留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PVDF基复合材料及其在储能器件中的应用

陆澎 王欣雨 梁环 胡欣 陆春华

陆澎, 王欣雨, 梁环, 等. PVDF基复合材料及其在储能器件中的应用[J]. 复合材料学报, 2023, 41(0): 1-15
引用本文: 陆澎, 王欣雨, 梁环, 等. PVDF基复合材料及其在储能器件中的应用[J]. 复合材料学报, 2023, 41(0): 1-15
Peng LU, Xinyu WANG, Huan LIANG, Xin HU, Chunhua LU. PVDF-based composites and their application in energy storage devices[J]. Acta Materiae Compositae Sinica.
Citation: Peng LU, Xinyu WANG, Huan LIANG, Xin HU, Chunhua LU. PVDF-based composites and their application in energy storage devices[J]. Acta Materiae Compositae Sinica.

PVDF基复合材料及其在储能器件中的应用

基金项目: 国家自然科学基金项目(No. 22278205, 21604037)、中石化委托项目(420106)
详细信息
    通讯作者:

    胡欣,博士,副教授,硕士生导师,研究方向为聚合物基介电储能材料 E-mail: xinhu@njtech.edu.cn

    陆春华,博士,教授,博士生导师,研究方向为光谱的选择性吸收及能量转换利用 E-mail: chhlu@njtech.edu.cn

  • 中图分类号: O631.1;O632.2

PVDF-based composites and their application in energy storage devices

Funds: National Natural Science Foundation of China (22278205 and 21604037), Sinopec Ministry of Science and Technology Basic Prospective Research Project (420106).
  • 摘要:   目的  为满足储能装置对高能量密度、高功率密度、高安全性、长周期稳定性、低成本、环保等特点的需求,发展具有高储能密度的电学材料成为储能材料的发展重点。聚偏氟乙烯(PVDF)基含氟聚合物由于具有良好的力学性能、电学性能以及化学稳定性等,已被广泛地用于电池以及超级电容器的储能材料。本文系统综述了PVDF基聚合物及其复合材料分别作为粘结剂、电解质和隔膜材料应用于电池及超级电容器的研究进展情况。  方法  通过检索国内外相关文献,调研了PVDF基含氟聚合物分别作为电极粘结剂、聚电解质以及隔膜材料应用于电池和超级电容器的现状,主要针对不同的功能化改性方法如共混、复合等,讨论和分析了PVDF基聚合物性能提升的作用机制以及对材料最终储能性能的影响。最后对PVDF基复合材料在储能领域的现存问题以及未来的研究方向进行了小结与展望。  结果  在电极粘结剂中,PVDF基含氟聚合物因其较高的结晶度和良好的化学稳定性,对电极有较强的粘附力,在循环过程中表现出极强的稳定性,已被广泛用于电池和超级电容器电极的粘结剂,但存在易被电解液液溶胀,破环极片结构,导致内阻增加的问题。通过调节PVDF粘结剂的含量以及共聚、共混的方式进行功能化改性,可以有效增强弹性模量,提高电极的稳定性。在电解质中,PVDF具有高介电常数和强吸电子基团,可以提供较好的阳极稳定性。通过降低聚合物分子量、与陶瓷填料共混、端基改性等方式可以有效弥补PVDF基聚合物电解质离子电导率较低的问题,但会影响聚合物的力学性能和结晶性,影响加工性能,还需要在此基础上进一步的研究。在隔膜材料中,PVDF及其共聚物作为含氟聚合物,极性较高,具有较高的化学和热稳定性,因此PVDF无纺布隔膜性能优于常用的微孔聚烯烃膜,但存在孔隙较大的问题,仍需要通过改进制备工艺降低隔膜厚度、与无机填料共混等多种手段结合的方式来解决这一问题。  结论  尽管PVDF基复合材料在电极粘结剂、隔膜、电解质的应用方面已取得重大进展,但从实际应用角度来看,仍存在一些挑战:(1)PVDF作为电极粘结剂材料,在电极的使用过程中容易被电解质溶胀,造成极片变形,增加电池内阻;(2)作为电解质材料,无机填料的加入在提高固态电解质的力学性能与离子电导率的同时,由于稀释效应与阻断效应,会导致电解质电化学性能下降;(3)作为隔膜材料,PVDF基聚合物与无机材料复合过程中微观分子间的作用机制与性能之间的关系仍需要进一步的研究。因此,未来的研究中应重点关注材料的结构设计。一方面可以采用嵌段/接枝共聚引入功能化链段,开发具有高离子电导率、优异的电化学稳定性和与填料强相互作用的交联聚合物或新型聚合物基质,另一方面可以深入研究无机纳米粒子的表面对材料性能的影响,通过优化填料-基体界面,得到孔隙可调、离子导通性能稳定以及循环性能稳定的PVDF基复合材料。

     

  • 图  1  PVDF的分子结构[7]

    Figure  1.  Molecular structure of PVDF[7]

    图  2  硅电极材料的合成及工作机制。(a)以VDF和TFE为前驱体合成PVDF-b-PTFE的一般工艺;(b)在电化学反应中使用嵌段共聚物粘合剂稳定硅电极的示意图[14]

    Figure  2.  Synthesis and working mechanism of silicon electrode materials. (a) Synthesis of PVDF-b-PTFE using VDF and TFE as precursors; (b) Schematic diagram of using block copolymer binder to stabilize silicon electrode in electrochemical reaction [14]

    图  3  MnO2与不同粘结剂电子转移的原理图[24]

    Figure  3.  Schematic diagram of electron transfer between MnO2 and different binders [24]

    图  4  BSNPs纳米粒子合成示意图[45]

    Figure  4.  Schematic diagram of synthesis of BSNPs nanoparticles[45]

    图  5  (a) rGO-PEG-NH2的分子结构图;(b)锂离子输运网络示意图[47]

    Figure  5.  (a) Molecular structure diagram of RGO-PEG-NH2; (b) Schematic diagram of lithium ion transport network [47]

    图  6  PVDF/Si3N4隔膜制备工艺示意图[70]

    Figure  6.  Schematic diagram of PVDF/Si3N4 separator preparation process[70]

    图  7  静电纺丝多层结构MnO2/P(VDF-HFP)-PMIA隔膜的制备及其电池组装示意图[79]

    Figure  7.  Preparation of electrospun multilayer MnO2/P(VDF-HFP)-PMIA separator and its battery assembly Schematic Diagram[79]

    表  1  以PVDF及其共聚物为基体的复合材料在储能器件中的应用

    Table  1.   Application of composite materials based on PVDF and its copolymer in energy storage devices

    DevicesMaterialsComposite structureElectrolyte uptake/%Ionic conductivity/(S·cm−1)Electrochemical window/VIonic transferencenumberDischarge capacity/(mA·h·g−1)(at 1.0 C)Ref.
    BatteriesBinderPVDF4.2185[9]
    P(VDF-HFP)3.4123[12]
    P(VDF-TrFE)94.3[13]
    PVDF-b-PTFE71155[14]
    PEO/PVDF4.2112[15]
    PE-b-PEG/PVDF4.0110[16]
    TX/PVDF4.0150.1[17]
    CMC/PVDF4.2376[18]
    PAA/PVDF3.0364[20]
    Electrolyteh-BN/PVDF2.98×10−45.240.62142.3[38]
    P(VDF-TrFE-CTFE)/P(VDF-TrFE)2.37×10−44.150.61[39]
    TEGDME/MgBr2/PVDF1.2×10−60.55[40]
    SiO2/P(VDF-HFP)1.3×10−45.5140.0[43]
    BSNPs/P(VDF-HFP)3243.29×10−40.63178.6[45]
    rGO-PEG-NH2/P(VDF-HFP)2.1×10−35.00.45144.7[47]
    LLZTO/PEO/P(VDF-HFP)1.05×10−45.20.52121.9[48]
    LAGP/PEO/P(VDF-HFP)3803.27×10−34.90.34118[49]
    LMS/LiODFB/P(VDF-HFP)2.51×10−44.80.80132.4[50]
    SeparatorPVDF257.41.2×10−35.0141[67]
    PEI-PVDF5202.3×10−35.0125.4[69]
    Si3N4/PVDF437.24.1×10−35.480[70]
    PP/PVDF2951.25×10−34.872.2[71]
    Al2O3/PVDF487512[72]
    LLZTO/PVDF1.4×10−40.66124[73]
    PI/P(VDF-HFP)3501.46×10−35.2[76]
    PI/P(VDF-HFP)483.51.78×10−34.94120.4[77]
    PAN/PVDF-HFP1.2×10−35.0146[78]
    MnO2/PMIA/P (VDF-HFP)2.27×10−35.01140.2[79]
    TiO2/Cellulose/P (VDF-HFP)4031.68×10−34.5205[80]
    C-TiO2/Cellulose/P (VDF-HFP)210.31.49×10−35.2157[81]
    Super-capacitors BinderPVDF[21]
    PVDF[23]
    Graphene/PVDF[24]
    RGO/PVDF[25]
    ElectrolytePVA/BaTiO3/PVDF[54]
    SiO2/PVDF2.8[56]
    GO/P(VDF-HFP)342.44.23×10−4[57]
    P(VDF-HFP)25014.4×10−32.9[58]
    P(VDF-HFP)2.07×10−45.00.22[60]
    SeparatorPVDF200.22.5[87]
    SiO2/P(VDF-HFP)2020.847×10−34.3124.4[88]
    P(VDF-HFP)1120.60×10−34.60.30[89]
    ZrO2/P(VDF-HFP)3200.60×10−33.0[90]
    PVDF3601.8×10−33.3[92]
    PVDF4264.32×10−33.4145[93]
    Notes: TX (terpene resin), CMC (carboxymethyl cellulose), h-BN (hexagonal boron nitride), TEGDME (tetraethylene glycol dimethyl ether), BSNPs (bayberry silica nanoparticles), LLZTO (Li6.7La3Zr1.7Ta0.3O12), LAGP (Li1.5Al0.5Ge1.5(PO4)3), LMS (3 Li2S-2 MoS2), LIODFB (lithium oxalyldifluroborate), C-TiO2 (carboxylic titanium dioxide), RGO (reduced graphene oxide), GO (graphene oxide).
    下载: 导出CSV
  • [1] NITTA N, WU F X, LEE J T, et al. Li-ion battery materials: present and future[J]. Materials Today,2015,18(5):252-264. doi: 10.1016/j.mattod.2014.10.040
    [2] PING Y, JIN-RAN S U. Technology and application progress of lithium ion battery[J]. Chinese Journal of Power Sources,2009,33(11):1037-1039.
    [3] XIE H, TANG Z, LI Z, et al. PVDF-HFP composite polymer electrolyte with excellent electrochemical properties for Li-ion batteries[J]. Journal of Solid State Electrochemistry,2008,12(11):1497-1502. doi: 10.1007/s10008-008-0511-9
    [4] BURKE A. Ultracapacitors: why, how, and where is the technology[J]. Journal of Power Sources,2000,91(1):37-50. doi: 10.1016/S0378-7753(00)00485-7
    [5] YOO M, FRANK C W, MORI S, et al. Effect of poly(vinylidene fluoride) binder crystallinity and graphite structure on the mechanical strength of the composite anode in a lithium ion battery[J]. Polymer,2003,44(15):4197-4204. doi: 10.1016/S0032-3861(03)00364-1
    [6] HE J Y, LIU J Q, LI J, et al. Enhanced ionic conductivity and electrochemical capacity of lithium ion battery based on PVDF-HFP/HDPE membrane[J]. Materials Letters,2016,170:126-129. doi: 10.1016/j.matlet.2016.02.010
    [7] 赵世怀, 张翠翠, 杨紫博, et al. PVDF/PVA复合膜的制备与性能研究[J]. 化工新型材料, 2018, 46(5):60-63.

    ZHAO Shihuai, ZHANG Cuicui, YANG Zibo, et al. Preparation and properties of PVDF/PVA composite membranes[J]. New Chemical Materials,2018,46(5):60-63(in Chinese).
    [8] MALEKI H, DENG G P, KERZHNER-HALLER I, et al. Thermal stability studies of binder materials in anodes for lithium-ion batteries[J]. Journal of the Electrochemical Society,2000,147(12):4470-4475. doi: 10.1149/1.1394088
    [9] LOGHAVI M M, BAHADORIKHALILI S, LARI N, et al. The Effect of Crystalline Microstructure of PVDF Binder on Mechanical and Electrochemical Performance of Lithium-Ion Batteries Cathode[J]. Zeitschrift für Physikalische Chemie,2020,234(3):381-397.
    [10] EOM J-Y, CAO L. Effect of anode binders on low-temperature performance of automotive lithium-ion batteries[J]. Journal of Power Sources,2019,441(2):227178.
    [11] ROTH E P, DOUGHTY D H, FRANKLIN J. DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders[J]. Journal of Power Sources,2004,134(2):222-234. doi: 10.1016/j.jpowsour.2004.03.074
    [12] DONG Y Z, ZHAO Y M, CHEN Y H, et al. Optimized carbon-coated LiFePO4 cathode material for lithium-ion batteries[J]. Materials Chemistry And Physics,2009,115(1):245-250. doi: 10.1016/j.matchemphys.2008.11.063
    [13] GöREN A, COSTA C M, SILVA M M, et al. Influence of fluoropolymer binders on the electrochemical performance of C-LiFePO4 based cathodes[J]. Solid State Ionics,2016,295:57-64. doi: 10.1016/j.ssi.2016.07.012
    [14] WANG X, LIU S, ZHANG Y, et al. Highly Elastic Block Copolymer Binders for Silicon Anodes in Lithium-Ion Batteries[J]. ACS Applied Materials & Interfaces,2020,12(34):38132-38139.
    [15] LIANG X H, WU X, WANG Y T, et al. Study on Preparation and Performance of PEO-PVDF Composite Binder for Lithium ion Batteries[J]. International Journal Of Electrochemical Science,2020,15(9):8471-8478.
    [16] ZHENG M, FU X, WANG Y, et al. Poly(Vinylidene Fluoride)-Based Blends as New Binders for Lithium-Ion Batteries[J]. ChemElectroChem,2018,5(16):2288-2294. doi: 10.1002/celc.201800553
    [17] LIU S, ZHONG H, ZHANG C, et al. Improving the processability and cycling stability of nano-LiFePO4 cathode by using PVDF/TX binary binder[J]. Composite Interfaces,2019,26(11):1013-1024. doi: 10.1080/09276440.2019.1578574
    [18] TOIGO C, SINGH M, GMEINER B, et al. A Method to Measure the Swelling of Water-Soluble PVDF Binder System and Its Electrochemical Performance for Lithium Ion Batteries[J]. Journal of The Electrochemical Society,2020,167(2):020514. doi: 10.1149/1945-7111/ab68c2
    [19] ZHENG X, BOMMIER C, LUO W, et al. Sodium metal anodes for room-temperature sodium-ion batteries: Applications, challenges and solutions[J]. Energy Storage Materials,2019,16:6-23. doi: 10.1016/j.ensm.2018.04.014
    [20] NAGULAPATI V M, LEE J H, KIM H S, et al. Novel hybrid binder mixture tailored to enhance the electrochemical performance of SbTe bi-metallic anode for sodium ion batteries[J]. Journal of Electroanalytical Chemistry,2020,865(7):114160.
    [21] LIN T Q, CHEN I W, LIU F X, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science,2015,350(6267):1508-1513. doi: 10.1126/science.aab3798
    [22] PARULEKAR S, SHOLAPURE S, HOLMUKHE R, et al. Study of PVDF Based Electrode Structure in Supercapacitors[J]. International Journal of Engineering and Technology,2018,7(4):313-315.
    [23] ZHU Z T, TANG S H, YUAN J W, et al. Effects of Various Binders on Supercapacitor Performances[J]. International Journal of Electrochemical Science,2016,11(10):8270-8279.
    [24] DONG J Y, WANG Z Y, KANG X H. The synthesis of graphene/PVDF composite binder and its application in high performance MnO2 supercapacitors[J]. Colloids And Surfaces a-Physicochemical And Engineering Aspects,2016,489:282-288.
    [25] SONG D H, KIM J Y, AN J Y, et al. Graphene-based supercapacitor performance enhancement by an immersion precipitation of poly(vinylidene fluoride) binder[J]. Materials Research Express,2019,6(10):105616. doi: 10.1088/2053-1591/ab3cee
    [26] WANG B, JI J, LI K. Crystal nuclei templated nanostructured membranes prepared by solvent crystallization and polymer migration[J]. Nature Communications,2016,7(1):12804. doi: 10.1038/ncomms12804
    [27] ARMAND M, TARASCON J M. Building better batteries[J]. Nature,2008,451(7179):652-657. doi: 10.1038/451652a
    [28] ZHOU Q, MA J, DONG S, et al. Intermolecular Chemistry in Solid Polymer Electrolytes for High-Energy-Density Lithium Batteries[J]. Advanced Materials,2019,31(50):1902029. doi: 10.1002/adma.201902029
    [29] ZHOU D, SHANMUKARAJ D, TKACHEVA A, et al. Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects[J]. Chem,2019,5(9):2326-2352. doi: 10.1016/j.chempr.2019.05.009
    [30] LONG L, WANG S, XIAO M, et al. Polymer electrolytes for lithium polymer batteries[J]. Journal of Materials Chemistry A,2016,4(26):10038-10069. doi: 10.1039/C6TA02621D
    [31] LIU S, LIU W, BA D, et al. Filler-Integrated Composite Polymer Electrolyte for Solid-State Lithium Batteries[J]. Advanced Materials,2023,35(2):2110423. doi: 10.1002/adma.202110423
    [32] CHEN S, WANG J, ZHANG Z, et al. In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries[J]. Journal of Power Sources,2018,387:72-80. doi: 10.1016/j.jpowsour.2018.03.016
    [33] CHEN S, WEN K, FAN J, et al. Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes[J]. Journal of Materials Chemistry A,2018,6(25):11631-11663. doi: 10.1039/C8TA03358G
    [34] SINGH R, JANAKIRAMAN S, KHALIFA M, et al. A high thermally stable polyacrylonitrile (PAN)-based gel polymer electrolyte for rechargeable Mg-ion battery[J]. Journal of Materials Science:Materials In Electronics,2020,31(24):22912-22925. doi: 10.1007/s10854-020-04818-1
    [35] JEEDI V R, NARSAIAH E L, YALLA M, et al. Structural and electrical studies of PMMA and PVdF based blend polymer electrolyte[J]. Sn Applied Sciences,2020,2(12):2093. doi: 10.1007/s42452-020-03868-8
    [36] RAJEH A, RAGAB H M, ABUTALIB M M. Co doped ZnO reinforced PEMA/PMMA composite: Structural, thermal, dielectric and electrical properties for electrochemical applications[J]. Journal of Molecular Structure,2020,1217(7):128447.
    [37] LEE Y-Y, LIU Y-L. Crosslinked electrospun poly(vinylidene difluoride) fiber mat as a matrix of gel polymer electrolyte for fast-charging lithium-ion battery[J]. Electrochimica Acta,2017,258:1329-1335. doi: 10.1016/j.electacta.2017.11.191
    [38] ZHAO Y, QIN Y, DA X, et al. High Lithium Salt Content PVDF-Based Solid-State Composite Polymer Electrolyte Enhanced by h-BN Nanosheets[J]. ChemSusChem,2022,15(24):e202201554.
    [39] HUANG Y, ZENG J, LI S, et al. Conformational Regulation of Dielectric Poly(Vinylidene Fluoride)-Based Solid-State Electrolytes for Efficient Lithium Salt Dissociation and Lithium-Ion Transportation[J]. Advanced Energy Materials,2023,13(15):2203888. doi: 10.1002/aenm.202203888
    [40] MESALLAM M, KAMAR E M, SHARMA N, et al. Synthesis and characterization of polyvinylidene fluoride/magnesium bromide polymer electrolyte for magnesium battery application[J]. Physica Scripta,2020,95(11):115805. doi: 10.1088/1402-4896/abbcf4
    [41] SHAN Y, LI L, CHEN X, et al. Gentle Haulers of Lithium-Ion–Nanomolybdenum Carbide Fillers in Solid Polymer Electrolyte[J]. ACS Energy Letters,2022,7(7):2289-2296. doi: 10.1021/acsenergylett.2c00849
    [42] JIA H, ONISHI H, VON ASPERN N, et al. A propylene carbonate based gel polymer electrolyte for extended cycle life and improved safety performance of lithium ion batteries[J]. Journal of Power Sources,2018,397:343-351. doi: 10.1016/j.jpowsour.2018.07.039
    [43] SONG S, TAN X, ZHAI Y, et al. Ultrathin, Compacted Gel Polymer Electrolytes Enable High-Energy and Stable-Cycling 4 V Lithium-Metal Batteries[J]. ChemElectroChem,2020,7(17):3656-3662. doi: 10.1002/celc.202000955
    [44] ZHANG Y, WANG X, FENG W, et al. Effects of the shapes of BaTiO3 nanofillers on PEO-based electrolytes for all-solid-state lithium-ion batteries[J]. Ionics,2019,25(4):1471-1480. doi: 10.1007/s11581-018-2706-0
    [45] GUO J, HOU H B, CHENG J M, et al. Microporous bayberry-like nano-silica fillers enabling superior performance gel polymer electrolyte for lithium metal batteries[J]. Journal of Materials Science:Materials In Electronics,2021,32(5):1-13.
    [46] MA W-T, KUMAR S R, HSU C-T, et al. Magnetic field-assisted alignment of graphene oxide nanosheets in a polymer matrix to enhance ionic conduction[J]. Journal of Membrane Science,2018,563:259-269. doi: 10.1016/j.memsci.2018.05.062
    [47] XU P, CHEN H, ZHOU X, et al. Gel polymer electrolyte based on PVDF-HFP matrix composited with rGO-PEG-NH2 for high-performance lithium ion battery[J]. Journal of Membrane Science,2021,617:118660. doi: 10.1016/j.memsci.2020.118660
    [48] HUANG J, HUANG Y, ZHANG Z, et al. Li6.7La3Zr1.7Ta0.3O12 Reinforced PEO/PVDF-HFP Based Composite Solid Electrolyte for All Solid-State Lithium Metal Battery[J]. Energy & Fuels,2020,34(11):15011-15018.
    [49] LIU Q, LIU Y, JIAO X, et al. Enhanced ionic conductivity and interface stability of hybrid solid-state polymer electrolyte for rechargeable lithium metal batteries[J]. Energy Storage Materials,2019,23:105-111. doi: 10.1016/j.ensm.2019.05.023
    [50] TAO S, LI J, HU R, et al. 3 Li2S-2 MoS2 filled composite polymer PVDF-HFP/LiODFB electrolyte with excellent interface performance for lithium metal batteries[J]. Applied Surface Science,2021,536(30):147794.
    [51] LUO J, FANG C-C, WU N-L. High Polarity Poly(vinylidene difluoride) Thin Coating for Dendrite-Free and High-Performance Lithium Metal Anodes[J]. Advanced Energy Materials,2017,8(6):1701482.
    [52] WAQAS M, ALI S, LV W, et al. High-Performance PE-BN/PVDF-HFP Bilayer Separator for Lithium-Ion Batteries[J]. Advanced Materials Interfaces,2019,6(1):1801330. doi: 10.1002/admi.201801330
    [53] YANG F, SUN W, BAI Y, et al. Rational Design of Sandwich-Like “Gel–Liquid–Gel” Electrolytes for Dendrite-Free Lithium Metal Batteries[J]. Industrial & Engineering Chemistry Research,2020,59(32):14207-14216.
    [54] AVAL L F, GHORANNEVISS M, POUR G B. Graphite nanoparticles paper supercapacitor based on gel electrolyte[J]. Materials for Renewable and Sustainable Energy,2018,7(4):29. doi: 10.1007/s40243-018-0136-6
    [55] NUNES-PEREIRA J, COSTA C M, LANCEROS-MENDEZ S. Polymer composites and blends for battery separators: State of the art, challenges and future trends[J]. Journal of Power Sources,2015,281(4):378-398.
    [56] ORTEGA P F R, TRIGUEIRO J P C, SILVA G G, et al. Improving supercapacitor capacitance by using a novel gel nanocomposite polymer electrolyte based on nanostructured SiO2, PVDF and imidazolium ionic liquid[J]. Electrochimica Acta,2016,188:809-817. doi: 10.1016/j.electacta.2015.12.056
    [57] AHMAD A L, FAROOQUI U R, HAMID N A. Effect of graphene oxide (GO) on Poly(vinylidene fluoride-hexafluoropropylene) (PVDF- HFP) polymer electrolyte membrane[J]. Polymer,2018,142:330-336. doi: 10.1016/j.polymer.2018.03.052
    [58] YANG C Y, SUN M Q, WANG X, et al. A Novel Flexible Supercapacitor Based on Cross-Linked PVDF-HFP Porous Organogel Electrolyte and Carbon Nanotube Paper@pi-Conjugated Polymer Film Electrodes[J]. Acs Sustainable Chemistry & Engineering,2015,3(9):2067-2076.
    [59] YANG X, ZHANG F, ZHANG L, et al. A High-Performance Graphene Oxide-Doped Ion Gel as Gel Polymer Electrolyte for All-Solid-State Supercapacitor Applications[J]. Advanced Functional Materials,2013,23(26):3353-3360. doi: 10.1002/adfm.201203556
    [60] SHALU, SINGH V K, SINGH R K. Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties[J]. Journal of Materials Chemistry C,2015,3(28):7305-7318. doi: 10.1039/C5TC00940E
    [61] GSAIZ P, LOPES A C, BARKER S E, et al. Ionic liquids for the control of the morphology in poly(vinylidene fluoride-co-hexafluoropropylene) membranes[J]. Materials & Design,2018,155(29):325-333.
    [62] BARBOSA J C, DIAS J P, LANCEROS-MENDEZ S, et al. Recent Advances in Poly(vinylidene fluoride) and Its Copolymers for Lithium-Ion Battery Separators[J]. Membranes,2018,8(3):45. doi: 10.3390/membranes8030045
    [63] LIN W, WANG F, WANG H, et al. Thermal-Stable Separators: Design Principles and Strategies Towards Safe Lithium-Ion Battery Operations[J]. ChemSusChem,2022,15(24):e202201464.
    [64] RAGHAVENDRA K V G, VINOTH R, ZEB K, et al. An intuitive review of supercapacitors with recent progress and novel device applications[J]. Journal of Energy Storage,2020,31(9):101652.
    [65] 郑怡磊, 吴于松, 许远远, et al. 高性能锂离子电池隔膜的研究进展[J]. 有机氟工业, 2018, 181(4):21-26.

    ZHENG Yilei, WU Yusong, XU Yuanyuan, et al. Research progress of high-performance lithium-ion battery separator[J]. Organic-fluorine Industry,2018,181(4):21-26(in Chinese).
    [66] COSTA C M, SILVA M M, LANCEROS-MENDEZ S. Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications[J]. Rsc Advances,2013,3(29):11404-11417. doi: 10.1039/c3ra40732b
    [67] TABANI Z, MAGHSOUDI H, ZONOUZ A F. High electrochemical stability of polyvinylidene fluoride (PVDF) porous membranes using phase inversion methods for lithium-ion batteries[J]. Journal of Solid State Electrochemistry,2021,25(2):651-657. doi: 10.1007/s10008-020-04842-5
    [68] WANG S-X, YAP C C, HE J, et al. Electrospinning: a facile technique for fabricating functional nanofibers for environmental applications[J]. Nanotechnology Reviews,2016,5(1):51-73.
    [69] 崔巍巍, 孟庆朋, 王振宇, et al. 大倍率高耐热聚醚酰亚胺-聚偏氟乙烯芯壳纳米纤维锂离子电池隔膜[J]. 复合材料学报, 2019, 36(1):69-76. doi: 10.13801/j.cnki.fhclxb.20180503.001

    CUI Weiwei, MENG Qingpeng, WANG Zhenyu, et al. Large power and high heat resistance polyetherimide polyvinylidene fluoride core-shell nanofiber lithium ion battery separator[J]. Acta Materiae Compositae Sinica,2019,36(1):69-76(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180503.001
    [70] MA X, QIAO F, QIAN M, et al. Facile fabrication of flexible electrodes with poly(vinylidene fluoride)/Si3N4 composite separator prepared by electrospinning for sodium-ion batteries[J]. Scripta Materialia,2021,190:153-157. doi: 10.1016/j.scriptamat.2020.08.053
    [71] JANAKIRAMAN S, KHALIFA M, BISWAL R, et al. High performance electrospun nanofiber coated polypropylene membrane as a separator for sodium ion batteries[J]. Journal of Power Sources,2020,460:228060. doi: 10.1016/j.jpowsour.2020.228060
    [72] 徐玲倩, 陈关喜, 吴清洲, et al. Al2O3/PVdF无纺布锂离子电池隔膜的制备及性能表征[J]. 材料科学与工程学报, 2019, 37(5):689-696.

    XU Lingqing, CHEN Guanxi, WU Qingzhou, et al. Preparation and characterization of Al2O3/PVdF non-woven lithium ion battery separator[J]. Journal of Materials Science and Engineering,2019,37(5):689-696(in Chinese).
    [73] HUO H, LI X, CHEN Y, et al. Bifunctional composite separator with a solid-state-battery strategy for dendrite-free lithium metal batteries[J]. Energy Storage Materials,2020,29:361-366. doi: 10.1016/j.ensm.2019.12.022
    [74] WU Y-S, YANG C-C, LUO S-P, et al. PVDF-HFP/PET/PVDF-HFP composite membrane for lithium-ion power batteries[J]. International Journal of Hydrogen Energy,2017,42(10):6862-6875. doi: 10.1016/j.ijhydene.2016.11.201
    [75] ALI S, TAN C, WAQAS M, et al. Highly Efficient PVDF-HFP/Colloidal Alumina Composite Separator for High-Temperature Lithium-Ion Batteries[J]. Advanced Materials Interfaces,2018,5(5):1701147. doi: 10.1002/admi.201701147
    [76] CHEN W, LIU Y, MA Y, et al. Improved performance of PVdF-HFP/PI nanofiber membrane for lithium ion battery separator prepared by a bicomponent cross-electrospinning method[J]. Materials Letters,2014,133:67-70. doi: 10.1016/j.matlet.2014.06.163
    [77] CAI M, YUAN D, ZHANG X, et al. Lithium ion battery separator with improved performance via side-by-side bicomponent electrospinning of PVDF-HFP/PI followed by 3 D thermal crosslinking[J]. Journal of Power Sources,2020,461:228123. doi: 10.1016/j.jpowsour.2020.228123
    [78] LIU Q, JIANG W, LU W, et al. Anisotropic semi-aligned PAN@PVdF-HFP separator for Li-ion batteries[J]. Nanotechnology,2020,31(43):435701. doi: 10.1088/1361-6528/aba303
    [79] ZHAO H, DENG N, KANG W, et al. Designing of multilevel-nanofibers-based organic–inorganic hybrid gel electrolyte enabling an innovative lithium-ion battery with superior ionic transport capability and advanced security[J]. Chemical Engineering Journal,2020,390:124571. doi: 10.1016/j.cej.2020.124571
    [80] ASGHAR M R, ANWAR M T, XIA G, et al. Cellulose/Poly(vinylidene fluoride hexafluoropropylene) composite membrane with titania nanoparticles for lithium-ion batteries[J]. Materials Chemistry and Physics,2020,252:123122. doi: 10.1016/j.matchemphys.2020.123122
    [81] LI L, LI H, WANG Y, et al. Poly(vinylidenefluoride-hexafluoropropylene)/cellulose/carboxylic TiO2 composite separator with high temperature resistance for lithium-ion batteries[J]. Ionics,2020,26(9):4489-4497. doi: 10.1007/s11581-020-03587-5
    [82] SZUBZDA B, SZMAJA A, OZIMEK M, et al. Polymer membranes as separators for supercapacitors[J]. Applied Physics a-Materials Science & Processing,2014,117(4):1801-1809.
    [83] WANG J A, LIN S C, WANG Y S, et al. Bi-functional water-born polyurethane-potassium poly(acrylate) designed for carbon-based electrodes of quasi solid-state supercapacitors: Establishing ionic tunnels and acting as a binder[J]. Journal of Power Sources,2019,413(21):77-85.
    [84] HASHIM M A, SA'ADU L, BAHARUDDIN M B, et al. Using PVA, Methacrylate and Lauroyl Chitosan as Separator in Supercapacitors[J]. Journal of Materials Science Research, 2013, 3(1).
    [85] NA R Q, ZHANG X R, HUO P F, et al. High performance disulfonated poly(arylene ether sulfone)/poly(ethylene oxide) composite membrane used as a novel separator for supercapacitor with neutral electrolyte and activated carbon electrodes[J]. High Performance Polymers,2017,29(8):984-993. doi: 10.1177/0954008316666386
    [86] KARABELLI D, LEPRETRE J C, ALLOIN F, et al. Poly(vinylidene fluoride)-based macroporous separators for supercapacitors[J]. Electrochimica Acta,2011,57(1):98-103.
    [87] ARTHI R, JAIKUMAR V, MURALIDHARAN P. Development of electrospun PVdF polymer membrane as separator for supercapacitor applications[J]. Energy Sources Part A:Recovery, Utilization and Environmental Effects,2019,44(1):1-15.
    [88] WANG H, GAO H P. A sandwich-like composite nonwoven separator for Li-ion batteries[J]. Electrochimica Acta,2016,215:525-534. doi: 10.1016/j.electacta.2016.08.039
    [89] YANG Y Q, CHANG Z, LI M X, et al. A sodium ion conducting gel polymer electrolyte[J]. Solid State Ionics,2014,269:1-7.
    [90] YADAV N, MISHRA K, HASHMI S A. Nanofiller-incorporated porous polymer electrolyte for electrochemical energy storage devices[J]. High Performance Polymers,2018,30(8):957-970. doi: 10.1177/0954008318774392
    [91] JABBARNIA A, KHAN W S, GHAZINEZAMI A, et al. Investigating the thermal, mechanical, and electrochemical properties of PVdF/PVP nanofibrous membranes for supercapacitor applications[J]. Journal of Applied Polymer Science,2016,133(30):43707.
    [92] HE T S, JIA R, LANG X S, et al. Preparation and Electrochemical Performance of PVdF Ultrafine Porous Fiber Separator-Cum-Electrolyte for Supercapacitor[J]. Journal of the Electrochemical Society,2017,164(13):E379-E384. doi: 10.1149/2.0631713jes
    [93] RAGHAVAN P, ZHAO X, MANUEL J, et al. Electrochemical studies on polymer electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) membranes prepared by electrospinning and phase inversion-A comparative study[J]. Materials Research Bulletin,2010,45(3):362-366. doi: 10.1016/j.materresbull.2009.12.001
    [94] JAKRIYA S P, SYED A M, PILLAI S K, et al. High-performance poly(vinylidene fluoride-co-hexafluoropropylene) based electrospun polyelectrolyte mat for lithium-ion battery[J]. Materials Express,2018,8(1):77-84. doi: 10.1166/mex.2018.1405
  • 加载中
计量
  • 文章访问数:  49
  • HTML全文浏览量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-28
  • 修回日期:  2023-04-14
  • 录用日期:  2023-04-28
  • 网络出版日期:  2023-05-13

目录

    /

    返回文章
    返回