留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂电池用PEO基复合固态电解质的研究进展

陈雪敏 李亚如 任永鹏 潘昆明 金晗 赵帅凯

陈雪敏, 李亚如, 任永鹏, 等. 锂电池用PEO基复合固态电解质的研究进展[J]. 复合材料学报, 2024, 42(0): 1-15.
引用本文: 陈雪敏, 李亚如, 任永鹏, 等. 锂电池用PEO基复合固态电解质的研究进展[J]. 复合材料学报, 2024, 42(0): 1-15.
CHEN Xuemin, LI Yaru, REN Yongpeng, et al. Research progress of PEO-based composite solid-state electrolytes for lithium batteries[J]. Acta Materiae Compositae Sinica.
Citation: CHEN Xuemin, LI Yaru, REN Yongpeng, et al. Research progress of PEO-based composite solid-state electrolytes for lithium batteries[J]. Acta Materiae Compositae Sinica.

锂电池用PEO基复合固态电解质的研究进展

基金项目: 龙门实验室自由探索项目(LMQYTSKT012);河南省重大科技创新项目(231100220100);河南省科技攻关项目(232102240009);河南科技大学研究生创新基金(2023-S49)
详细信息
    通讯作者:

    任永鹏,博士,副教授,硕士生导师,研究方向为动力电池材料与器件 E-mail: Ren_YP123@163.com

  • 中图分类号: TB332

Research progress of PEO-based composite solid-state electrolytes for lithium batteries

Funds: Longmen Laboratory Free Exploration Project (LMQYTSKT012); Major Scientific and Technological Innovation Project in Henan Province (231100220100); Key Technologies R & D Program of Henan Province (232102240009); Graduate Innovation Fund of Henan University of Science and Technology (2023-S49)
  • 摘要: 固态锂离子电池能量密度高、安全性强,是突破电池技术瓶颈的关键,受到了学术界和工业界的广泛关注。固态电解质是固态电池的核心,其中聚氧化乙烯(PEO)基聚合物固态电解质在改善电极界面相容性方面具有优势,是最有潜力的电解质材料之一。本文系统阐述了PEO与无机填料间的协同作用,及其对复合固态电解质的离子传输性和界面相容性的影响机制。首先对PEO基复合固态电解质做出概述,并探讨离子传输相关机制,然后分别综述了PEO-惰性填料和PEO-活性填料复合固态电解质体系的设计、制备、性能及机制,最后,对复合固态聚合物电解质的未来发展和优化设计做出展望。

     

  • 图  1  固态聚合物电解质、无机固态电解质和复合固态聚合物电解质的优缺点比较[10]

    Figure  1.  Comparison of advantages and disadvantages of solid-state polymer electrolytes, inorganic solid-state electrolytes and composite solid-state polymer electrolytes[10]

    图  2  聚氧化乙烯中链内和链间离子输运机制[32]

    Figure  2.  Intra-chain and Inter-chain ion transport mechanism in polyethylene oxide[32]

    图  3  (a) Li+分别在PEO相中、PEO相和PEO/陶瓷界面处、PEO相和陶瓷相以及PEO/陶瓷界面处的传导途径示意图[45];(b) 锂离子在LLZO (5wt%) -PEO (LiTFSI)、LLZO (20wt%) -PEO (LiTFSI) 和LLZO (50wt%) -PEO (LiTFSI)复合电解质中的路径示意图[46];(c) NPs、无序NWs和排列NWs在复合聚合物电解质中的锂离子传导途径[48];(d) 填料、聚合物和锂盐之间的路易斯酸碱相互作用示意图[36]

    Figure  3.  (a) Schematic illustration of the Li+ conduction pathways in the PEO phase,PEO phase and PEO/ceramic interface,PEO phase and ceramic phase and PEO/ceramic interface, respectively[45]; (b) Schematic of Li-ion pathways within LLZO (5wt%)–PEO (LiTFSI), LLZO (20wt%)–PEO (LiTFSI) and LLZO (50wt%)–PEO (LiTFSI) composite electrolytes[46]; (c) Li-ion conduction pathways in composite polymer electrolytes with NPs,random NWs and aligned NWs[48]; (d) Illustration of Lewis acid-base interaction between fillers, polymer, and Li salt[36]

    图  4  (a) 三种不同类型Al2O3与PEO的表面相互作用和Al2O3-PEO CSPEs的电导率图[56];(b) AAO -聚合物复合电解质制备工艺示意图[58];(c) 分别为AAO圆盘中单个纳米通道中聚合物电解质示意图、各组分的离子电导率、界面离子电导率以及AAO-聚合物复合电解质(APCE)界面层厚度[58];(d) 功能化Al2O3 (F- Al2O3)的合成及其制备杂化聚合物电解质(HPE)[59];分散在硅片上PEO薄膜中的颗粒的SEM图像: (e) Al2O3, ( f) F- Al2O3[59]

    Figure  4.  (a) Surface interactions between three diferent type Al2O3 and PEO and conductivity plots of Al2O3-PEO CSPEs[56]; (b) Schematics of fabrication procedures of AAO-polymer composite electrolyte[58]; (c) Schematics of polymer electrolyte in individual nanochannel of the AAO disc, the ionic conductivities of each component, the interface ion conductivities, and the thickness of interfacial layer of AAO-polymer composite electrolyte (APCE), respectively[58]; (d) Synthesis of functionalized Al2O3 (F-Al2O3) and preparation of hybrid polymer electrolyte (HPE) using F-Al2O3[59]; SEM images of the particles dispersed in PEO film on a Si wafer: (e) Al2O3, (f) F- Al2O3[59]

    图  5  (a) PEO链与MUSiO2的原位水解过程及相互作用机制示意图[60];(b) SiO2-Li2SO4-PEO CSPEs的制备工艺示意图以及由Li2SO4衍生的SiO2纤维CSPE实现Li+快速传导的原理图[61];(c) 原位水解制备CSPEs的示意图[62];(d) 不同成分聚合物电解质的离子电导率[65];(e) PEO-LiTFSI电解质和PEO-LiTFSI -3 wt% TiO2@PDA复合电解质的DSC曲线[65];(f) CPEs中缺氧TiO2表面相互作用示意图[66];TiO2样品的XPS光谱(g)和Ti 2 p的高分辨率光谱(h)[67]

    Figure  5.  (a) Schematic figures showing the procedure of in situ hydrolysis and interaction mechanisms among PEO chains and MUSiO2[60]; (b) Schematic diagram of preparation process of SiO2/Li2SO4/PEO CSPEs and schematics of fast Li+ conduction enabled by the Li2SO4-derived SiO2 fibers CSPEs [61];(c) The schematic diagram of CPSEs prepared by in situ hydrolysis[62]; (d) The ionic conductivities of the polymer electrolytes with different compositions[65]; (e) DSC curves of the PEO–LiTFSI electrolyte and PEO–LiTFSI-3 wt% TiO2@PDA composite electrolyte[65]; (f) Schematic illustrations of surface interaction of oxygen-deficient TiO2 in CPEs[66]; XPS survey spectra of the TiO2 sample (g) and high-resolution spectra of the Ti 2 p (h)[67]

    图  6  (a) 锂对称电池中多尺度排列的介孔石榴石Li6.4La3Zr2Al0.2O12 (LLZO)膜与聚合物电解质结合示意图[81];(b) 石榴石-木膜阻抗随温度升高而下降的Nyquist图,插图为测试单元的结构[81];(c) 石榴石木和PEO聚合物电解质在不同温度下的离子电导率对比示意图[81];(d) 以陶瓷石榴石纳米纤维为增强层,锂离子导电聚合物为基体的复合固态电解质示意图[83];(e) 纤维素衍生的CPE的制备工艺示意图[88];(f) 纤维素/陶瓷增强CPE中Li+导电机制示意图[88];(g) PEO|PEO−钙钛矿|PEO复合电解质的表面SEM图像、横截面SEM图像及横截面形貌详细视图[90]

    Figure  6.  (a) Schematic of multi-scale aligned mesoporous garnet Li6.4La3Zr2Al0.2O12 (LLZO) membrane incorporated with polymer electrolyte in a lithium symmetric cell[81]; (b) Nyquist plot showing the decrease in the impedance of the garnet-wood membrane with increasing temperature, the inset schematic shows the structure of the testing cell[81]; (c) Comparison of the ionic conductivity of the garnet-wood and PEO based polymer electrolyte at different temperatures[81]; (d) Schematic of the composite solid electrolyte, where ceramic garnet nanofibers function as the reinforcement and lithium-ion conducting polymer functions as the matrix[83]; (e) Schematic illustration of fabrication procedures for the cellulose derived CPE[88]; (f) Schematic of proposed Li+ conducting mechanism in the cellulose/ceramic reinforced CPE[88]; (g) SEM image of the surface, cross-sectional SEM image and detailed view of the cross-section morphology of the PEO|PEO−perovskite|PEO composite electrolyte[90]

    表  1  PEO基复合固态电解质文献报道汇总

    Table  1.   Summary of literature reports on PEO-based composite solid electrolyte

    Polymer matrix lithium salt Filler Ionic Conductivity/( S·cm−1) ESW/(V vs.Li/Li+) tLi+ Ref.
    PEO LiTFSI Al2O3 5.82 ×10−4 (RT) [58]
    PEO LiTFSI Al2O3 9.6 ×10–4 (25℃) 5 0.81 [97]
    PEO LiTFSI SiO2 1.8 ×10–4 (30℃) 5.3 0.42 [62]
    PEO LiClO4 SiO2 1.2 ×10–3 (60℃) >5.5 [98]
    PEO LiClO4 SiO2 1.1 ×10–4 (30℃) >4.8 [99]
    PEO LiClO4 TiO2 1 ×10–5 (30°C) 5 0.3 [100]
    PEO LiTFSI TiO2@PDA 4.36 ×10–4 (55°C) 5 0.19 [65]
    PEO LiTFSI Ti3+-TiO2 1 ×10–4 (30℃) 5.5 0.36 [67]
    PEO LiBF4 ZrO2 4.4 ×10–4 (80℃) 0.68 [72]
    PEO LiCF3SO3 ZrO2 1.38 ×10–4 (RT) [74]
    PEO LiTFSI LLZTO 1.9 ×10–4 (40℃) 5.1 0.67 [101]
    PEO LiTFSI LLZTO 3.03×10–4 (55℃) 4.5 0.117 [102]
    PEO LiTFSI LLZTO 5.6×10–4 (60℃) 4.75 0.46 [103]
    PEO LiTFSI LLZO 5.5×10–4 (30℃) >5.7 0.21 [104]
    PEO LiTFSI LLZO 2.39 ×10–4 (25℃) >5.5 [105]
    PEO LiTFSI LATP 4 ×10–4 (60℃) 4.7 [106]
    PEO LiTFSI LATP 3.61×10–4 (60℃) 4.8 [107]
    PEO LiTFSI LAGP 6.76×10–4 (60℃) 5.3 0.378 [108]
    PEO LiTFSI LAGP 1.6×10–5 (20℃) [109]
    PEO LiTFSI LLTO 2.04×10–4 (25℃) 4.7 [110]
    PEO LiTFSI LLTO 2.3×10–4 (RT) 4.5 [111]
    PEO LiTFSI LLTO 1.8×10–4 (RT) 4.5 0.33 [112]
    PEO LiTFSI LGPS 1.21×10–3 (80℃) 5.7 0.26 [95]
    PEG-PEO LiTFSI LGPS 9.83×10–4 (RT) 0.68 [96]
    Notes: ESW is Electrochemical stability window; tLi+ is Lithium-ion transference number; RT is Room Temperature; PDA is polydopamine; LLZTO is Li6.4La3Zr1.4Ta0.6O12/Li6.75La3Zr1.75Ta0.25O12; LLZO is Li7La3Zr2O12; LATP is Li1.4Al0.4Ti1.6(PO4)3; LAGP is Li1.5Al0.5Ge1.5(PO4)3; LLTO is Li0.33La0.557TiO3; LGPS is Li10GeP2S12; PEG is Polyethylene glycol.
    下载: 导出CSV
  • [1] JIN B. Research on performance evaluation of green supply chain of automobile enterprises under the background of carbon peak and carbon neutralization[J]. Energy Reports, 2021, 7: 594-604. doi: 10.1016/j.egyr.2021.10.002
    [2] HU Y, XIE X, LI W, et al. Recent progress of polymer electrolytes for solid-state lithium batteries[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(4): 1253-1277.
    [3] YANG X, LIU J, PEI N, et al. The critical role of fillers in composite polymer electrolytes for lithium battery[J]. Nano-Micro Letters, 2023, 15(1): 74. doi: 10.1007/s40820-023-01051-3
    [4] CHEN X, LI X, LUO L, et al. Practical application of all-solid-state lithium batteries based on high-voltage cathodes: Challenges and progress[J]. Advanced Energy Materials, 2023, 13(35): 2301230. doi: 10.1002/aenm.202301230
    [5] XIAO Z, LONG T, SONG L, et al. Research progress of polymer-inorganic filler solid composite electrolyte for lithium-ion batteries[J]. Ionics, 2021: 1-12.
    [6] CHEN S, DAI F, CAI M. Opportunities and challenges of high-energy lithium metal batteries for electric vehicle applications[J]. ACS Energy Letters, 2020, 5(10): 3140-3151. doi: 10.1021/acsenergylett.0c01545
    [7] XI G, XIAO M, WANG S, et al. Polymer-based solid electrolytes: Material selection, design, and application[J]. Advanced Functional Materials, 2021, 31(9): 2007598. doi: 10.1002/adfm.202007598
    [8] TANG S, GUO W, FU Y. Advances in composite polymer electrolytes for lithium batteries and beyond[J]. Advanced Energy Materials, 2021, 11(2): 2000802. doi: 10.1002/aenm.202000802
    [9] YANG Y, ZHOU H, XIE J, et al. Organic fast ion-conductor with ordered Li-ion conductive nano-pathways and high ionic conductivity for electrochemical energy storage[J]. Journal of Energy Chemistry, 2022, 66: 647-656. doi: 10.1016/j.jechem.2021.09.011
    [10] NGUYEN A G, PARK C J. Insights into tailoring composite solid polymer electrolytes for solid-state lithium batteries[J]. Journal of Membrane Science, 2023, 675: 121552. doi: 10.1016/j.memsci.2023.121552
    [11] FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18(12): 1278-1291. doi: 10.1038/s41563-019-0431-3
    [12] FAN P, LIU H, MAROSZ V, et al. High performance composite polymer electrolytes for lithium-ion batteries[J]. Advanced Functional Materials, 2021, 31(23): 2101380. doi: 10.1002/adfm.202101380
    [13] HOU W, OU Y, LIU K. Progress on high voltage PEO-based polymer solid electrolytes in lithium batteries[J]. Chemical Research in Chinese Universities, 2022, 38(3): 735-743. doi: 10.1007/s40242-022-2065-2
    [14] SUN J, LIU C, LIU H, et al. Advances in ordered architecture design of composite solid electrolytes for solid-state lithium batteries[J]. The Chemical Record, 2023, 23(6): e202300044. doi: 10.1002/tcr.202300044
    [15] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(4): 1-16.
    [16] MEYER W H. Polymer electrolytes for lithium-ion batteries[J]. Advanced materials, 1998, 10(6): 439-448. doi: 10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I
    [17] LIU X, BI Z, WAN Y, et al. Composition regulation of polyacrylonitrile-based polymer electrolytes enabling dual-interfacially stable solid-state lithium batteries[J]. Journal of Colloid and Interface Science, 2024, 665: 582-591. doi: 10.1016/j.jcis.2024.03.166
    [18] ZHANG W, KOVERGA V, LIU S, et al. Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries[J]. Nature Energy, 2024: 1-15.
    [19] WU Y, LI Y, WANG Y, et al. Advances and prospects of PVDF based polymer electrolytes[J]. Journal of Energy Chemistry, 2022, 64: 62-84. doi: 10.1016/j.jechem.2021.04.007
    [20] LI Z, ZHANG S, JIANG Z, et al. Deep eutectic solvent-immobilized PVDF-HFP eutectogel as solid electrolyte for safe lithium metal battery[J]. Materials Chemistry and Physics, 2021, 267: 124701. doi: 10.1016/j.matchemphys.2021.124701
    [21] SU X, XU X P, JI Z Q, et al. Polyethylene oxide-based composite solid electrolytes for lithium batteries: Current progress, low-temperature and high-voltage limitations, and prospects[J]. Electrochemical Energy Reviews, 2024, 7(1): 2. doi: 10.1007/s41918-023-00204-7
    [22] ZHANG D, LI L, WU X, et al. Research progress and application of PEO-based solid state polymer composite electrolytes[J]. Frontiers in Energy Research, 2021, 9: 726738. doi: 10.3389/fenrg.2021.726738
    [23] FENG J, WANG L, CHEN Y, et al. PEO based polymer-ceramic hybrid solid electrolytes: a review[J]. Nano Convergence, 2021, 8: 1-12. doi: 10.1186/s40580-020-00251-6
    [24] 周伟东, 黄秋, 谢晓新, et al. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805.

    ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, et al. Research progress of polymer electrolytes for solid-state lithium batteries[J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805 (in Chinese).
    [25] SZCZĘSNA-CHRZAN A, MARCZEWSKI M, SYZDEK J, et al. Lithium polymer electrolytes for novel batteries application: The review perspective[J]. Applied Physics A, 2022, 129(1): 37.
    [26] WANG H, SHENG L, YASIN G, et al. Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries[J]. Energy Storage Materials, 2020, 33: 188-215. doi: 10.1016/j.ensm.2020.08.014
    [27] DING Z, LI J, LI J, et al. Review-interfaces: Key issue to be solved for all solid-state lithium battery technologies[J]. Journal of The Electrochemical Society, 2020, 167(7): 070541. doi: 10.1149/1945-7111/ab7f84
    [28] ZHENG Y, LI X, LI C Y. A novel de-coupling solid polymer electrolyte via semi-interpenetrating network for lithium metal battery[J]. Energy Storage Materials, 2020, 29: 42-51. doi: 10.1016/j.ensm.2020.04.002
    [29] LIU S, LIU W, BA D, et al. Filler-integrated composite polymer electrolyte for solid-state lithium batteries[J]. Advanced Materials, 2022, 35(2): 2110423.
    [30] ROLLO-WALKER G, MALIC N, WANG X, et al. Development and progression of polymer electrolytes for batteries: Influence of structure and chemistry[J]. Polymers, 2021, 13(23): 4127. doi: 10.3390/polym13234127
    [31] YUE L, MA J, ZHANG J, et al. All solid-state polymer electrolytes for high-performance lithium ion batteries[J]. Energy Storage Materials, 2016, 5: 139-164. doi: 10.1016/j.ensm.2016.07.003
    [32] KUNDU S, EIN-ELI Y. A review on design considerations in polymer and polymer composite solid-state electrolytes for solid Li batteries[J]. Journal of Power Sources, 2023, 553: 232267. doi: 10.1016/j.jpowsour.2022.232267
    [33] MARZANTOWICZ M, DYGAS J R, KROK F, et al. Influence of crystalline complexes on electrical properties of PEO: LiTFSI electrolyte[J]. Electrochimica Acta, 2007, 53(4): 1518-1526. doi: 10.1016/j.electacta.2007.03.032
    [34] MARZANTOWICZ M, DYGAS J R, KROK F, et al. Crystalline phases, morphology and conductivity of PEO: LiTFSI electrolytes in the eutectic region[J]. Journal of Power Sources, 2006, 159(1): 420-430. doi: 10.1016/j.jpowsour.2006.02.044
    [35] GRUNDISH N S, GOODENOUGH J B, KHANI H. Designing composite polymer electrolytes for all-solid-state lithium batteries[J]. Current Opinion in Electrochemistry, 2021, 30: 100828. doi: 10.1016/j.coelec.2021.100828
    [36] ZHOU Q, MA J, DONG S, et al. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries[J]. Advanced Materials, 2019, 31(50): 1902029. doi: 10.1002/adma.201902029
    [37] WU N, CHIEN P H, QIAN Y, et al. Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte[J]. Angewandte Chemie International Edition, 2020, 59(10): 4131-4137. doi: 10.1002/anie.201914478
    [38] ROJAEE R, CAVALLO S, MOGURAMPELLY S, et al. Highly-cyclable room-temperature phosphorene polymer electrolyte composites for Li metal batteries[J]. Advanced Functional Materials, 2020, 30(32): 1910749. doi: 10.1002/adfm.201910749
    [39] JEON Y M, KIM S, LEE M, et al. Polymer-clay nanocomposite solid-state electrolyte with selective cation transport boosting and retarded lithium dendrite formation[J]. Advanced Energy Materials, 2020, 10(47): 2003114. doi: 10.1002/aenm.202003114
    [40] XU S, SUN Z, SUN C, et al. Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature[J]. Advanced Functional Materials, 2020, 30(51): 2007172. doi: 10.1002/adfm.202007172
    [41] LIU M, CHENG Z, GANAPATHY S, et al. Tandem interface and bulk Li-ion transport in a hybrid solid electrolyte with microsized active filler[J]. ACS Energy Letters, 2019, 4(9): 2336-2342. doi: 10.1021/acsenergylett.9b01371
    [42] 宋鑫, 高志浩, 骆林, et al. 全固态锂电池有机-无机复合电解质研究进展[J]. 复合材料学报, 2023, 40(4): 1857-1878.

    SONG Xin, GAO Zhihao, LUO Lin, et al. Research progress of organic-inorganic composite electrolytes for all-solid-state lithium batteries[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1857-1878(in Chinese).
    [43] YANG T, WANG C, ZHANG W, et al. A critical review on composite solid electrolytes for lithium batteries: Design strategies and interface engineering[J]. Journal of Energy Chemistry, 2023, 84: 189-209. doi: 10.1016/j.jechem.2023.05.011
    [44] CHEN H, ZHENG M, QIAN S, et al. Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries[J]. Carbon Energy, 2021, 3(6): 929-956. doi: 10.1002/cey2.146
    [45] SU Y, XU F, ZHANG X, et al. Rational design of high-performance PEO/ceramic composite solid electrolytes for lithium metal batteries[J]. Nano-Micro Letters, 2023, 15(1): 82. doi: 10.1007/s40820-023-01055-z
    [46] ZHENG J, HU Y-Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 4113-4120.
    [47] SHI C, SONG J, ZHANG Y, et al. Revealing the mechanisms of lithium-ion transport and conduction in composite solid polymer electrolytes[J]. Cell Reports Physical Science, 2023, 4(3).
    [48] LIU W, LEE S W, LIN D, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires[J]. Nature Energy, 2017, 2(5): 1-7.
    [49] SHEN Z, CHENG Y, SUN S, et al. The critical role of inorganic nanofillers in solid polymer composite electrolyte for Li+ transportation[J]. Carbon Energy, 2021, 3(3): 482-508. doi: 10.1002/cey2.108
    [50] SEN S, TREVISANELLO E, NIEMöLLER E, et al. The role of polymers in lithium solid-state batteries with inorganic solid electrolytes[J]. Journal of Materials Chemistry A, 2021, 9(35): 18701-18732. doi: 10.1039/D1TA02796D
    [51] ZHENG Y, YAO Y, OU J, et al. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures[J]. Chemical Society Reviews, 2020, 49(23): 8790-8839. doi: 10.1039/D0CS00305K
    [52] LI J, JING M-X, LI R, et al. Al2O3 fiber-reinforced polymer solid electrolyte films with excellent lithium-ion transport properties for high-voltage solid-state lithium batteries[J]. ACS Applied Polymer Materials, 2022, 4(10): 7144-7151. doi: 10.1021/acsapm.2c01034
    [53] WANG C, YANG T, ZHANG W, et al. Hydrogen bonding enhanced SiO2/PEO composite electrolytes for solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2022, 10(7): 3400-3408. doi: 10.1039/D1TA10607D
    [54] HUA S, LI J L, JING M X, et al. Effects of surface lithiated TiO2 nanorods on room-temperature properties of polymer solid electrolytes[J]. International Journal of Energy Research, 2020, 44(8): 6452-6462. doi: 10.1002/er.5379
    [55] WIECZOREK W, SUCH K, WYCIŚLIK H, et al. Modifications of crystalline structure of PEO polymer electrolytes with ceramic additives[J]. Solid State Ionics, 1989, 36(3-4): 255-257. doi: 10.1016/0167-2738(89)90185-9
    [56] CROCE F, PERSI L, SCROSATI B, et al. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes[J]. Electrochimica Acta, 2001, 46(16): 2457-2461. doi: 10.1016/S0013-4686(01)00458-3
    [57] PARK C H, KIM D W, PRAKASH J, et al. Electrochemical stability and conductivity enhancement of composite polymer electrolytes[J]. Solid State Ionics, 2003, 159(1-2): 111-119. doi: 10.1016/S0167-2738(03)00025-0
    [58] ZHANG X, XIE J, SHI F, et al. Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity[J]. Nano Letters, 2018, 18(6): 3829-3838. doi: 10.1021/acs.nanolett.8b01111
    [59] BAE H W, SUK J, PARK H S, et al. Incorporating ethylene oxide functionalized inorganic particles to solid polymer electrolytes for enhanced mechanical stability and electrochemical performance[J]. Advanced Energy and Sustainability Research, 2023, 4(3): 2200125. doi: 10.1002/aesr.202200125
    [60] LIN D, LIU W, LIU Y, et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly (ethylene oxide)[J]. Nano Letters, 2016, 16(1): 459-465. doi: 10.1021/acs.nanolett.5b04117
    [61] YU J, WANG C, LI S, et al. Li+-containing, continuous silica nanofibers for high Li+ conductivity in composite polymer electrolyte[J]. Small, 2019, 15(44): 1902729. doi: 10.1002/smll.201902729
    [62] WANG C, YANG T, ZHANG W, et al. Hydrogen bonding enhanced SiO2/PEO composite electrolytes for solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2022, 10(7): 3400-3408. doi: 10.1039/D1TA10607D
    [63] CHUNG S, WANG Y, PERSI L, et al. Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides[J]. Journal of Power Sources, 2001, 97: 644-648.
    [64] WIECZOREK W, FLORJANCZYK Z, STEVENS J. Composite polyether based solid electrolytes[J]. Electrochimica Acta, 1995, 40(13-14): 2251-2258. doi: 10.1016/0013-4686(95)00172-B
    [65] ZHAO E, GUO Y, ZHANG A, et al. Polydopamine coated TiO2 nanofiber fillers for polyethylene oxide hybrid electrolytes for efficient and durable all solid state lithium ion batteries[J]. Nanoscale, 2022, 14(3): 890-897. doi: 10.1039/D1NR06636F
    [66] LUO B, WANG W, WANG Q, et al. Facilitating ionic conductivity and interfacial stability via oxygen vacancies-enriched TiO2 microrods for composite polymer electrolytes[J]. Chemical Engineering Journal, 2023, 460: 141329. doi: 10.1016/j.cej.2023.141329
    [67] LI C, HUANG Y, CHEN C, et al. High-performance polymer electrolyte membrane modified with isocyanate-grafted Ti3+ doped TiO2 nanowires for lithium batteries[J]. Applied Surface Science, 2021, 563: 150248. doi: 10.1016/j.apsusc.2021.150248
    [68] BAE J, LI Y, ZHANG J, et al. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte[J]. Angewandte Chemie International Edition, 2018, 57(8): 2096-2100. doi: 10.1002/anie.201710841
    [69] BAE J, LI Y, ZHAO F, et al. Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries[J]. Energy Storage Materials, 2018, 15: 46-52. doi: 10.1016/j.ensm.2018.03.016
    [70] CHEN W, XIONG X, ZENG R, et al. Enhancing the interfacial ionic transport via in situ 3D composite polymer electrolytes for solid-state lithium batteries[J]. ACS Applied Energy Materials, 2020, 3(7): 7200-7207. doi: 10.1021/acsaem.0c01269
    [71] XU H-M, JING M-X, LI J, et al. Safety-enhanced flexible polypropylene oxide-ZrO2 composite solid electrolyte film with high room-temperature ionic conductivity[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(33): 11118-11126.
    [72] CROCE F, SETTIMI L, SCROSATI B. Superacid ZrO2-added, composite polymer electrolytes with improved transport properties[J]. Electrochemistry Communications, 2006, 8(2): 364-368. doi: 10.1016/j.elecom.2005.12.002
    [73] DAM T, TRIPATHY S N, PALUCH M, et al. Investigations of relaxation dynamics and observation of nearly constant loss phenomena in PEO20-LiCF3SO3-ZrO2 based polymer nano-composite electrolyte[J]. Electrochimica Acta, 2016, 202: 147-156. doi: 10.1016/j.electacta.2016.03.134
    [74] MOHD YASIN S M, JOHAN M R. Thermal, structural and morphology studies of PEO-LiCF3SO3-DBP-ZrO2 nanocomposite polymer electrolytes[J]. Malaysian NANO-An International Journal, 2021, 1(1): 1-17. doi: 10.22452/mnij.vol1no1.1
    [75] XU L, LI J, SHUAI H, et al. Recent advances of composite electrolytes for solid-state Li batteries[J]. Journal of Energy Chemistry, 2022, 67: 524-548. doi: 10.1016/j.jechem.2021.10.038
    [76] LI J, ZHU K, YAO Z, et al. A promising composite solid electrolyte incorporating LLZO into PEO/PVDF matrix for all-solid-state lithium-ion batteries[J]. Ionics, 2020, 26: 1101-1108. doi: 10.1007/s11581-019-03320-x
    [77] LIU L, CHU L, JIANG B, et al. Li1.4Al0.4Ti1.6(PO4)3 nanoparticle-reinforced solid polymer electrolytes for all-solid-state lithium batteries[J]. Solid State Ionics, 2019, 331: 89-95. doi: 10.1016/j.ssi.2019.01.007
    [78] DAEMS K, YADAV P, DERMENCI K B, et al. Advances in inorganic, polymer and composite electrolytes: Mechanisms of lithium-ion transport and pathways to enhanced performance[J]. Renewable and Sustainable Energy Reviews, 2024, 191: 114136. doi: 10.1016/j.rser.2023.114136
    [79] 国洪瑶, 吴晓萌, 吴勇民, 等. 无机填料在复合固态电解质中的作用机制研究进展[J]. 材料导报, 2023, 37(S1): 9-16.

    GUO Hongyao, WU Xiaomeng, WU Yongmin, et al. Research progress on the mechanism of action of inorganic fillers in composite solid electrolytes[J]. Materials Reports, 2023, 37(S1): 9-16(in Chinese).
    [80] LIU Y, XU B, ZHANG W, et al. Composition modulation and structure design of inorganic-in-polymer composite solid electrolytes for advanced lithium batteries[J]. Small, 2019, 16(15): 1902813.
    [81] DAI J, FU K, GONG Y, et al. Flexible solid-state electrolyte with aligned nanostructures derived from wood[J]. ACS Materials Letters, 2019, 1(3): 354-361. doi: 10.1021/acsmaterialslett.9b00189
    [82] LIU M, GUAN X, LIU H, et al. Composite solid electrolytes containing single-ion lithium polymer grafted garnet for dendrite-free, long-life all-solid-state lithium metal batteries[J]. Chemical Engineering Journal, 2022, 445: 136436. doi: 10.1016/j.cej.2022.136436
    [83] FU K, GONG Y, DAI J, et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries[J]. Proceedings of the National Academy of Sciences, 2016, 113(26): 7094-7099. doi: 10.1073/pnas.1600422113
    [84] XIAO W, WANG J, FAN L, et al. Recent advances in Li1+xAlxTi2-x(PO4)3 solid-state electrolyte for safe lithium batteries[J]. Energy Storage Mater, 2019, 19: 379-400. doi: 10.1016/j.ensm.2018.10.012
    [85] KOTOBUKI M, KOISHI M. Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol-gel route using various Al sources[J]. Ceramics International, 2013, 39(4): 4645-4649. doi: 10.1016/j.ceramint.2012.10.206
    [86] ZHAO E, GUO Y, XIN Y, et al. Enhanced electrochemical properties and interfacial stability of poly(ethylene oxide) solid electrolyte incorporating nanostructured Li1.3Al0.3Ti1.7(PO4)3 fillers for all solid state lithium ion batteries[J]. International Journal of Energy Research, 2020, 45(5): 6876-6887.
    [87] WANG G, LIU H, LIANG Y, et al. Composite polymer electrolyte with three-dimensional ion transport channels constructed by NaCl template for solid-state lithium metal batteries[J]. Energy Storage Materials, 2022, 45: 1212-1219. doi: 10.1016/j.ensm.2021.11.021
    [88] WANG C, HUANG D, LI S, et al. Three-dimensional-percolated ceramic nanoparticles along natural-cellulose-derived hierarchical networks for high Li+ conductivity and mechanical strength[J]. Nano Letters, 2020, 20(10): 7397-7404. doi: 10.1021/acs.nanolett.0c02721
    [89] 黄永浩, 朱霨亚, 廖友好, 等. 金属锂电池用复合固体电解质的研究进展[J]. 电池, 2023, 53(1): 93-97.

    HUANG Yonghao, ZHU Weiya, LIAO Youhao, et al. Research progress in composite solid electrolytes for metal lithium metal battery[J]. Batteries, 2023, 53(1): 93-97(in Chinese).
    [90] LIU K, ZHANG R, SUN J, et al. Polyoxyethylene (PEO)| PEO-perovskite| PEO composite electrolyte for all-solid-state lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 46930-46937.
    [91] ZHU P, YAN C, DIRICAN M, et al. Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2018, 6(10): 4279-4285. doi: 10.1039/C7TA10517G
    [92] TENG Y, GUO J, WANG Y, et al. 3D perovskite LLTO nanotubers networks for enhanced Li+ conductivity in composite solid electrolytes[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(33): 25342-25354. doi: 10.1007/s10854-022-09240-3
    [93] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature materials, 2011, 10(9): 682-686. doi: 10.1038/nmat3066
    [94] LI M, KOLEK M, FRERICHS J E, et al. Investigation of polymer/ceramic composite solid electrolyte system: The case of PEO/LGPS composite electrolytes[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(34): 11314-11322.
    [95] ZHAO Y, WU C, PENG G, et al. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries[J]. Journal of Power Sources, 2016, 301: 47-53. doi: 10.1016/j.jpowsour.2015.09.111
    [96] PAN K, ZHANG L, QIAN W, et al. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries[J]. Advanced Materials, 2020, 32(17): 2000399. doi: 10.1002/adma.202000399
    [97] SHI Y, FAN Z, DING B, et al. Atomic-scale Al2O3 modified PEO-based composite polymer electrolyte for durable solid-state Li-S batteries[J]. Journal of Electroanalytical Chemistry, 2021, 881: 114916. doi: 10.1016/j.jelechem.2020.114916
    [98] LIN D, LIU W, LIU Y, et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide)[J]. Nano Letters, 2015, 16(1): 459-465.
    [99] XU Z, YANG T, CHU X, et al. Strong lewis acid-base and weak hydrogen bond synergistically enhancing ionic conductivity of poly(ethylene oxide)@SiO2 electrolytes for a high rate capability Li-metal battery[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10341-10349.
    [100] CROCE F, APPETECCHI G, PERSI L, et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature, 1998, 394(6692): 456-458. doi: 10.1038/28818
    [101] KHAN K, HANIF M B, XIN H, et al. PEO-based solid composite polymer electrolyte for high capacity retention all-solid-state lithium metal battery[J]. Small, 2024, 20(4): 2305772. doi: 10.1002/smll.202305772
    [102] ZHUANG H, MA W, XIE J, et al. Solvent-free synthesis of PEO/garnet composite electrolyte for high-safety all-solid-state lithium batteries[J]. Journal of Alloys and Compounds, 2021, 860: 157915. doi: 10.1016/j.jallcom.2020.157915
    [103] ZHANG J, ZHAO N, ZHANG M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28: 447-454. doi: 10.1016/j.nanoen.2016.09.002
    [104] CHEN F, YANG D, ZHA W, et al. Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries[J]. Electrochimica Acta, 2017, 258: 1106-1114. doi: 10.1016/j.electacta.2017.11.164
    [105] WAN Z, LEI D, YANG W, et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder[J]. Advanced Functional Materials, 2019, 29(1): 1805301. doi: 10.1002/adfm.201805301
    [106] MA F, LIU Y, DU X, et al. Hybrid solid electrolyte with the combination of LATP ceramic and PEO polymer by a solvent-free procedure[J]. Solid State Ionics, 2024, 405: 116450. doi: 10.1016/j.ssi.2023.116450
    [107] LIU L, CHU L, JIANG B, et al. Li1.4Al0.4Ti1.6(PO4)3 nanoparticle-reinforced solid polymer electrolytes for all-solid-state lithium batteries[J]. Solid State Ionics, 2019, 331: 89-95. doi: 10.1016/j.ssi.2019.01.007
    [108] ZHAO Y, HUANG Z, CHEN S, et al. A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries[J]. Solid State Ionics, 2016, 295: 65-71. doi: 10.1016/j.ssi.2016.07.013
    [109] PIANA G, BELLA F, GEOBALDO F, et al. PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, “one pot” preparation[J]. Journal of Energy Storage, 2019, 26: 100947. doi: 10.1016/j.est.2019.100947
    [110] LIU C, WANG J, KOU W, et al. A flexible, ion-conducting solid electrolyte with vertically bicontinuous transfer channels toward high performance all-solid-state lithium batteries[J]. Chemical Engineering Journal, 2021, 404: 126517. doi: 10.1016/j.cej.2020.126517
    [111] ZHU P, YAN C, ZHU J, et al. Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries[J]. Energy Storage Materials, 2019, 17: 220-225. doi: 10.1016/j.ensm.2018.11.009
    [112] WANG X, ZHANG Y, ZHANG X, et al. Lithium-salt-rich PEO/Li0.3La0.557TiO3 interpenetrating composite electrolyte with three-dimensional ceramic nano-backbone for all-solid-state lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(29): 24791-24798.
  • 加载中
计量
  • 文章访问数:  563
  • HTML全文浏览量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-01
  • 修回日期:  2024-05-05
  • 录用日期:  2024-05-13
  • 网络出版日期:  2024-06-17

目录

    /

    返回文章
    返回