0416.8854
    80.00.046±0.0235.1544
    下载: 导出CSV

    表  1  对6种病原菌的抑菌圈直径(n=3)

    Table  1.   Diameter of inhibition zone against 6 pathogens (n=3)

    StrainInhibition zone diameter/mm
    AgNPs/CSAgNPsAmpicillin (Amp)
    Aeromonas punctata19.24±0.4716.73±0.5316.25±0.86
    Vibrio alginolyticus23.39±1.0321.07±0.1915.72±0.28
    Vibrio parahaemolyticus24.52±0.7623.35±1.0823.17±0.10
    Vibrio anguillarum22.01±0.3719.93±0.1115.35±0.28
    Vibrio harveyi18.11±0.2517.98±0.66 9.03±0.34
    Vibrio splendidus26.59±0.6522.93±2.2621.20±1.47
    下载: 导出CSV

    表  2  AgNPs对灿烂弧菌的最小抑菌浓度(MIC)和最小杀菌浓度(MBC) (n=3)

    Table  2.   Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests of AgNPs against Vibrio splendidus (n=3)

    NumberConcentration/(μg·mL−1)AgNPs/CSConcentration/(μg·mL−1)AgNPs
    24 h48 h24 h48 h
    1 112.50 33.33
    2 56.30 16.67
    3 28.10 8.33
    4 14.10 4.17
    5 7.03 2.08
    6 3.51 1.04
    7 1.75 0.52 +
    8 0.87 0.26 + +
    9 0.43 + 0.13 + +
    10 0.21 + + 0.07 + +
    下载: 导出CSV

    表  3  AgNPs/CS对多次传代灿烂弧菌MIC的测试(n=3)

    Table  3.   MIC tests of AgNPs/CS against multigenerational Vibrio splendidus (n=3)

    Passage numberMIC/(μg·mL−1)
    AgNPs/CSAmp
    1 0.43 9.76
    2 0.43 19.53
    3 0.43 19.53
    4 0.43 39.06
    5 0.43 78.13
    6 0.87 78.13
    7 0.87 312.5
    8 0.87 312.5
    9 0.87 312.5
    10 0.87 625
    11 0.87 625
    12 0.87 625
    13 0.87 625
    14 0.87 1250
    15 0.87 1250
    16 0.87 1250
    17 0.87 1250
    18 0.87 1250
    19 0.87 1250
    20 0.87 1250
    下载: 导出CSV

    表  4  AgNPs/CS浓度对体外细胞相对增值率(RGR)和细胞毒性评级的影响

    Table  4.   Effect of AgNPs/CS concentration on relative growth rate (RGR) and cytotoxicity rating of cells in vitro

    Concentration/(μg·mL−1)Absorption valueRGR/%Cytotoxicity
    0 0.896±0.126 100.00 0
    0.25 0.847±0.085 94.534 1
    0.5 0.832±0.073 92.818 1
    1.0 0.768±0.094 85.707 1
    5.0 0.639±0.082 71.317 2
    10.0 0.568±0.065 63.393 2
    20.0 0.492±0.071 54.911 2
    40.0 0.061±0.041 6.885 4
    80.0 0.046±0.023 5.154 4
    下载: 导出CSV
  • [1] 王秋水, 刘悦, 邓婕, 等. 动物性水产品及其养殖环境中抗生素抗性基因的研究进展[J]. 食品安全质量检测学报, 2022, 13(5):1453-1461. doi: 10.3969/j.issn.2095-0381.2022.5.spaqzljcjs202205013

    WANG Qiushui, LIU Yue, DENG Jie, et al. Research progress of antibiotic resistance genes in animal aquatic products and aquaculture environment[J]. Chinese Journal of Food Safety and Quality,2022,13(5):1453-1461(in Chinese). doi: 10.3969/j.issn.2095-0381.2022.5.spaqzljcjs202205013
    [2] 孙宇洁, 孟令轩, 朱琳, 等. 水产养殖尾水中抗生素抗性基因的去除及磺胺类耐药细菌研究[J]. 环境科学学报, 2022, 42(5):286-295.

    SUN Yujie, MENG Lingxuan, ZHU Lin, et al. Removal of antibiotic resistance genes and sulfonamides resistant bacteria in aquaculture tail water[J]. Acta Scientiae Circumstantiae,2022,42(5):286-295(in Chinese).
    [3] SCHAR D, ZHAO C, WANG Y, et al. Twenty-year trends in antimicrobial resistance from aquaculture and fisheries in Asia[J]. Nature Communications,2021,12:5384. doi: 10.1038/s41467-021-25655-8
    [4] 樊晨, 倪琦, 朱婷, 等. 纳米银抗菌材料的研究进展[J]. 化工新型材料, 2022, 50(9): 229-234, 241.

    FAN Chen, NI Qi, ZHU Ting, et al. Recent progress on antibacterial material of Ag nanoparticle[J]. New Chemical Materials, 2022, 50(9): 229-234, 241(in Chinese).
    [5] DUTTA T, GHOSH N N, DAS M, et al. Green synthesis of antibacterial and antifungal silver nanoparticles using Citrus limetta peel extract: Experimental and theoretical studies[J]. Journal of Environmental Chemical Engineering,2020,8(4):104019. doi: 10.1016/j.jece.2020.104019
    [6] NOURI A, TAVAKKOLI YARAKI M, LAJEVARDI A, et al. Ultrasonic-assisted green synthesis of silver nanoparticles using Mentha aquatica leaf extract for enhanced antibacterial properties and catalytic activity[J]. Colloid and Interface Science Communications,2020,35:100252. doi: 10.1016/j.colcom.2020.100252
    [7] KUBAVAT K, TRIVEDI P, ANSARI H, et al. Green synthesis of silver nanoparticles using dietary antioxidant rutin and its biological contour[J]. Beni-Suef University Journal of Basic and Applied Sciences,2022,11(1):1-14. doi: 10.1186/s43088-022-00297-x
    [8] 姚圣楠, 徐冉, 王安琪, 等. 树莓果渣多酚纳米银的制备、表征及抗菌活性研究[J]. 食品科技, 2022, 47(6): 290-297.

    YAO Shengnan, XU Ran, WANG Anqi, et al. Preparation, characterization and antibacterial activity of raspberry pomace polyphenols silver nanoparticle[J]. Food Science and Technology, 2022, 47(6): 290-297(in Chinese).
    [9] GUL A R, SHAHEEN F, RAFIQUE R, et al. Grass-mediated biogenic synthesis of silver nanoparticles and their drug delivery evaluation: A biocompatible anti-cancer therapy[J]. Chemical Engineering Journal,2021,407:127202. doi: 10.1016/j.cej.2020.127202
    [10] 包善思, 姚瑶, 孙博瑞, 等. 腊梅花抗氧化活性物质微波辅助提取的响应面优化研究[J]. 食品科技, 2019, 44(10):229-234.

    BAO Shansi, YAO Yao, SUN Borui, et al. Optimization for microwave-assisted extraction of antioxidant active substances in plum blossoms by response surfaces[J]. Food Science and Technology,2019,44(10):229-234(in Chinese).
    [11] CU T S, CAO V D, NGUYEN C K, et al. Preparation of silver core-chitosan shell nanoparticles using catechol-functionalized chitosan and antibacterial studies[J]. Macromolecular Research,2014,22(4):418-423. doi: 10.1007/s13233-014-2054-5
    [12] SHARIFI-RAD M, POHL P. Synthesis of biogenic silver nanoparticles (AgCl-NPs) using a Pulicaria vulgaris gaertn. aerial part extract and their application as antibacterial, antifungal and antioxidant agents[J]. Nanomaterials,2020,10(4):638. doi: 10.3390/nano10040638
    [13] SULIMAN Y A O, ALI D, ALARIFI S, et al. Evaluation of cytotoxic, oxidative stress, proinflammatory and genotoxic effect of silver nanoparticles in human lung epithelial cells[J]. Environmental Toxicology,2015,30(2):149-160. doi: 10.1002/tox.21880
    [14] 郝和平. 医疗器械生物学评价标准实施指南[M]. 北京: 中国标准出版社, 2000.

    HAO Heping. Implementation guide of biological evaluation standards for medical devices[M]. Beijing: Standards Press of China, 2000(in Chinese).
    [15] 刘冲冲, 王磊, 徐慧, 等. 姜提取物生物合成纳米银抑菌活性的研究[J]. 食品与生物技术学报, 2017, 36(6):590-597. doi: 10.3969/j.issn.1673-1689.2017.06.005

    LIU Chongchong, WANG Lei, XU Hui, et al. Antibacterial study of silver nanoparticles biosynthesized with ginger extract[J]. Journal of Food Science and Biotechnology,2017,36(6):590-597(in Chinese). doi: 10.3969/j.issn.1673-1689.2017.06.005
    [16] 薛海燕, 张颖, 张宝艳, 等. 安石榴苷还原壳聚糖/纳米银溶胶制备表征及其抑菌性能[J]. 农业工程学报, 2018, 34(4):306-314.

    XUE Haiyan, ZHANG Ying, ZHANG Baoyan, et al. Preparation characterization and bacteriostatic properties of punicalagin reducing chitosan/nano silver sol[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(4):306-314(in Chinese).
    [17] 邢亚阁, 廖兴梅, 李文秀, 等. 不同制备条件对纳米银绿色合成的影响[J]. 食品与发酵工业, 2022, 48(7):231-237.

    XING Yage, LIAO Xingmei, LI Wenxiu, et al. Effect of different preparation conditions on the green synthesis of silver nanoparticles[J]. Food and Fermentation Industries,2022,48(7):231-237(in Chinese).
    [18] MUNIR T, MAHMOOD A, SHAFIQ F, et al. Experimental and theoretical analyses of nano-silver for antibacterial activity based on differential crystal growth temperatures[J]. Saudi Journal of Biological Sciences,2021,28(12):7561-7566. doi: 10.1016/j.sjbs.2021.09.058
    [19] 李晖, 廖跃华, 徐晓慧, 等. 纳米材料修饰电化学生物传感器在食品检测中的应用[J]. 分析科学学报, 2020, 36(6):900-905.

    LI Hui, LIAO Yuehua, XU Xiaohui, et al. Application of biosensor with nanomaterial modified electrod in food detection[J]. Journal of Analytical Science,2020,36(6):900-905(in Chinese).
    [20] SADEGHI B, GHOLAMHOSEINPOOR F. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2015,134:310-315. doi: 10.1016/j.saa.2014.06.046
    [21] SAHARIAH P, MÁSSON M. Antimicrobial chitosan and chitosan derivatives: A review of the structure-activity relationship[J]. Biomacromolecules,2017,18(11):3846-3868. doi: 10.1021/acs.biomac.7b01058
    [22] JUNLABHUT P, BOONRUANG S, MEKPRASART W, et al. Ag nanoparticle-doped SiO2/TiO2 hybrid optical sensitive thin film for optical element applications[J]. Surface and Coatings Technology,2016,306:262-266. doi: 10.1016/j.surfcoat.2016.06.033
    [23] MIRI A, SARANI M, BAZAZ M R, et al. Plant-mediated biosynthesis of silver nanoparticles using Prosopis farcta extract and its antibacterial properties[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2015,141:287-291. doi: 10.1016/j.saa.2015.01.024
    [24] MOSTAFA M, RAMADAN H E, EL-AMIR M A. Sorption and desorption studies of radioiodine onto silver chloride via batch equilibration with its aqueous media[J]. Journal of Environmental Radioactivity,2015,150:9-19. doi: 10.1016/j.jenvrad.2015.07.022
    [25] 崔升, 袁美玉, 付俊杰, 等. 抗菌用壳聚糖及其金属粒子复合材料研究进展[J]. 精细化工, 2021, 38(9):1757-1764, 1778.

    CUI Sheng, YUAN Meiyu, FU Junjie, et al. Research progress of chitosan and its metal particle composite materials for antibacterial application[J]. Fine Chemicals,2021,38(9):1757-1764, 1778(in Chinese).
    [26] ZHANG T, PAN J F, HUNT D E, et al. Organic matter modifies biochemical but not most behavioral responses of the clam Ruditapes philippinarum to nanosilver exposure[J]. Marine Environmental Research,2018,133:105-113. doi: 10.1016/j.marenvres.2017.10.016
    [27] 郭峻宁, 邓雪婷, 高蓉蓉, 等. 细菌生物膜在农田土壤污染修复中的应用研究进展[J]. 微生物学通报, 2022(9):3919-3932.

    GUO Junning, DENG Xueting, GAO Rongrong, et al. Application of bacterial biofilm in remediation of polluted farmland soil: A review[J]. Microbiology China,2022(9):3919-3932(in Chinese).
    [28] OTARI S V, PATIL R M, GHOSH S J, et al. Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2015,136:1175-1180. doi: 10.1016/j.saa.2014.10.003
    [29] XU L, WANG Y Y, HUANG J, et al. Silver nanoparticles: Synthesis, medical applications and biosafety[J]. Theranostics,2020,10(20):8996-9031. doi: 10.7150/thno.45413
    [30] 熊玲, 蒋学华, 陈亮, 等. 不同粒径银粒子的体外细胞毒性比较[J]. 中国生物医学工程学报, 2007, 26(4):600-604. doi: 10.3969/j.issn.0258-8021.2007.04.023

    XIONG Ling, JIANG Xuehua, CHEN Liang, et al. Comparison of cytotoxicity of silver particles with different particle sizes in vitro[J]. Chinese Journal of Biomedical Engineering,2007,26(4):600-604(in Chinese). doi: 10.3969/j.issn.0258-8021.2007.04.023
    [31] 张富强, 佘文珺, 傅远飞. 六种纳米载银无机抗菌剂的体外细胞毒性比较[J]. 中华口腔医学杂志, 2005, 40(6):504-507.

    ZHANG Fuqiang, SHE Wenjun, FU Yuanfei. Comparison of the cytotoxicity in vitro among six types of nano-silver base inorganic antibacterial agents[J]. Chinese Journal of Stomatology,2005,40(6):504-507(in Chinese).
    [32] 马守栋, 李明春, 叶勇, 等. 纳米银的制备与表征[J]. 中国药学杂志, 2011, 46(13):1007-1010.

    MA Shoudong, LI Mingchun, YE Yong, et al. Study on preparation and characterization of silver nanoparticle colloid solution[J]. Chinese Pharmaceutical Journal,2011,46(13):1007-1010(in Chinese).
    [33] 蔡运成. 银纳米复合物的制备与性能研究[D]. 武汉: 华中科技大学, 2017.

    CAI Yuncheng. Preparation and properties of silver nanocomplexes[D]. Wuhan: Huazhong University of Science and Technology, 2017(in Chinese).
    [34] 秦社宣, 童细焱, 孙林煌, 等. 新型纳米银体外广谱抗菌作用及机制[J]. 中国微生态学杂志, 2018, 30(9):1024-1028.

    QIN Shexuan, TONG Xiyan, SUN Linhuang, et al. The broad-spectrum antibacteria effects and mechanism of new-type silver nanoparticles in vitro[J]. Chinese Journal of Microecology,2018,30(9):1024-1028(in Chinese).
    [35] VALLAPA N, WIARACHAI O, THONGCHUL N, et al. Enhancing antibacterial activity of chitosan surface by heterogeneous quaternization[J]. Carbohydrate Polymers,2011,83(2):868-875. doi: 10.1016/j.carbpol.2010.08.075
    [36] AZIZ N, FARAZ M, PANDEY R, et al. Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial, and photocatalytic properties[J]. Langmuir,2015,31(42):11605-11612. doi: 10.1021/acs.langmuir.5b03081
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  595
  • HTML全文浏览量:  326
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-14
  • 修回日期:  2022-12-12
  • 录用日期:  2023-01-08
  • 网络出版日期:  2023-01-18
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回