留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质材料在摩擦电柔性传感器中的研究进展

张文博 李雯 梁慧媛 梁恩浩 鲍艳 刘超 马建中

张文博, 李雯, 梁慧媛, 等. 生物质材料在摩擦电柔性传感器中的研究进展[J]. 复合材料学报, 2024, 42(0): 1-16.
引用本文: 张文博, 李雯, 梁慧媛, 等. 生物质材料在摩擦电柔性传感器中的研究进展[J]. 复合材料学报, 2024, 42(0): 1-16.
ZHANG Wenbo, LI Wen, LIANG Huiyuan, et al. Progress of biomass materials in triboelectric flexible sensors[J]. Acta Materiae Compositae Sinica.
Citation: ZHANG Wenbo, LI Wen, LIANG Huiyuan, et al. Progress of biomass materials in triboelectric flexible sensors[J]. Acta Materiae Compositae Sinica.

生物质材料在摩擦电柔性传感器中的研究进展

基金项目: 陕西省自然科学基础研究计划(2024JC-YBMS-122);国家自然科学基金 (21908141, 52073164, 22378253)
详细信息
    通讯作者:

    张文博,博士,副教授,硕士生导师,研究方向为胶原纤维基柔性传感器;聚合物基电磁屏蔽材料 E-mail: zhangwenbo@sust.edu.cn

  • 中图分类号: TB332; TP212.3

Progress of biomass materials in triboelectric flexible sensors

Funds: Natural Science Basic Research Program of Shaanxi (Program No. 2024JC-YBMS-122); National Natural Science Foundation of China (21908141, 52073164, 22378253)
  • 摘要: 生物质摩擦电柔性传感器是以易降解、生物相容性好的生物质材料为基材,由正负摩擦层组成,不需要外接电源的柔性传感器,其具有便捷灵活、灵敏、可再生等特点,在人体运动监测、医疗健康、软体机器人等领域得到了全面的发展。本文首先介绍了基于不同供电原理的自供电柔性传感器的分类,包括压电型自供电柔性传感器、热电型自供电柔性传感器、摩擦电型自供电柔性传感器以及光电型自供电柔性传感器,其中重点介绍摩擦电型;进一步综述了各类生物质材料在摩擦电柔性传感器中的研究,包括纤维素、壳聚糖、木质素、海藻酸钠、胶原纤维等;然后讨论了摩擦电柔性传感器的结构类型,如水凝胶型、气凝胶型、薄膜型。最后对生物质摩擦电柔性传感器的材料选择、设计类型、附加性能和应用前景等进行了展望。

     

  • 图  1  四种自供电柔性传感器的供电原理示意图:(a)压电型,(b)热电型,(c)光电型,(d)摩擦电型

    Figure  1.  Schematic diagram of the power supply principle of four types of self-powered flexible sensors: (a) piezoelectric, (b) Thermoelectric,(c) Photoelectric, (d) Triboelectric

    图  2  BCZT颗粒随机以及定向分布的输出电压值、扫描电镜图片、应力场和压电势场分布模拟对比图[16]

    Figure  2.  Comparison of simulated VOC values, SEM, stress field and piezoelectric potential field distributions for random as well as directional distribution of BCZT particles[16]

    图  3  (a)模拟砂纸模板示意图;(b)圆柱形阵列模板

    Figure  3.  (a) Schematic diagram of analogue sandpaper template;(b) Cylindrical array formwork

    图  4  SA-Zn水凝胶的制备过程和反应原理[61]

    Figure  4.  Preparation process and reaction principle of SA-Zn hydrogel[61]

    图  5  (a)柔性皮革基MXene膜的制备示意图以及(b)TENG的结构示意图[65]

    Figure  5.  (a) Schematic representation of the preparation of flexible leather-based MXene film and (b) structure of TENG[65]

    图  6  淀粉基传感器柔性、可塑性、自愈合性展示[83]

    Figure  6.  Demonstration of Starch-Based Sensor Flexibility, Plasticity, and Self-Healability[83]

    图  7  摩擦电柔性传感器集成在手表中检测人体信号[102]

    Figure  7.  Friction electric flexible sensors integrated into watches to detect body signals[102]

    图  8  摩擦电柔性传感器可连续检测呼吸频率、暂停和通气器件的结构示意图[106]

    Figure  8.  Schematic structure of a friction electric flexible sensor for continuous detection of respiratory rate, pauses and ventilation devices[106]

    表  1  水凝胶、气凝胶、薄膜柔性传感器的优劣势对比图

    Table  1.   Comparison of advantages and disadvantages of hydrogel, aerogel and thin film flexible sensors

    类型优势劣势
    水凝胶机械性能好(可拉伸、韧性)易失水、持久性不佳、稳
    定性差
    气凝胶孔隙率高、密度低、质轻、导热率低机械性能受限、制备工艺复杂
    薄膜灵活、制备简单透气性、耐磨性不佳
    下载: 导出CSV
  • [1] HUANG J, LI D, ZHAO M, et al. Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors[J]. Chemical Engineering Journal, 2019, 373: 1357-1366. doi: 10.1016/j.cej.2019.05.136
    [2] LI J, LI W, LIN J, et al. Multi-modal piezoresistive sensor based on cotton fiber aerogel/PPy for sound detection and respiratory monitoring[J]. Composites Science and Technology, 2023, 235: 109953. doi: 10.1016/j.compscitech.2023.109953
    [3] WANG G, LIU X, SONG Z, et al. Multifunctional flexible pressure sensor based on a cellulose fiber-derived hierarchical carbon aerogel[J]. ACS Applied Electronic Materials, 2023, 5(3): 1581-1591. doi: 10.1021/acsaelm.2c01628
    [4] WANG X, YUE O, LIU X, et al. A novel bio-inspired multi-functional collagen aggregate based flexible sensor with multi-layer and internal 3D network structure[J]. Chemical Engineering Journal, 2020, 392: 123672. doi: 10.1016/j.cej.2019.123672
    [5] YANG J, SUN X, KANG Q, et al. Freezing-tolerant and robust gelatin-based supramolecular conductive hydrogels with double-network structure for wearable sensors[J]. Polymer Testing, 2021, 93: 106879. doi: 10.1016/j.polymertesting.2020.106879
    [6] LONG S, FENG Y, HE F, et al. Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators[J]. Nano Energy, 2021, 85: 105973. doi: 10.1016/j.nanoen.2021.105973
    [7] ZHANG G, LIAO Q, MA M, et al. Uniformly assembled vanadium doped ZnO microflowers/bacterial cellulose hybrid paper for flexible piezoelectric nanogenerators and self-powered sensors[J]. Nano Energy, 2018, 52: 501-509. doi: 10.1016/j.nanoen.2018.08.020
    [8] LV P, ZHOU H, MENSAH A, et al. A highly flexible self-powered biosensor for glucose detection by epitaxial deposition of gold nanoparticles on conductive bacterial cellulose[J]. Chemical Engineering Journal, 2018, 351: 177-188. doi: 10.1016/j.cej.2018.06.098
    [9] LI Y, CHEN S, YAN H, et al. Biodegradable, transparent, and antibacterial alginate-based triboelectric nanogenerator for energy harvesting and tactile sensing[J]. Chemical Engineering Journal, 2023, 468: 143572. doi: 10.1016/j.cej.2023.143572
    [10] 李鸿冰, 韩文佳, 姜亦飞, 等. 柔性自供电传感器的研究进展[J]. 电子元件与材料, 2020, 39(8): 1-12.

    LI Hong-Bing, HAN Wen-Jia, JIANG Yi-Fei, et al. Research progress of flexible self-powered sensor[J]. Electronic Components and Materials, 2020, 39(8): 1-12(in Chinese).
    [11] LIN G L, LIN A X, LIU M Y, et al. Barium titanate–bismuth ferrite/polyvinylidene fluoride nanocomposites as flexible piezoelectric sensors with excellent thermal stability[J]. Sensors and Actuators A: Physical, 2022, 346: 113885. doi: 10.1016/j.sna.2022.113885
    [12] LIU X, TONG J, WANG J, et al. BaTiO 3/MXene/PVDF-TrFE composite films via an electrospinning method for flexible piezoelectric pressure sensors[J]. Journal of Materials Chemistry C, 2023, 11(14): 4614-4622. doi: 10.1039/D2TC05291A
    [13] QI F, XU L, HE Y, et al. PVDF-Based Flexible Piezoelectric Tactile Sensors[J]. Crystal Research and Technology, 2023, 58(10): 2300119. doi: 10.1002/crat.202300119
    [14] WAN X, CONG H, JIANG G, et al. A review on PVDF nanofibers in textiles for flexible piezoelectric sensors[J]. ACS Applied Nano Materials, 2023, 6(3): 1522-1540. doi: 10.1021/acsanm.2c04916
    [15] SASIKUMAR R, CHO S, WAQAR A, et al. Microcrack-assisted piezoelectric acoustic sensor based on f-MWCNTs/BaTiO3@ PDMS nanocomposite and its self-powered voice recognition applications[J]. Chemical Engineering Journal, 2024, 479: 147297. doi: 10.1016/j.cej.2023.147297
    [16] GAO X, ZHENG M, YAN X, et al. The alignment of BCZT particles in PDMS boosts the sensitivity and cycling reliability of a flexible piezoelectric touch sensor[J]. Journal of Materials Chemistry C, 2019, 7(4): 961-967. doi: 10.1039/C8TC04741C
    [17] ZHANG Y, GE B, FENG J, et al. High-performance self-powered flexible Tthermoelectric device for accelerated wound healing[J]. Advanced Functional Materials. 2024: 2403990.
    [18] LI Y, ZHANG Q, LIU K, et al. Multi-scale hierarchical microstructure modulation towards high room temperature thermoelectric performance in n-type Bi2Te3-based alloys[J]. Materials Today Nano, 2023, 22: 100340. doi: 10.1016/j.mtnano.2023.100340
    [19] LI X, LU Y, CAI K, et al. Exceptional power factor of flexible Ag/Ag2Se thermoelectric composite films[J]. Chemical Engineering Journal, 2022, 434: 134739. doi: 10.1016/j.cej.2022.134739
    [20] ZHENG C, XIANG L, JIN W, et al. A flexible self-powered sensing element with integrated organic thermoelectric generator[J]. Advanced Materials Technologies, 2019, 4(8): 1900247. doi: 10.1002/admt.201900247
    [21] ZHU P, WANG Y, SHENG M, et al. A flexible active dual-parameter sensor for sensitive temperature and physiological signal monitoring via integrating thermoelectric and piezoelectric conversion[J]. Journal of materials chemistry A, 2019, 7(14): 8258-8267. doi: 10.1039/C9TA00682F
    [22] DU M, OUYANG J, ZHANG K. Flexible Bi2Te 3/PEDOT nanowire sandwich-like film towards high-performance wearable cross-plane thermoelectric generator and temperature sensor array[J]. Journal of Materials Chemistry A, 2023, 11(30): 16039-16048 doi: 10.1039/D3TA02876C
    [23] KONSTANTATOS G. Current status and technological prospect of photodetectors based on two-dimensional materials[J]. Nature communications, 2018, 9(1): 5266. doi: 10.1038/s41467-018-07643-7
    [24] MALLEM S P R, PUNEETHA P, LEE D, et al. Light-sensitive and strain-controlled flexible DNA/graphene/GaN bio-hybrid sensor based on the piezophototronic effect[J]. Nano Energy, 2023, 116: 108807. doi: 10.1016/j.nanoen.2023.108807
    [25] SUN J, HUA Q, ZHOU R, et al. Piezo-phototronic effect enhanced efficient flexible perovskite solar cells[J]. ACS Nano, 2019, 13(4): 4507-4513. doi: 10.1021/acsnano.9b00125
    [26] KIM Y K, HWANG S, KIM S, et al. ZnO nanostructure electrodeposited on flexible conductive fabric: A flexible photo-sensor[J]. Sensors and Actuators B: Chemical, 2017, 240: 1106-1113. doi: 10.1016/j.snb.2016.09.072
    [27] SUN H, TIAN W, CAO F, et al. Ultrahigh-performance self-powered flexible double-twisted fibrous broadband perovskite photodetector[J]. Advanced Materials, 2018, 30(21): 1706986. doi: 10.1002/adma.201706986
    [28] ZHANG H, ZHANG X, LIU C, et al. High-responsivity, high-detectivity, ultrafast topological insulator Bi2Se3/silicon heterostructure broadband photodetectors[J]. ACS Nano, 2016, 10(5): 5113-5122. doi: 10.1021/acsnano.6b00272
    [29] XIAO J, ZHANG Z, WANG S, et al. High-Performance thermoelectric generator based on n-Type flexible composite and its application in Self-Powered temperature sensor[J]. Chemical Engineering Journal, 2024, 479: 147569. doi: 10.1016/j.cej.2023.147569
    [30] WANG Z L. Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolution[J]. Advanced Energy Materials, 2020, 10(17): 2000137. doi: 10.1002/aenm.202000137
    [31] LIN M, CHANG P, LEE C, et al. Biowaste eggshell membranes for bio-triboelectric nanogenerators and smart sensors[J]. ACS omega, 2023, 8(7): 6699-6707. doi: 10.1021/acsomega.2c07292
    [32] APPAMATO I, BUNRIW W, HARNCHANA V, et al. Engineering triboelectric charge in natural rubber–Ag nanocomposite for enhancing electrical output of a triboelectric nanogenerator[J]. ACS Applied Materials & Interfaces, 2022, 15(1): 973-983.
    [33] BEHERA S A, PANDA S, HAJRA S, et al. EVA/PZT-composite-based triboelectric nanogenerator for energy harvesting[J]. Energy Technology, 2023, 11(9): 2300469. doi: 10.1002/ente.202300469
    [34] SHIN J, JI S, CHO H, et al. Highly flexible triboelectric nanogenerator using porous carbon nanotube composites[J]. Polymers, 2023, 15(5): 1135. doi: 10.3390/polym15051135
    [35] SHI X, WEI Y, YAN R, et al. Leaf surface-microstructure inspired fabrication of fish gelatin-based triboelectric nanogenerator[J]. Nano Energy, 2023, 109: 108231. doi: 10.1016/j.nanoen.2023.108231
    [36] ZHANG R, DAHLSTROM C, ZOU H, et al. Cellulose-based fully green triboelectric nanogenerators with output power density of 300 W m−2[J]. Advanced Materials, 2020, 32(38): 2002824. doi: 10.1002/adma.202002824
    [37] CHEN S, SONG Y, DING D, et al. Flexible and anisotropic strain sensor based on carbonized crepe paper with aligned cellulose fibers[J]. Advanced Functional Materials, 2018, 28(42): 1802547. doi: 10.1002/adfm.201802547
    [38] ZHANG J, HU S, SHI Z, et al. Eco-friendly and recyclable all cellulose triboelectric nanogenerator and self-powered interactive interface[J]. Nano Energy, 2021, 89: 106354. doi: 10.1016/j.nanoen.2021.106354
    [39] WANG Z, CHEN C, FANG L, et al. Biodegradable, conductive, moisture-proof, and dielectric enhanced cellulose-based triboelectric nanogenerator for self-powered human-machine interface sensing[J]. Nano Energy, 2023, 107: 108151. doi: 10.1016/j.nanoen.2022.108151
    [40] XU M, WU T, SONG Y, et al. Achieving high-performance energy harvesting and self-powered sensing in a flexible cellulose nanofibril/MoS2/BaTiO3 composite piezoelectric nanogenerator[J]. Journal of Materials Chemistry C, 2021, 9(43): 15552-15565. doi: 10.1039/D1TC03886A
    [41] YAO C, YIN X, YU Y, et al. Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development[J]. Advanced Functional Materials, 2017, 27(30): 1700794. doi: 10.1002/adfm.201700794
    [42] MI H, JING X, ZHENG Q, et al. High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing[J]. Nano Energy, 2018, 48: 327-336. doi: 10.1016/j.nanoen.2018.03.050
    [43] KUMAR M N R. A review of chitin and chitosan applications[J]. Reactive and functional polymers, 2000, 46(1): 1-27. doi: 10.1016/S1381-5148(00)00038-9
    [44] YAO C, HERNANDEZ A, YU Y, et al. Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials[J]. Nano Energy, 2016, 30: 103-108. doi: 10.1016/j.nanoen.2016.09.036
    [45] LU Y, XIANG H, JIE Y, et al. Antibacterial Triboelectric Nanogenerator for Mite Removal and Intelligent Human Monitoring[J]. Advanced Materials Technologies, 2023, 8(16): 2300192. doi: 10.1002/admt.202300192
    [46] ZHENG Z, YU D, WANG B, et al. Ultrahigh sensitive, eco-friendly, transparent triboelectric nanogenerator for monitoring human motion and vehicle movement[J]. Chemical Engineering Journal, 2022, 446: 137393. doi: 10.1016/j.cej.2022.137393
    [47] ZHANG Y, SHAO Y, LUO C, et al. Preparation of a high-performance chitosan-based triboelectric nanogenerator by regulating the surface microstructure and dielectric constant[J]. Journal of Materials Chemistry C, 2023, 11(1): 260-268. doi: 10.1039/D2TC04262B
    [48] GAO C, TONG W, LIU S, et al. Fully degradable chitosan–based triboelectric nanogenerators applying in disposable medical products for information transfer[J]. Nano Energy, 2023, 117: 108876. doi: 10.1016/j.nanoen.2023.108876
    [49] CHAROONSUK T, PONGAMPAI S, PALAWANIT P, et al. Achieving a highly efficient chitosan-based triboelectric nanogenerator via adding organic proteins: Influence of morphology and molecular structure[J]. Nano Energy, 2021, 89: 106430. doi: 10.1016/j.nanoen.2021.106430
    [50] ZHANG X, LIU W, CAI J, et al. Equip the hydrogel with armor: strong and super tough biomass reinforced hydrogels with excellent conductivity and anti-bacterial performance[J]. Journal of Materials Chemistry A, 2019, 7(47): 26917-26926. doi: 10.1039/C9TA10509C
    [51] JIANG L, LIU J, HE S, et al. Flexible wearable sensors based on lignin doped organohydrogels with multi-functionalities[J]. Chemical Engineering Journal, 2022, 430: 132653. doi: 10.1016/j.cej.2021.132653
    [52] TANGUY N R, KAZEMI K K, HONG J, et al. Flexible, robust, and high-performance gas sensors based on lignocellulosic nanofibrils[J]. Carbohydrate Polymers, 2022, 278: 118920. doi: 10.1016/j.carbpol.2021.118920
    [53] FUNAYAMA R, HAYASHI S, TERAKAWA M. Laser-induced graphitization of lignin/PLLA composite sheets for biodegradable triboelectric nanogenerators[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(7): 3114-3122.
    [54] JO H, PARK D, JOO M, et al. Performance-enhanced eco-friendly triboelectric nanogenerator via wettability manipulation of lignin[J]. EcoMat, 2023, 5(11): 12413. doi: 10.1002/eom2.12413
    [55] CHEN W, LI C, TAO Y, et al. Modulating spatial charge distribution of lignin for eco-friendly and recyclable triboelectric nanogenerator[J]. Nano Energy, 2023, 116: 108802. doi: 10.1016/j.nanoen.2023.108802
    [56] PANG Y, XI F, LUO J, et al. An alginate film-based degradable triboelectric nanogenerator[J]. RSC advances, 2018, 8(12): 6719-6726. doi: 10.1039/C7RA13294H
    [57] SAQIB Q M, CHOUGALE M Y, KHAN M U, et al. Natural seagrass tribopositive material based spray coatable triboelectric nanogenerator[J]. Nano Energy, 2021, 89: 106458. doi: 10.1016/j.nanoen.2021.106458
    [58] SAQIB Q M, CHOUGALE M Y, KHAN M U, et al. Natural seagrass tribopositive material based spray coatable triboelectric nanogenerator[J]. Nano Energy, 2021, 89: 106458. doi: 10.1016/j.nanoen.2021.106458
    [59] LI Y, CHEN S, YAN H, et al. Biodegradable, transparent, and antibacterial alginate-based triboelectric nanogenerator for energy harvesting and tactile sensing[J]. Chemical Engineering Journal, 2023, 468: 143572. doi: 10.1016/j.cej.2023.143572
    [60] ZHAO L, LING Q, FAN X, et al. Self-healable, adhesive, anti-drying, freezing-tolerant, and transparent conductive organohydrogel as flexible strain sensor, triboelectric nanogenerator, and skin barrier[J]. ACS Applied Materials & Interfaces, 2023, 15(34): 40975-40990.
    [61] SHENG F, YI J, SHEN S, et al. Self-powered smart arm training band sensor based on extremely stretchable hydrogel conductors[J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44868-44877.
    [62] MA J, PAN Z, ZHANG W, et al. High-sensitivity microchannel-structured collagen fiber-based sensors with antibacterial and hydrophobic properties[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(50): 16814-16824.
    [63] ZHANG X, YANG Y, YAO J, et al. Strong collagen hydrogels by oxidized dextran modification[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(5): 1318-1324.
    [64] SONG B, FAN X, SHEN J, et al. Ultra-stable and self-healing coordinated collagen-based multifunctional double-network organohydrogel e-skin for multimodal sensing monitoring of strain-resistance, bioelectrode, and self-powered triboelectric nanogenerator[J]. Chemical Engineering Journal, 2023, 474: 145780. doi: 10.1016/j.cej.2023.145780
    [65] ZHANG S, XIAO Y, CHEN H, et al. Flexible triboelectric tactile sensor based on a robust MXene/leather film for human–machine interaction[J]. ACS Applied Materials & Interfaces, 2023, 15(10): 13802-13812.
    [66] WANG L, XU T, ZHANG X. Multifunctional conductive hydrogel-based flexible wearable sensors[J]. TrAC Trends in Analytical Chemistry, 2021, 134: 116130. doi: 10.1016/j.trac.2020.116130
    [67] OH B, LIM Y, KO K W, et al. Ultra-soft and highly stretchable tissue-adhesive hydrogel based multifunctional implantable sensor for monitoring of overactive bladder[J]. Biosensors and Bioelectronics, 2023, 225: 115060. doi: 10.1016/j.bios.2023.115060
    [68] HAN Y, WEI H, DU Y, et al. Ultrasensitive flexible thermal sensor arrays based on high-thermopower ionic thermoelectric hydrogel[J]. Advanced Science, 2023, 10(25): 2302685. doi: 10.1002/advs.202302685
    [69] LIANG Y, YE L, SUN X, et al. Tough and stretchable dual ionically cross-linked hydrogel with high conductivity and fast recovery property for high-performance flexible sensors[J]. ACS applied materials & interfaces, 2019, 12(1): 1577-1587.
    [70] TIE J, CHAI H, MAO Z, et al. Nanocellulose-mediated transparent high strength conductive hydrogel based on in-situ formed polypyrrole nanofibrils as a multimodal sensor[J]. Carbohydrate Polymers, 2021, 273: 118600. doi: 10.1016/j.carbpol.2021.118600
    [71] PAN L, HAN L, LIU H, et al. Flexible sensor based on Hair-like microstructured ionic hydrogel with high sensitivity for pulse wave detection[J]. Chemical Engineering Journal, 2022, 450: 137929. doi: 10.1016/j.cej.2022.137929
    [72] GUO W, MAI T, HUANG L, et al. Multifunctional MXene conductive zwitterionic hydrogel for flexible wearable sensors and arrays[J]. ACS Applied Materials & Interfaces, 2023, 15(20): 24933-24947.
    [73] LI T, WEI H, ZHANG Y, et al. Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications[J]. Carbohydrate Polymers, 2023, 309: 120678. doi: 10.1016/j.carbpol.2023.120678
    [74] FENG Y, YU J, SUN D, et al. Extreme environment-adaptable and fast self-healable eutectogel triboelectric nanogenerator for energy harvesting and self-powered sensing[J]. Nano Energy, 2022, 98: 107284. doi: 10.1016/j.nanoen.2022.107284
    [75] CHU Y, FAN Q, CHAI C, et al. “Water-in-deep eutectic solvent” gel electrolytes synergistically controlled by solvation regulation and gelation strategies for flexible electronic devices[J]. ACS Applied Materials & Interfaces, 2023, 15(9): 12088-12098.
    [76] YANG J, TIAN X, FAN J, et al. Extreme condition-resistant flexible triboelectric nanogenerator and sensor based on swollen-yet-enhanced and self-healing deep eutectic gel[J]. Polymer, 2023, 283: 126238. doi: 10.1016/j.polymer.2023.126238
    [77] WANG Z, CONG Y, FU J. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors[J]. Journal of materials chemistry B, 2020, 8(16): 3437-3459. doi: 10.1039/C9TB02570G
    [78] WANG Z, CONG Y, FU J. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors[J]. Journal of materials chemistry B, 2020, 8(16): 3437-3459. doi: 10.1039/C9TB02570G
    [79] SHENG F, YI J, SHEN S, et al. Self-powered smart arm training band sensor based on extremely stretchable hydrogel conductors[J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44868-44877.
    [80] MOGLI G, REINA M, CHIAPPONE A, et al. Self-powered integrated tactile sensing system based on ultrastretchable, self-healing and 3D printable ionic conductive hydrogel[J]. Advanced Functional Materials, 2023, 34: 2307133.
    [81] YANG B, YUAN W. Highly stretchable and transparent double-network hydrogel ionic conductors as flexible thermal–mechanical dual sensors and electroluminescent devices[J]. ACS applied materials & interfaces, 2019, 11(18): 16765-16775.
    [82] ZHANG H, XUE K, XU X, et al. Green and low-cost alkali-polyphenol synergetic self-catalysis system access to fast gelation of self-healable and self-adhesive conductive hydrogels for self-powered triboelectric nanogenerators[J]. Small, 2023, 20(10): 2305502.
    [83] MA C, XIE F, WEI L, et al. All-starch-based hydrogel for flexible electronics: strain-sensitive batteries and self-powered sensors[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(20): 6724-6735.
    [84] SUN H, XU Z, GAO C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced materials, 2013, 25(18): 2554-2560. doi: 10.1002/adma.201204576
    [85] NARDECCHIA S, CARRIAZO D, FERRER M L, et al. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications[J]. Chemical Society Reviews, 2013, 42(2): 794-830. doi: 10.1039/C2CS35353A
    [86] ZHU W, CHEN M, JANG J, et al. Amino-functionalized nanocellulose aerogels for the superior adsorption of CO2 and separation of CO2/CH4 mixture gas[J]. Carbohydrate Polymers, 2024, 323: 121393. doi: 10.1016/j.carbpol.2023.121393
    [87] LONG S, FENG Y, HE F, et al. An ultralight, supercompressible, superhydrophobic and multifunctional carbon aerogel with a specially designed structure[J]. Carbon, 2020, 158: 137-145. doi: 10.1016/j.carbon.2019.11.065
    [88] ZHANG C, LIU S, QI Y, et al. Conformal carbon coated TiO2 aerogel as superior anode for lithium-ion batteries[J]. Chemical Engineering Journal, 2018, 351: 825-831. doi: 10.1016/j.cej.2018.06.125
    [89] YAVARI F, CHEN Z, THOMAS A V, et al. High sensitivity gas detection using a macroscopic three-dimensional graphene foam network[J]. Scientific reports, 2011, 1(1): 166. doi: 10.1038/srep00166
    [90] LONG S, FENG Y, HE F, et al. Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators[J]. Nano Energy, 2021, 85: 105973. doi: 10.1016/j.nanoen.2021.105973
    [91] CHENG Y, ZHU W, LU X, et al. Lightweight and flexible MXene/carboxymethyl cellulose aerogel for electromagnetic shielding, energy harvest and self-powered sensing[J]. Nano Energy, 2022, 98: 107229. doi: 10.1016/j.nanoen.2022.107229
    [92] CHO Y, LEE K, PARK S, et al. Rotational wind power triboelectric nanogenerator using aerodynamic changes of friction area and the adsorption effect of hematoxylin onto feather based on a diversely evolved hyper-branched structure[J]. Nano Energy, 2019, 61: 370-380. doi: 10.1016/j.nanoen.2019.04.083
    [93] PENG X, DONG K, ZHANG Y, et al. Sweat-permeable, biodegradable, transparent and self-powered chitosan-based electronic skin with ultrathin elastic gold nanofibers[J]. Advanced Functional Materials, 2022, 32(20): 2112241. doi: 10.1002/adfm.202112241
    [94] ZHANG M, TAN Z, ZHANG Q, et al. Flexible self-powered friction piezoelectric sensor based on structured PVDF-based composite nanofiber membranes[J]. ACS Applied Materials & Interfaces, 2023, 32(20): 2112241.
    [95] ZHANG J, HU Y, LIN X, et al. High-performance triboelectric nanogenerator based on chitin for mechanical-energy harvesting and self-powered sensing[J]. Carbohydrate Polymers, 2022, 291: 119586. doi: 10.1016/j.carbpol.2022.119586
    [96] LI Y, CHEN S, YAN H, et al. Biodegradable, transparent, and antibacterial alginate-based triboelectric nanogenerator for energy harvesting and tactile sensing[J]. Chemical Engineering Journal, 2023, 468: 143572. doi: 10.1016/j.cej.2023.143572
    [97] YAN J, LV M, QIN Y, et al. Triboelectric nanogenerators based on membranes comprised of polyurethane fibers loaded with ethyl cellulose and barium titanate nanoparticles[J]. ACS Applied Nano Materials, 2023, 6(7): 5675-5684. doi: 10.1021/acsanm.3c00124
    [98] JIANG C, LI X, YAO Y, et al. A multifunctional and highly flexible triboelectric nanogenerator based on MXene-enabled porous film integrated with laser-induced graphene electrode[J]. Nano Energy, 2019, 66: 104121. doi: 10.1016/j.nanoen.2019.104121
    [99] ZHANG Y, SHAO Y, LUO C, et al. Preparation of a high-performance chitosan-based triboelectric nanogenerator by regulating the surface microstructure and dielectric constant[J]. Journal of Materials Chemistry C, 2023, 11(1): 260-268. doi: 10.1039/D2TC04262B
    [100] CHEN K, LI Y, YANG G, et al. Fabric-based TENG woven with bio-fabricated superhydrophobic bacterial cellulose fiber for energy harvesting and motion detection[J]. Advanced Functional Materials, 2023, 33(45): 2304809. doi: 10.1002/adfm.202304809
    [101] YI F, ZHANG Z, KANG Z, et al. Recent advances in triboelectric nanogenerator-based health monitoring[J]. Advanced Functional Materials, 2019, 29(41): 1808849. doi: 10.1002/adfm.201808849
    [102] YUE J, TENG Y, HUANG Y, et al. Reduced graphene oxide interlocked carbonized loofah for energy harvesting and physiological signal monitoring[J]. ACS Applied Electronic Materials. 2024.
    [103] GAO Y, XU B, TAN D, et al. Asymmetric-elastic-structure fabric-based triboelectric nanogenerators for wearable energy harvesting and human motion sensing[J]. Chemical Engineering Journal, 2023, 466: 143079. doi: 10.1016/j.cej.2023.143079
    [104] LIU W, YU W, LI K, et al. Enhancing blind-dumb assistance through a self-powered tactile sensor-based Braille typing system[J]. Nano Energy, 2023, 116: 108795. doi: 10.1016/j.nanoen.2023.108795
    [105] YUAN Y, LIU B, LI H, et al. Flexible wearable sensors in medical monitoring[J]. Biosensors, 2022, 12(12): 1069. doi: 10.3390/bios12121069
    [106] LI C, XU Z, XU S, et al. Miniaturized retractable thin-film sensor for wearable multifunctional respiratory monitoring[J]. Nano Research, 2023, 16(6): 11846-11854.
    [107] SHI X, CHEN P, HAN K, et al. A strong, biodegradable, and recyclable all-lignocellulose fabricated triboelectric nanogenerator for self-powered disposable medical monitoring[J]. Journal of Materials Chemistry A, 2023, 11(22): 11730. doi: 10.1039/D3TA01763J
    [108] JIANG W, LI H, LIU Z, et al. Fully bioabsorbable natural-materials-based triboelectric nanogenerators[J]. Advanced Materials, 2018, 30(32): 1801895. doi: 10.1002/adma.201801895
    [109] JIAN G, ZHU S, YUAN X, et al. Biodegradable triboelectric nanogenerator as a implantable power source for embedded medicine devices[J]. NPG Asia Materials, 2024, 16(1): 12. doi: 10.1038/s41427-023-00528-2
    [110] ZHANG Z, CAI J. A triboelectric joint sensor imitating soft robot for human joint rehabilitation monitoring[J]. Nano, 2022, 17(8): 2250059. doi: 10.1142/S179329202250059X
    [111] ZHANG S, MENG S, ZHANG K, et al. A high-performance s-TENG based on the synergistic effect of keratin and calcium chloride for finger activity tracking[J]. Nano Energy, 2023, 112: 108443. doi: 10.1016/j.nanoen.2023.108443
  • 加载中
计量
  • 文章访问数:  82
  • HTML全文浏览量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-03
  • 修回日期:  2024-07-03
  • 录用日期:  2024-07-13
  • 网络出版日期:  2024-07-29

目录

    /

    返回文章
    返回