Research progress of nanomaterials in flexible piezoresistive pressure sensors
-
摘要:
目的 随着柔性压力传感器在健康检测、电子皮肤和可穿戴电子设备等领域中的快速发展,制备具有优良性能的柔性压力传感器的需求越来越迫切。纳米材料因其具有表面与界面效应、小尺寸效应以及宏观量子隧道效应的存在,从而可以对柔性压力传感器的性能进行优化。基于使用纳米材料制备的压力传感器具有体积小、压力检测范围宽和灵敏度高等优良性能,本文总结近几年来纳米材料在柔性压阻式压力传感器中的最新研究进展。 方法 本文从不同维度的纳米材料在柔性压阻式压力传感器中的应用分类,对零维、一维、二维和复合纳米材料在柔性压阻式压力传感器的应用以及纳米材料的制备难易等方面展开论述,对以纳米材料制备的压力传感器的性能进行了全面总结。 结果 从近几年以纳米材料制备的柔性压阻式压力传感器的文献中总结得出,柔性压阻式压力传感器中应用最多的零维纳米材料有金属纳米颗粒(银纳米颗粒AgNPs、金纳米颗粒AuNPs和铜纳米颗粒CuNPs等)、炭黑(CB)和纳米SiO。基于银纳米颗粒制备的压阻式压力传感器灵敏度可达2.72×10kPa。一些金属纳米粒子甚至能赋予传感器额外的功能,如纳米银颗粒对于特定的细菌、真菌和病毒有灭杀能力。金、银、铜纳米线和碳纳米管也常被应用于压力传感器中。一维碳纳米管因其具有良好的各向异性和良好的导电性,且有着良好的化学稳定性,可以通过旋涂和浸涂等溶液沉积技术沉积到柔性基底上,制备工艺简单,以碳纳米管构建的压力传感器的灵敏度可高达4015.8kPa。二维纳米材料具有超薄的平面结构、较大的比表面积,其结构中的电子/空穴被限制在原子级的厚度中,具有对周围环境做出快速响应的特点。常用于压阻式压力传感器中的二维纳米材料有石墨烯、MXene、二维过渡金属硫化物纳米材料以及二维氧化物纳米材料。其中基于二维氧化物制备的压力传感器,其灵敏度最高可达7.2×10kPa。使用单一纳米材料构建的压力传感器往往存在着某些不足。如果使用复合纳米材料去构建压力传感器,不同纳米材料之间相互作用,可以弥补各自的缺陷,从而使得传感器的性能得到提升。例如银纳米线有着优异的导电性能和力学柔韧性,但是银纳米线较容易被氧化,一旦其被氧化,压力传感器的性能就会大大减弱。还原氧化石墨烯有着优良的力学性能和电学性能,但是其层间接触电阻较差且在制备过程中会形成一些缺陷,从而在传感器中表现出不够理想的导电性。将这两种纳米材料结合到一起去构建导电网络,还原氧化石墨烯能够保护银纳米线避免其被空气氧化,同时还原氧化石墨烯则通过引入银纳米线提高了导电性,从而能够大幅提升器件的传感能力。 结论 不同类型的纳米材料(零维、一维和二维)在构建柔性压力传感器的探索中被广泛应用。纳米材料由于自身不同的特点在构建传感器的策略上也存在着差异,零维纳米材料主要是作为导电填料发挥着作用,一维纳米材料除了作为导电填料外,还能作为传感器中两电极之间的间隔材料来发挥作用。相较于零维和一维纳米材料,二维纳米材料作为导电填料可以通过化学改性或材料掺杂来改变自身表面粗糙度,或是构建出具有层状结构的传感层。二维材料也可作为压力传感器中两电极间的间隔材料,其极小的尺寸可以为传感器提供超高的灵敏度。使用单一类型的纳米材料在性能表现上往往存在局限性,很难同时满足压阻传感器对宽压力检测范围、高灵敏度和良好的稳定性的性能要求。复合化是解决上述问题的一种途径,通过材料的复合化能够有效利用不同材料的优势,从而实现传感器性能的提升。 Abstract: With the rapid development of flexible pressure sensors in the fields of health detection, electronic skin and wearable electronic devices, the research on fabrication of high-performance flexible piezoresistive sensors has become prevalent. The performance of flexible pressure sensors can be optimized by nanomaterials because of their surface and interface effects, small size effects and macroscopic quantum tunneling effects. Nanomaterials based pressure sensor has the advantages of small size, wide detection range and high sensitivity. In this paper, the latest research progress of nanomaterials in flexible pressure sensors in recent years is reviewed.-
Key words:
- flexible piezoresistive pressure sensor /
- nanomaterials /
- performance /
- optimization /
- research progress
-
图 1 零维纳米材料在柔性压阻式压力传感器中的应用:(a) 炭黑(CB)纳米粒子[33];((b), (c)) 金属银纳米粒子(AgNPs)[32];((d)~(g)) 金属铂纳米粒子(PdNPs)[34]
Figure 1. Application of 0D materials in flexible piezoresistive pressure sensors: (a) Carbon black (CB) nanoparticles[33]; ((b), (c)) Silver nanoparticles (AgNPs)[32]; ((d)-(g)) Platinum nanoparticles (PdNPs)[34]
AP—Airlaid paper
图 2 (a) 由海胆形金属纳米粒子(SSNPs)和聚氨酯(PU)组成的压力传感器的制造示意图[25];基于聚苯胺(PANI)/SiO2纳米颗粒的压力传感器:(b) 海胆形PANI/SiO2颗粒;(c)球形 PANI@SiO2颗粒;(d)压力传感器的横截面 SEM 图像[34];(e)联锁粗糙和多孔微结构在负载压力下的电流行为;(f) 二元纳米颗粒之间的电流;(g)基于银纳米晶体(AgNCs) 的压力传感器的工作原理图[35]
Figure 2. (a) Schematic illustration for fabrication of a pressure sensor composed of sea-urchin shaped metal nanoparticles (SSNPs) and polyurethane (PU)[25]; PANI@silica-based pressure sensor: (b) A sea-urchin-shaped PANI@silica particle; (c) A spherical PANI@silica particle; (d) Cross-sectional SEM image of the pressure sensor; (e) Current flow behavior of the interlocked rough and porous microstructure under loading pressure; (f) Current flow between binary nanoparticles[34]; (g) Working principle diagram of pressure sensor based on silver nanocrystals (AgNCs)[35]
NPs—Nanoparticles; ITO/PET—Indium tin oxide/polyethylene terephthalate; EDT—1,2-ethanedithiol; PDMS—Polydimethylsiloxane
图 3 (a) 在微结构 PDMS 薄膜上形成单壁碳纳米管(SWNTs)纳米网络的示意图[38];(b) 基于聚乙烯亚胺-碳纳米管(PEI-CNTs)材料的柔性压阻式压力传感器的传感机制[39];(c) 微结构PDMS薄膜上垂直排列的金纳米线(v-AuNWs)阵列生长过程示意图;(d) 基于v-AuNWs/PDMS传感器结构示意图[40]
Figure 3. (a) Schematics of procedures for forming single-walled carbon nanotubes (SWNTs) nanonetworks on selected locations of microstructured PDMS films [38]; (b) Sensing mechanism of flexible piezoresistive pressure sensor based on polythylenimine-carbon nanotubes (PEI-CNTs) material[39]; (c) Schematic of the growth process of vertically aligned gold nanowires (v-AuNWs) arrays on microstructured PDMS films; (d) Structure diagram of sensor based on v-AuNW/PDMS[40]
DCB—Dichlorobenzene; APTES—3-aminopropyltriethoxysilane
图 4 随机分布棘微结构(RDS)石墨烯压力传感器的工作机制:对应于卸载初始状态(a)、轻载(b)和重载(c)的电路模型的示意图[45];基于微棘状 MXene 的传感器的传感机制:微棘传感器在原始状态(d)、轻载(e)、重载(f)和恢复(g)条件下的原位横截面SEM图像和相应的微观结构模型[48]; (h) 装置结构示意图;(i) 压力传感器工作原理示意图[31]
Figure 4. Working mechanism of the random distribution spinosum (RDS) graphene pressure sensor: Photographs and schematic illustrations of circuit models corresponding to initial state of unloading (a), light loading (b), and heavy loading (c)[45]; In situ cross-sectional SEM image and corresponding microstructural models of the microspinous sensor in the original state (d), under light loading (e), heavy loading (f), and recovery (g)[48]; Device structure (h) and working principle (i) of the pressure sensor[31]
Ri—Intrinsic resistance of the interdigital electrode; Rs—Resistance of the increased conductive paths under light loading; Rb—Resistance of the increased conductive paths under heavy loading; Rh—Resistance in the hole; Rc1—Resistance of contact interfaces; Rc2—Resistance of cracks in the rGO
图 5 (a) rGO-CB@丝瓜海绵(LS)的制备过程示意图[28];((b), (c)) 分层 ZIF-67晶体/MXene 杂化材料的合成示意图;(d) 柔性压力传感器的示意图[57]
Figure 5. (a) Schematic diagram of the preparation process of rGO-CB@loofah sponge (LS) [28]; ((b), (c)) Schematic illustration of the synthesis of the hierarchical ZIF-67 crystal/MXene hybrid materials; (d) Illustration of the flexible pressure sensor[57]
RT—Room temperature
图 6 纳米压阻式压力传感器在人体健康检测领域中的应用:响应气体流量增加的电流变化(a)和相应的静压值(b);呼吸监测系统的照片(c)及显示呼吸强度的图(d);径向脉冲压力感知系统照片(e)和径向脉冲信号(f);颈动脉脉压测量系统照片(g)和颈动脉脉冲信号(h)[34]
Figure 6. Application of nano piezoresistive pressure sensor in human health detection field: Current variations in response to gas flow increase (a) and corresponding static pressure values (b); Photograph of the respiration monitoring system (c) and graphs showing the breath intensity (d); Photograph of the radial pulse pressure perception system (e) and radial pulse signal (f); Photograph of the carotid pulse pressure measurement system (g) and carotid pulse signal (h) [34]
ΔI/I0—Current variation; ΔTDVP—Digital volume pulse time; P0-P3—Distinguishable peaks
图 7 纳米压阻式压力传感器在实时运动监测领域的应用:(a) 手指弯曲运动;(b) 重复手指弯曲运动;(c) 握紧拳头运动[25];(d) 装在脚后跟的传感器照片;(e) 行走、奔跑和跳跃时传感器检测到的信号[45]
Figure 7. Resistance response (R/R0) of the sensor in response to finger bending motion (a), repetitive finger bending motion (b), and clenched fist motion (c)[25] ; Photograph of the sensor put on the heel of the foot (d) and its detected signal when walking, running, and jumping (e)[45]
图 8 (a) MXene基压阻传感器4×4阵列照片及相应压力分布检测;(b) 安装在机器人上的压力传感器的照片(插图:传感位置的放大视图)和对其运动行为的响应检测;(c) 带有蓝牙电路模块的压阻式传感器将其电流信号转换为便携式移动设备显示器 [48]
Figure 8. (a) Photograph of the 4×4 array of MXene-based piezoresistive sensor and detection of thecorresponding pressure distributions; (b) Photograph of the pressure sensor assembled on a robot (Inset: Enlarged view of the sensing position) and detection of its response tothe motion behavior; (c) Piezoresistive sensor with a Bluetooth circuit module converts its current signal to a portable mobile device display [48]
表 1 基于零维纳米材料的柔性压阻式压力传感器性能
Table 1. Performance of flexible piezoresistive pressure sensors based on 0D materials
Material Minimum
detection/PaMaximum
detection/kPaMaximum
sensitivity/kPa−1Response time/ms Repeatability Ref. PET/PU-metal nanoparticles 0.3 18 2.46 30 600 [25] Polyimide (PI)/AgNPs 0.1 100 1400 200 1000 [32] Carbon black/paper 1 30 51.23 <200 3600 [33] PANI-SiO2 8 120 17.5 90 6000 [34] PDMS/AgNPs 10 100 2.72×104 100 7000 [35] PI/AgNPs aerogels −1.563×104 69.25 6.9 — 3000 [36] PET/PdNPs 0.5 40 0.13 — 500 [37] 表 2 基于一维纳米材料的柔性压阻式压力传感器性能
Table 2. Performance of flexible piezoresistive pressure sensors based on 1D materials
Material Minimum
detection/PaMaximum
detection/kPaMaximum
sensitivity/kPa−1Response time/ms Repeatability Ref. PDMS/CNTs — 3000 5.66×10−3 300 1000 [21] PDMS/SWNTs 120 400 0.06 23 10000 [38] Fiber/CNTs 2500 4×104 50 — 550 [39] PDMS/AuNWs — 3 23 <10 >10000 [40] PDMS/ZnO NWs 0.6 13.1 6.8 <5 1000 [41] AgNWs/polyurethane/wool yarn 5 2 0.69 28 5000 [42] PET/ITO/polyvinyl alcohol nanowire/polypyrrole (PPy) 2.97 9 228.5 66.8 10000 [43] Sponge/CNTs 100 100 4015.8 120 5000 [44] 表 3 基于二维纳米材料的柔性压阻式压力传感器性能
Table 3. Performance of flexible piezoresistive pressure sensors based on 2D materials
Material Minimum
detection/PaMaximum
detection/kPaMaximum
sensitivity/kPa−1Response time/ms Repeatability Ref. PET/MXene/polyacrylonitrile 1.5 7.7 104 30 10000 [20] PET/ITO/2D titanate 230 0.4 7.2×106 100 500 [31] PDMS/reduced graphene oxide (rGO) 16 2.6 25.1 120 3000 [45] PDMS/graphene 1.8 40 1875.53 0.5 15000 [46] PET/graphene — 200 10.39 11.6 1100 [47] PDMS/MXene 4.4 15 151.4 125 20000 [48] Cotton fabric/MXene 225 160 5.3 50 1000 [49] PDMS/MXene 17 800 1104.38 100 3000 [50] Tissue papers/MoSe2 1 100 18.42 110 200 [51] Paper/SnSe2 — 100 1.79 — 5000 [52] PDMS/Au/Au/SnSe2 0.82 38.4 433.22 0.09 >4000 [53] 表 4 基于复合纳米材料的柔性压阻式压力传感器性能
Table 4. Performance of flexible piezoresistive pressure sensors based on composite nanomaterials
Material Minimum
detection/PaMaximum
detection/kPaMaximum
sensitivity/kPa−1Response time/ms Repeatability Ref. rGO-CB/sponge 100 2 1.89 420 5000 [28] CNTs/rGO-cellulose nanofibers carbon aerogel 0.875 5 22.05 — 2000 [29] rGO-AgNWs/cotton 100 20 4.23 200 — [30] PDMS/carbon fibers/CNPs 20 600 26.6 40 5000 [56] PET/Au/MXene/MOFs 3.5 100 110.0 15 13000 [57] Sponge/CNTs/AgNPs 2240 61.81 9.08 — 2000 [58] MXene/cellulose nanofiber (CNF)/foam 4 20.55 649.3 123 10000 [59] AgNWs/graphene/nanofibers 3.7 75 134 <20 8000 [60] Nanofiber/graphene/aerogel <3 14 28.62 37 2600 [61] PET/AgNWs/ZnO NPs — 75 3.32×103 120 2000 [62] Cotton/AgNWs/rGO 0.125 5 5.8 29.5 10000 [63] Textile/rGO/polyaniline nanorod 0.5 40 97.28 30 11000 [64] PDMS/liquid metal (gallium)/graphene 17.1 3.4 476 410 10000 [65] CB/CNF/thermoplastic polyurethane/styrene-ethylene/butylene-styrene — 200 0.0316 500 >1000 [66] -
[1] ZHANG H, LIN L, HU N, et al. Pillared carbon@tungsten decorated reduced graphene oxide film for pressure sensors with ultra-wide operation range in motion monitoring[J]. Carbon,2022,189:430-442. doi: 10.1016/j.carbon.2021.12.080 [2] ZOU Q, HE K, OUYANG J, et al. Highly sensitive and durable sea-urchin-shaped silver nanoparticles strain sensors for human-activity monitoring[J]. ACS Applied Materials & Interfaces,2021,13(12):14479-14488. doi: 10.1021/acsami.0c22756 [3] YANG J, TANG D, AO J, et al. Ultrasoft liquid metal elastomer foams with positive and negative piezopermittivity for tactile sensing[J]. Advanced Functional Materials,2020,30(36):2002611. doi: 10.1002/adfm.202002611 [4] LIM S, SON D, KIM J, et al. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures[J]. Advanced Functional Materials,2015,25(3):375-383. doi: 10.1002/adfm.201402987 [5] HUANG J, LI D, ZHAO M, et al. Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors[J]. Chemical Engineering Journal,2019,373:1357-1366. doi: 10.1016/j.cej.2019.05.136 [6] CAI J H, LI J, CHEN X D, et al. Multifunctional polydimethylsiloxane foam with multi-walled carbon nanotube and thermo-expandable microsphere for temperature sensing, microwave shielding and piezoresistive sensor[J]. Chemical Engineering Journal,2020,393:124805. doi: 10.1016/j.cej.2020.124805 [7] LI J, CHEN S, LIU W, et al. High performance piezoelectric nanogenerators based on electrospun ZnO nanorods/poly (vinylidene fluoride) composite membranes[J]. The Jour-nal of Physical Chemistry C,2019,123(18):11378-11387. doi: 10.1021/acs.jpcc.8b12410 [8] DAI Y, FU Y, ZENG H, et al. A self-powered brain-linked vision electronic-skin based on triboelectric-photodetecing pixel-addressable matrix for visual-image recognition and behavior intervention[J]. Advanced Functional Materials,2018,28(20):1800275. doi: 10.1002/adfm.201800275 [9] YUE Y, LIU N, LIU W, et al. 3D hybrid porous MXene-sponge network and its application in piezoresistive sensor[J]. Nano Energy,2018,50:79-87. doi: 10.1016/j.nanoen.2018.05.020 [10] WANG Z, HU T, LIANG R, et al. Application of zero-dimensional nanomaterials in biosensing[J]. Frontiers in Chemistry,2020,8:320. doi: 10.3389/fchem.2020.00320 [11] GONG S, CHENG W. One-dimensional nanomaterials for soft electronics[J]. Advanced Electronic Materials,2017,3(3):1600314. doi: 10.1002/aelm.201600314 [12] 刘璐, 王李波, 刘大荣, 等. 二维纳米材料在柔性压阻传感器中的应用研究进展[J]. 材料导报, 2022, 36(4): 19-28.LIU Lu, WANG Libo, LIU Darong, et al. Research progress of two-dimensional nanomaterials in flexible piezoresistive sensor[J]. Materials Review, 2022, 36(4): 19-28(in Chinese). [13] 宋璐, 左小磊, 李敏. 柔性可穿戴传感器及其应用研究[J]. 分析化学, 2022, 50(11):1661-1672.SONG Lu, ZUO Xiaolei, LI Min. Flexible wearable sensor and its application study[J]. Journal of Analytical Chemistry,2022,50(11):1661-1672(in Chinese). [14] 胡苗苗, 赵昕, 任宝娜, 等. 基于静电纺纳米纤维的柔性可穿戴压力传感器的研究进展[J]. 材料工程, 2023, 51(2): 15-27.HU Miaomiao, ZHAO Xin, REN Baona, et al. Research progress of flexible wearable pressure sensor based on electrostatic spinning nanofibers[J]. Materials Engineering, 2023, 51(2): 15-27(in Chinese). [15] 于江涛, 孙雷, 肖瑶, 等. 压阻式柔性压力传感器的研究进展[J]. 电子元件与材料, 2019, 38(6):1-11. doi: 10.14106/j.cnki.1001-2028.2019.06.001YU Jiangtao, SUN Lei, XIAO Yao, et al. The research progress of piezoresistive type flexible pressure sensor[J]. Journal of Electronic Components and Materials,2019,38(6):1-11(in Chinese). doi: 10.14106/j.cnki.1001-2028.2019.06.001 [16] 李凤超, 孔振, 吴锦华, 等. 柔性压阻式压力传感器的研究进展[J]. 物理学报, 2021, 70(10):7-24.LI Fengchao, KONG Zhen, WU Jinhua, et al. Research progress of flexible piezoresistive pressure sensor[J]. Chinese Journal of Physics,2021,70(10):7-24(in Chinese). [17] 虞沛芾, 李伟. 薄膜压力传感器的研究进展[J]. 有色金属材料与工程, 2020, 9(2):47-54.YU Peifu, LI Wei. The research progress of thin film pressure sensor[J]. Non-ferrous Metal Materials and Engineering,2020,9(2):47-54(in Chinese). [18] HUANG Y, FAN X, CHEN S C, et al. Emerging technologies of flexible pressure sensors: Materials, modeling, devices, and manufacturing[J]. Advanced Functional Materials,2019,29(12):1808509. doi: 10.1002/adfm.201808509 [19] LEE Y, MYOUNG J, CHO S, et al. Bioinspired gradient conductivity and stiffness for ultrasensitive electronic skins[J]. ACS Nano,2020,15(1):1795-1804. [20] FU X, WANG L, ZHAO L, et al. Controlled assembly of MXene nanosheets as an electrode and active layer for high-performance electronic skin[J]. Advanced Functional Materials,2021,31(17):2010533. doi: 10.1002/adfm.202010533 [21] JEONG Y, GU J, BYUN J, et al. Ultra-wide range pressure sensor based on a microstructured conductive nanocomposite for wearable workout monitoring[J]. Advanced Healthcare Materials,2021,10(9):2001461. doi: 10.1002/adhm.202001461 [22] CHENG H, WANG B, YANG K, et al. A high-performance piezoresistive sensor based on poly(styrene-co-methacrylic acid)@polypyrrole microspheres/graphene-decorated TPU electrospun membrane for human motion detection[J]. Chemical Engineering Journal,2021,426:131152. doi: 10.1016/j.cej.2021.131152 [23] LONG S, FENG Y, HE F, et al. Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators[J]. Nano Energy,2021,85:105973. doi: 10.1016/j.nanoen.2021.105973 [24] GAO L, ZHU C, LI L, et al. All paper-based flexible and wearable piezoresistive pressure sensor[J]. ACS Applied Materials & Interfaces,2019,11(28):25034-25042. [25] LEE D, LEE H, JEONG Y, et al. Highly sensitive, transparent, and durable pressure sensors based on sea-urchin shaped metal nanoparticles[J]. Advanced Materials,2016,28(42):9364-9369. doi: 10.1002/adma.201603526 [26] BI L, YANG Z, CHEN L, et al. Compressible AgNWs/Ti3C2Tx MXene aerogel-based highly sensitive piezoresistive pressure sensor as versatile electronic skins[J]. Journal of Materials Chemistry A,2020,8(38):20030-20036. doi: 10.1039/D0TA07044K [27] YANG Y, CAO Z, HE P, et al. Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response[J]. Nano Energy,2019,66:104134. doi: 10.1016/j.nanoen.2019.104134 [28] CAO M, FAN S, QIU H, et al. CB nanoparticles optimized 3D wearable graphene multifunctional piezoresistive sensor framed by loofah sponge[J]. ACS Applied Materials & Interfaces,2020,12(32):36540-36547. [29] PENG X, WU K, HU Y, et al. A mechanically strong and sensitive CNT/rGO-CNF carbon aerogel for piezoresistive sensors[J]. Journal of Materials Chemistry A,2018,6(46):23550-23559. doi: 10.1039/C8TA09322A [30] CAO M, WANG M, LI L, et al. Wearable rGO-Ag NW@cotton fiber piezoresistive sensor based on the fast charge transport channel provided by Ag nanowire[J]. Nano Energy,2018,50:528-535. doi: 10.1016/j.nanoen.2018.05.038 [31] LIU H, FENG B, BAI X, et al. Two-dimensional oxide based pressure sensors with high sensitivity[J]. Nano Select,2022,3(1):51-59. doi: 10.1002/nano.202100053 [32] BI P, LIU X, YANG Y, et al. Silver-nanoparticle-modified polyimide for multiple artificial skin-sensing applications[J]. Advanced Materials Technologies,2019,4(10):1900426. doi: 10.1002/admt.201900426 [33] HAN Z, LI H, XIAO J, et al. Ultralow-cost, highly sensitive, and flexible pressure sensors based on carbon black and airlaid paper for wearable electronics[J]. ACS Applied Materials & Interfaces,2019,11(36):33370-33379. [34] KIM Y R, KIM M P, PARK J, et al. Binary spiky/spherical nanoparticle films with hierarchical micro/nanostructures for high-performance flexible pressure sensors[J]. ACS Applied Materials & Interfaces,2020,12(52):58403-58411. [35] KIM H, LEE S W, JOH H, et al. Chemically designed metallic/insulating hybrid nanostructures with silver nanocrystals for highly sensitive wearable pressure sensors[J]. ACS Applied Materials & Interfaces,2018,10(1):1389-1398. [36] XU H, CHEN W, WANG C, et al. Ultralight and flexible silver nanoparticle-wrapped "scorpion pectine-like" polyimide hybrid aerogels as sensitive pressor sensors with wide temperature range and consistent conductivity response[J]. Chemical Engineering Journal,2023,453:139647. doi: 10.1016/j.cej.2022.139647 [37] CHEN M, LUO W, XU Z, et al. An ultrahigh resolution pressure sensor based on percolative metal nanoparticle arrays[J]. Nature Communications,2019,10(1):1-9. doi: 10.1038/s41467-018-07882-8 [38] CHANG H, KIM S, KANG T H, et al. Wearable piezoresistive sensors with ultrawide pressure range and circuit compatibility based on conductive-island-bridging nanonetworks[J]. ACS Applied Materials & Interfaces,2019,11(35):32291-32300. [39] DOSHI S M, THOSTENSON E T. Thin and flexible carbon nanotube-based pressure sensors with ultrawide sensing range[J]. ACS Sensors,2018,3(7):1276-1282. doi: 10.1021/acssensors.8b00378 [40] ZHU B, LING Y, YAP L W, et al. Hierarchically structured vertical gold nanowire array-based wearable pressure sensors for wireless health monitoring[J]. ACS Applied Materials & Interfaces,2019,11(32):29014-29021. [41] HA M, LIM S, PARK J, et al. Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins[J]. Advanced Functional Materials,2015,25(19):2841-2849. doi: 10.1002/adfm.201500453 [42] SONG Y X, XU W M, RONG M Z, et al. A sunlight self-healable fibrous flexible pressure sensor based on electrically conductive composite wool yarns[J]. Express Polymer Letters, 2020, 14(11): 1089-1104. [43] LUO C, LIU N, ZHANG H, et al. A new approach for ultrahigh-performance piezoresistive sensor based on wrinkled PPy film with electrospun PVA nanowires as spacer[J]. Nano Energy,2017,41:527-534. doi: 10.1016/j.nanoen.2017.10.007 [44] ZHAO X F, HANG C Z, WEN X H, et al. Ultrahigh-sensitive finlike double-sided E-skin for force direction detection[J]. ACS Applied Materials & Interfaces,2020,12(12):14136-14144. [45] PANG Y, ZHANG K, YANG Z, et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity[J]. ACS nano,2018,12(3):2346-2354. doi: 10.1021/acsnano.7b07613 [46] HE J, XIAO P, LU W, et al. A universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor[J]. Nano Energy,2019,59:422-433. doi: 10.1016/j.nanoen.2019.02.036 [47] YUE Z, YE X, LIU S, et al. Towards ultra-wide operation range and high sensitivity: Graphene film based pressure sensors for fingertips[J]. Biosensors and Bioelectronics,2019,139:111296. doi: 10.1016/j.bios.2019.05.001 [48] CHENG Y, MA Y, LI L, et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor[J]. ACS Nano,2020,14(2):2145-2155. doi: 10.1021/acsnano.9b08952 [49] ZHENG Y, YIN R, ZHAO Y, et al. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin[J]. Chemical Engineering Journal,2021,420:127720. doi: 10.1016/j.cej.2020.127720 [50] XIANG Y, FANG L, WU F, et al. 3D crinkled alk-Ti3C2 MXene based flexible piezoresistive sensors with ultra-high sensitivity and ultra-wide pressure range[J]. Advanced Materials Technologies,2021,6(6):2001157. doi: 10.1002/admt.202001157 [51] PATANIYA P M, BHAKHAR S A, TANNARANA M, et al. Highly sensitive and flexible pressure sensor based on two-dimensional MoSe2 nanosheets for online wrist pulse monitoring[J]. Journal of Colloid and Interface Science,2021,584:495-504. doi: 10.1016/j.jcis.2020.10.006 [52] TANNARANA M, SOLANKI G K, BHAKHAR S A, et al. 2D-SnSe2 nanosheet functionalized piezo-resistive flexible sensor for pressure and human breath monitoring[J]. ACS Sustainable Chemistry & Engineering,2020,8(20):7741-7749. [53] LI W, HE K, ZHANG D, et al. Flexible and high performance piezoresistive pressure sensors based on hierarchical flower-shaped SnSe2 nanoplates[J]. ACS Applied Energy Materials,2019,2(4):2803-2809. doi: 10.1021/acsaem.9b00147 [54] TEN ELSHOF J E, YUAN H, GONZALEZ RODRIGUEZ P. Two-dimensional metal oxide and metal hydroxide nanosheets: Synthesis, controlled assembly and applications in energy conversion and storage[J]. Advanced Energy Materials,2016,6(23):1600355. doi: 10.1002/aenm.201600355 [55] MATSUBA K, WANG C, SARUWATARI K, et al. Neat monolayer tiling of molecularly thin two-dimensional materials in 1 min[J]. Science Advances,2017,3(6):e1700414. doi: 10.1126/sciadv.1700414 [56] ZHONG M, ZHANG L, LIU X, et al. Wide linear range and highly sensitive flexible pressure sensor based on multistage sensing process for health monitoring and human-machine interfaces[J]. Chemical Engineering Journal,2021,412:128649. doi: 10.1016/j.cej.2021.128649 [57] FU X, ZHAO L, YUAN Z, et al. Hierarchical MXene@ZIF-67 film based high performance tactile sensor with large sensing range from motion monitoring to sound wave detection[J]. Advanced Materials Technologies,2022,7(8):2101511. [58] ZHANG H, LIU N, SHI Y, et al. Piezoresistive sensor with high elasticity based on 3D hybrid network of sponge@CNTs@Ag NPs[J]. ACS Applied Materials & Interfaces,2016,8(34):22374-22381. [59] SU T, LIU N, GAO Y, et al. MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances[J]. Nano Energy,2021,87:106151. doi: 10.1016/j.nanoen.2021.106151 [60] LI X, FAN Y J, LI H Y, et al. Ultracomfortable hierarchical nanonetwork for highly sensitive pressure sensor[J]. ACS Nano,2020,14(8):9605-9612. doi: 10.1021/acsnano.9b10230 [61] CAO X, ZHANG J, CHEN S, et al. 1D/2D nanomaterials synergistic, compressible, and response rapidly 3D graphene aerogel for piezoresistive sensor[J]. Advanced Functional Materials,2020,30(35):2003618. doi: 10.1002/adfm.202003618 [62] WOO H K, KIM H, JEON S, et al. One-step chemical treatment to design an ideal nanospacer structure for a highly sensitive and transparent pressure sensor[J]. Journal of Materials Chemistry C,2019,7(17):5059-5066. doi: 10.1039/C9TC00820A [63] WEI Y, CHEN S, DONG X, et al. Flexible piezoresistive sensors based on "dynamic bridging effect" of silver nanowires toward graphene[J]. Carbon,2017,113:395-403. doi: 10.1016/j.carbon.2016.11.027 [64] ZHENG S, WU X, HUANG Y, et al. Multifunctional and highly sensitive piezoresistive sensing textile based on a hierarchical architecture[J]. Composites Science and Technology,2020,197:108255. doi: 10.1016/j.compscitech.2020.108255 [65] LI Y, CUI Y, ZHANG M, et al. Ultrasensitive pressure sensor sponge using liquid metal modulated nitrogen-doped graphene nanosheets[J]. Nano Letters,2022,22(7):2817-2825. doi: 10.1021/acs.nanolett.1c04976 [66] CHEN T, WU G, PANAHI-SARMAD M, et al. A novel flexible piezoresistive sensor using superelastic fabric coated with highly durable SEBS/TPU/CB/CNF nanocomposite for detection of human motions[J]. Composites Science and Technology,2022,227:109563. doi: 10.1016/j.compscitech.2022.109563 -