留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米材料在柔性压阻式压力传感器中的研究进展

汤桂君 殷柯柯 原会雨

汤桂君, 殷柯柯, 原会雨. 纳米材料在柔性压阻式压力传感器中的研究进展[J]. 复合材料学报, 2023, 40(7): 3722-3737. doi: 10.13801/j.cnki.fhclxb.20230225.001
引用本文: 汤桂君, 殷柯柯, 原会雨. 纳米材料在柔性压阻式压力传感器中的研究进展[J]. 复合材料学报, 2023, 40(7): 3722-3737. doi: 10.13801/j.cnki.fhclxb.20230225.001
TANG Guijun, YIN Keke, YUAN Huiyu. Research progress of nanomaterials in flexible piezoresistive pressure sensors[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3722-3737. doi: 10.13801/j.cnki.fhclxb.20230225.001
Citation: TANG Guijun, YIN Keke, YUAN Huiyu. Research progress of nanomaterials in flexible piezoresistive pressure sensors[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3722-3737. doi: 10.13801/j.cnki.fhclxb.20230225.001

纳米材料在柔性压阻式压力传感器中的研究进展

doi: 10.13801/j.cnki.fhclxb.20230225.001
基金项目: 国家自然科学基金 (51902290);国家市场监督管理总局科技计划项目(2021MK062)
详细信息
    通讯作者:

    原会雨,博士,副教授,博士生导师,研究方向为新型纳米陶瓷粉体的制备、构效关系及应用开发 E-mail: hyyuan@zzu.edu.cn

  • 中图分类号: TB33

Research progress of nanomaterials in flexible piezoresistive pressure sensors

Funds: National Natural Science Foundation of China (51902290); Science and Technology Program of the State Administration for Market Regulation (2021MK062)
  • 摘要: 随着柔性压力传感器在健康检测、电子皮肤和可穿戴电子设备等领域中的快速发展,制备出具有优良性能的柔性压力传感器越来越迫切。纳米材料因其具有表面与界面效应、小尺寸效应及宏观量子隧道效应的存在,从而可对柔性压力传感器的性能进行优化。基于纳米材料的压力传感器具有体积小、检测范围宽、灵敏度高等优良性能,本文综述了近几年纳米材料在柔性压阻式压力传感器中的最新研究进展。

     

  • 图  1  零维纳米材料在柔性压阻式压力传感器中的应用:(a) 炭黑(CB)纳米粒子[33];((b), (c)) 金属银纳米粒子(AgNPs)[32];((d)~(g)) 金属铂纳米粒子(PdNPs)[34]

    Figure  1.  Application of 0D materials in flexible piezoresistive pressure sensors: (a) Carbon black (CB) nanoparticles[33]; ((b), (c)) Silver nanoparticles (AgNPs)[32]; ((d)-(g)) Platinum nanoparticles (PdNPs)[34]

    AP—Airlaid paper

    图  2  (a) 由海胆形金属纳米粒子(SSNPs)和聚氨酯(PU)组成的压力传感器的制造示意图[25];基于聚苯胺(PANI)/SiO2纳米颗粒的压力传感器:(b) 海胆形PANI/SiO2颗粒;(c)球形 PANI@SiO2颗粒;(d)压力传感器的横截面 SEM 图像[34];(e)联锁粗糙和多孔微结构在负载压力下的电流行为;(f) 二元纳米颗粒之间的电流;(g)基于银纳米晶体(AgNCs) 的压力传感器的工作原理图[35]

    Figure  2.  (a) Schematic illustration for fabrication of a pressure sensor composed of sea-urchin shaped metal nanoparticles (SSNPs) and polyurethane (PU)[25]; PANI@silica-based pressure sensor: (b) A sea-urchin-shaped PANI@silica particle; (c) A spherical PANI@silica particle; (d) Cross-sectional SEM image of the pressure sensor; (e) Current flow behavior of the interlocked rough and porous microstructure under loading pressure; (f) Current flow between binary nanoparticles[34]; (g) Working principle diagram of pressure sensor based on silver nanocrystals (AgNCs)[35]

    NPs—Nanoparticles; ITO/PET—Indium tin oxide/polyethylene terephthalate; EDT—1,2-ethanedithiol; PDMS—Polydimethylsiloxane

    图  3  (a) 在微结构 PDMS 薄膜上形成单壁碳纳米管(SWNTs)纳米网络的示意图[38];(b) 基于聚乙烯亚胺-碳纳米管(PEI-CNTs)材料的柔性压阻式压力传感器的传感机制[39];(c) 微结构PDMS薄膜上垂直排列的金纳米线(v-AuNWs)阵列生长过程示意图;(d) 基于v-AuNWs/PDMS传感器结构示意图[40]

    Figure  3.  (a) Schematics of procedures for forming single-walled carbon nanotubes (SWNTs) nanonetworks on selected locations of microstructured PDMS films [38]; (b) Sensing mechanism of flexible piezoresistive pressure sensor based on polythylenimine-carbon nanotubes (PEI-CNTs) material[39]; (c) Schematic of the growth process of vertically aligned gold nanowires (v-AuNWs) arrays on microstructured PDMS films; (d) Structure diagram of sensor based on v-AuNW/PDMS[40]

    DCB—Dichlorobenzene; APTES—3-aminopropyltriethoxysilane

    图  4  随机分布棘微结构(RDS)石墨烯压力传感器的工作机制:对应于卸载初始状态(a)、轻载(b)和重载(c)的电路模型的示意图[45];基于微棘状 MXene 的传感器的传感机制:微棘传感器在原始状态(d)、轻载(e)、重载(f)和恢复(g)条件下的原位横截面SEM图像和相应的微观结构模型[48]; (h) 装置结构示意图;(i) 压力传感器工作原理示意图[31]

    Figure  4.  Working mechanism of the random distribution spinosum (RDS) graphene pressure sensor: Photographs and schematic illustrations of circuit models corresponding to initial state of unloading (a), light loading (b), and heavy loading (c)[45]; In situ cross-sectional SEM image and corresponding microstructural models of the microspinous sensor in the original state (d), under light loading (e), heavy loading (f), and recovery (g)[48]; Device structure (h) and working principle (i) of the pressure sensor[31]

    Ri—Intrinsic resistance of the interdigital electrode; Rs—Resistance of the increased conductive paths under light loading; Rb—Resistance of the increased conductive paths under heavy loading; Rh—Resistance in the hole; Rc1—Resistance of contact interfaces; Rc2—Resistance of cracks in the rGO

    图  5  (a) rGO-CB@丝瓜海绵(LS)的制备过程示意图[28];((b), (c)) 分层 ZIF-67晶体/MXene 杂化材料的合成示意图;(d) 柔性压力传感器的示意图[57]

    Figure  5.  (a) Schematic diagram of the preparation process of rGO-CB@loofah sponge (LS) [28]; ((b), (c)) Schematic illustration of the synthesis of the hierarchical ZIF-67 crystal/MXene hybrid materials; (d) Illustration of the flexible pressure sensor[57]

    RT—Room temperature

    图  6  纳米压阻式压力传感器在人体健康检测领域中的应用:响应气体流量增加的电流变化(a)和相应的静压值(b);呼吸监测系统的照片(c)及显示呼吸强度的图(d);径向脉冲压力感知系统照片(e)和径向脉冲信号(f);颈动脉脉压测量系统照片(g)和颈动脉脉冲信号(h)[34]

    Figure  6.  Application of nano piezoresistive pressure sensor in human health detection field: Current variations in response to gas flow increase (a) and corresponding static pressure values (b); Photograph of the respiration monitoring system (c) and graphs showing the breath intensity (d); Photograph of the radial pulse pressure perception system (e) and radial pulse signal (f); Photograph of the carotid pulse pressure measurement system (g) and carotid pulse signal (h) [34]

    ΔI/I0—Current variation; ΔTDVP—Digital volume pulse time; P0-P3—Distinguishable peaks

    图  7  纳米压阻式压力传感器在实时运动监测领域的应用:(a) 手指弯曲运动;(b) 重复手指弯曲运动;(c) 握紧拳头运动[25];(d) 装在脚后跟的传感器照片;(e) 行走、奔跑和跳跃时传感器检测到的信号[45]

    Figure  7.  Resistance response (R/R0) of the sensor in response to finger bending motion (a), repetitive finger bending motion (b), and clenched fist motion (c)[25] ; Photograph of the sensor put on the heel of the foot (d) and its detected signal when walking, running, and jumping (e)[45]

    图  8  (a) MXene基压阻传感器4×4阵列照片及相应压力分布检测;(b) 安装在机器人上的压力传感器的照片(插图:传感位置的放大视图)和对其运动行为的响应检测;(c) 带有蓝牙电路模块的压阻式传感器将其电流信号转换为便携式移动设备显示器 [48]

    Figure  8.  (a) Photograph of the 4×4 array of MXene-based piezoresistive sensor and detection of thecorresponding pressure distributions; (b) Photograph of the pressure sensor assembled on a robot (Inset: Enlarged view of the sensing position) and detection of its response tothe motion behavior; (c) Piezoresistive sensor with a Bluetooth circuit module converts its current signal to a portable mobile device display [48]

    表  1  基于零维纳米材料的柔性压阻式压力传感器性能

    Table  1.   Performance of flexible piezoresistive pressure sensors based on 0D materials

    MaterialMinimum
    detection/Pa
    Maximum
    detection/kPa
    Maximum
    sensitivity/kPa−1
    Response time/msRepeatabilityRef.
    PET/PU-metal nanoparticles0.3182.4630600[25]
    Polyimide (PI)/AgNPs0.110014002001000[32]
    Carbon black/paper13051.23<2003600[33]
    PANI-SiO2812017.5906000[34]
    PDMS/AgNPs101002.72×1041007000[35]
    PI/AgNPs aerogels−1.563×10469.256.93000[36]
    PET/PdNPs0.5400.13500[37]
    下载: 导出CSV

    表  2  基于一维纳米材料的柔性压阻式压力传感器性能

    Table  2.   Performance of flexible piezoresistive pressure sensors based on 1D materials

    MaterialMinimum
    detection/Pa
    Maximum
    detection/kPa
    Maximum
    sensitivity/kPa−1
    Response time/msRepeatabilityRef.
    PDMS/CNTs30005.66×10−33001000[21]
    PDMS/SWNTs1204000.062310000[38]
    Fiber/CNTs25004×10450550[39]
    PDMS/AuNWs323<10>10000[40]
    PDMS/ZnO NWs0.613.16.8<51000[41]
    AgNWs/polyurethane/wool yarn520.69285000[42]
    PET/ITO/polyvinyl alcohol nanowire/polypyrrole (PPy)2.979228.566.810000[43]
    Sponge/CNTs1001004015.81205000[44]
    下载: 导出CSV

    表  3  基于二维纳米材料的柔性压阻式压力传感器性能

    Table  3.   Performance of flexible piezoresistive pressure sensors based on 2D materials

    MaterialMinimum
    detection/Pa
    Maximum
    detection/kPa
    Maximum
    sensitivity/kPa−1
    Response time/msRepeatabilityRef.
    PET/MXene/polyacrylonitrile1.57.71043010000[20]
    PET/ITO/2D titanate2300.47.2×106100500[31]
    PDMS/reduced graphene oxide (rGO)162.625.11203000[45]
    PDMS/graphene1.8401875.530.515000[46]
    PET/graphene20010.3911.61100[47]
    PDMS/MXene4.415151.412520000[48]
    Cotton fabric/MXene2251605.3501000[49]
    PDMS/MXene178001104.381003000[50]
    Tissue papers/MoSe2110018.42110200[51]
    Paper/SnSe21001.795000[52]
    PDMS/Au/Au/SnSe20.8238.4433.220.09>4000[53]
    下载: 导出CSV

    表  4  基于复合纳米材料的柔性压阻式压力传感器性能

    Table  4.   Performance of flexible piezoresistive pressure sensors based on composite nanomaterials

    MaterialMinimum
    detection/Pa
    Maximum
    detection/kPa
    Maximum
    sensitivity/kPa−1
    Response time/msRepeatabilityRef.
    rGO-CB/sponge10021.894205000[28]
    CNTs/rGO-cellulose nanofibers carbon aerogel0.875522.052000[29]
    rGO-AgNWs/cotton100204.23200[30]
    PDMS/carbon fibers/CNPs2060026.6405000[56]
    PET/Au/MXene/MOFs3.5100110.01513000[57]
    Sponge/CNTs/AgNPs224061.819.082000[58]
    MXene/cellulose nanofiber (CNF)/foam420.55649.312310000[59]
    AgNWs/graphene/nanofibers3.775134<208000[60]
    Nanofiber/graphene/aerogel<31428.62372600[61]
    PET/AgNWs/ZnO NPs753.32×1031202000[62]
    Cotton/AgNWs/rGO0.12555.829.510000[63]
    Textile/rGO/polyaniline nanorod0.54097.283011000[64]
    PDMS/liquid metal (gallium)/graphene17.13.447641010000[65]
    CB/CNF/thermoplastic polyurethane/styrene-ethylene/butylene-styrene2000.0316500>1000[66]
    下载: 导出CSV
  • [1] ZHANG H, LIN L, HU N, et al. Pillared carbon@tungsten decorated reduced graphene oxide film for pressure sensors with ultra-wide operation range in motion monitoring[J]. Carbon,2022,189:430-442. doi: 10.1016/j.carbon.2021.12.080
    [2] ZOU Q, HE K, OUYANG J, et al. Highly sensitive and durable sea-urchin-shaped silver nanoparticles strain sensors for human-activity monitoring[J]. ACS Applied Materials & Interfaces,2021,13(12):14479-14488. doi: 10.1021/acsami.0c22756
    [3] YANG J, TANG D, AO J, et al. Ultrasoft liquid metal elastomer foams with positive and negative piezopermittivity for tactile sensing[J]. Advanced Functional Materials,2020,30(36):2002611. doi: 10.1002/adfm.202002611
    [4] LIM S, SON D, KIM J, et al. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures[J]. Advanced Functional Materials,2015,25(3):375-383. doi: 10.1002/adfm.201402987
    [5] HUANG J, LI D, ZHAO M, et al. Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors[J]. Chemical Engineering Journal,2019,373:1357-1366. doi: 10.1016/j.cej.2019.05.136
    [6] CAI J H, LI J, CHEN X D, et al. Multifunctional polydimethylsiloxane foam with multi-walled carbon nanotube and thermo-expandable microsphere for temperature sensing, microwave shielding and piezoresistive sensor[J]. Chemical Engineering Journal,2020,393:124805. doi: 10.1016/j.cej.2020.124805
    [7] LI J, CHEN S, LIU W, et al. High performance piezoelectric nanogenerators based on electrospun ZnO nanorods/poly (vinylidene fluoride) composite membranes[J]. The Jour-nal of Physical Chemistry C,2019,123(18):11378-11387. doi: 10.1021/acs.jpcc.8b12410
    [8] DAI Y, FU Y, ZENG H, et al. A self-powered brain-linked vision electronic-skin based on triboelectric-photodetecing pixel-addressable matrix for visual-image recognition and behavior intervention[J]. Advanced Functional Materials,2018,28(20):1800275. doi: 10.1002/adfm.201800275
    [9] YUE Y, LIU N, LIU W, et al. 3D hybrid porous MXene-sponge network and its application in piezoresistive sensor[J]. Nano Energy,2018,50:79-87. doi: 10.1016/j.nanoen.2018.05.020
    [10] WANG Z, HU T, LIANG R, et al. Application of zero-dimensional nanomaterials in biosensing[J]. Frontiers in Chemistry,2020,8:320. doi: 10.3389/fchem.2020.00320
    [11] GONG S, CHENG W. One-dimensional nanomaterials for soft electronics[J]. Advanced Electronic Materials,2017,3(3):1600314. doi: 10.1002/aelm.201600314
    [12] 刘璐, 王李波, 刘大荣, 等. 二维纳米材料在柔性压阻传感器中的应用研究进展[J]. 材料导报, 2022, 36(4): 19-28.

    LIU Lu, WANG Libo, LIU Darong, et al. Research progress of two-dimensional nanomaterials in flexible piezoresistive sensor[J]. Materials Review, 2022, 36(4): 19-28(in Chinese).
    [13] 宋璐, 左小磊, 李敏. 柔性可穿戴传感器及其应用研究[J]. 分析化学, 2022, 50(11):1661-1672.

    SONG Lu, ZUO Xiaolei, LI Min. Flexible wearable sensor and its application study[J]. Journal of Analytical Chemistry,2022,50(11):1661-1672(in Chinese).
    [14] 胡苗苗, 赵昕, 任宝娜, 等. 基于静电纺纳米纤维的柔性可穿戴压力传感器的研究进展[J]. 材料工程, 2023, 51(2): 15-27.

    HU Miaomiao, ZHAO Xin, REN Baona, et al. Research progress of flexible wearable pressure sensor based on electrostatic spinning nanofibers[J]. Materials Engineering, 2023, 51(2): 15-27(in Chinese).
    [15] 于江涛, 孙雷, 肖瑶, 等. 压阻式柔性压力传感器的研究进展[J]. 电子元件与材料, 2019, 38(6):1-11. doi: 10.14106/j.cnki.1001-2028.2019.06.001

    YU Jiangtao, SUN Lei, XIAO Yao, et al. The research progress of piezoresistive type flexible pressure sensor[J]. Journal of Electronic Components and Materials,2019,38(6):1-11(in Chinese). doi: 10.14106/j.cnki.1001-2028.2019.06.001
    [16] 李凤超, 孔振, 吴锦华, 等. 柔性压阻式压力传感器的研究进展[J]. 物理学报, 2021, 70(10):7-24.

    LI Fengchao, KONG Zhen, WU Jinhua, et al. Research progress of flexible piezoresistive pressure sensor[J]. Chinese Journal of Physics,2021,70(10):7-24(in Chinese).
    [17] 虞沛芾, 李伟. 薄膜压力传感器的研究进展[J]. 有色金属材料与工程, 2020, 9(2):47-54.

    YU Peifu, LI Wei. The research progress of thin film pressure sensor[J]. Non-ferrous Metal Materials and Engineering,2020,9(2):47-54(in Chinese).
    [18] HUANG Y, FAN X, CHEN S C, et al. Emerging technologies of flexible pressure sensors: Materials, modeling, devices, and manufacturing[J]. Advanced Functional Materials,2019,29(12):1808509. doi: 10.1002/adfm.201808509
    [19] LEE Y, MYOUNG J, CHO S, et al. Bioinspired gradient conductivity and stiffness for ultrasensitive electronic skins[J]. ACS Nano,2020,15(1):1795-1804.
    [20] FU X, WANG L, ZHAO L, et al. Controlled assembly of MXene nanosheets as an electrode and active layer for high-performance electronic skin[J]. Advanced Functional Materials,2021,31(17):2010533. doi: 10.1002/adfm.202010533
    [21] JEONG Y, GU J, BYUN J, et al. Ultra-wide range pressure sensor based on a microstructured conductive nanocomposite for wearable workout monitoring[J]. Advanced Healthcare Materials,2021,10(9):2001461. doi: 10.1002/adhm.202001461
    [22] CHENG H, WANG B, YANG K, et al. A high-performance piezoresistive sensor based on poly(styrene-co-methacrylic acid)@polypyrrole microspheres/graphene-decorated TPU electrospun membrane for human motion detection[J]. Chemical Engineering Journal,2021,426:131152. doi: 10.1016/j.cej.2021.131152
    [23] LONG S, FENG Y, HE F, et al. Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators[J]. Nano Energy,2021,85:105973. doi: 10.1016/j.nanoen.2021.105973
    [24] GAO L, ZHU C, LI L, et al. All paper-based flexible and wearable piezoresistive pressure sensor[J]. ACS Applied Materials & Interfaces,2019,11(28):25034-25042.
    [25] LEE D, LEE H, JEONG Y, et al. Highly sensitive, transparent, and durable pressure sensors based on sea-urchin shaped metal nanoparticles[J]. Advanced Materials,2016,28(42):9364-9369. doi: 10.1002/adma.201603526
    [26] BI L, YANG Z, CHEN L, et al. Compressible AgNWs/Ti3C2Tx MXene aerogel-based highly sensitive piezoresistive pressure sensor as versatile electronic skins[J]. Journal of Materials Chemistry A,2020,8(38):20030-20036. doi: 10.1039/D0TA07044K
    [27] YANG Y, CAO Z, HE P, et al. Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response[J]. Nano Energy,2019,66:104134. doi: 10.1016/j.nanoen.2019.104134
    [28] CAO M, FAN S, QIU H, et al. CB nanoparticles optimized 3D wearable graphene multifunctional piezoresistive sensor framed by loofah sponge[J]. ACS Applied Materials & Interfaces,2020,12(32):36540-36547.
    [29] PENG X, WU K, HU Y, et al. A mechanically strong and sensitive CNT/rGO-CNF carbon aerogel for piezoresistive sensors[J]. Journal of Materials Chemistry A,2018,6(46):23550-23559. doi: 10.1039/C8TA09322A
    [30] CAO M, WANG M, LI L, et al. Wearable rGO-Ag NW@cotton fiber piezoresistive sensor based on the fast charge transport channel provided by Ag nanowire[J]. Nano Energy,2018,50:528-535. doi: 10.1016/j.nanoen.2018.05.038
    [31] LIU H, FENG B, BAI X, et al. Two-dimensional oxide based pressure sensors with high sensitivity[J]. Nano Select,2022,3(1):51-59. doi: 10.1002/nano.202100053
    [32] BI P, LIU X, YANG Y, et al. Silver-nanoparticle-modified polyimide for multiple artificial skin-sensing applications[J]. Advanced Materials Technologies,2019,4(10):1900426. doi: 10.1002/admt.201900426
    [33] HAN Z, LI H, XIAO J, et al. Ultralow-cost, highly sensitive, and flexible pressure sensors based on carbon black and airlaid paper for wearable electronics[J]. ACS Applied Materials & Interfaces,2019,11(36):33370-33379.
    [34] KIM Y R, KIM M P, PARK J, et al. Binary spiky/spherical nanoparticle films with hierarchical micro/nanostructures for high-performance flexible pressure sensors[J]. ACS Applied Materials & Interfaces,2020,12(52):58403-58411.
    [35] KIM H, LEE S W, JOH H, et al. Chemically designed metallic/insulating hybrid nanostructures with silver nanocrystals for highly sensitive wearable pressure sensors[J]. ACS Applied Materials & Interfaces,2018,10(1):1389-1398.
    [36] XU H, CHEN W, WANG C, et al. Ultralight and flexible silver nanoparticle-wrapped "scorpion pectine-like" polyimide hybrid aerogels as sensitive pressor sensors with wide temperature range and consistent conductivity response[J]. Chemical Engineering Journal,2023,453:139647. doi: 10.1016/j.cej.2022.139647
    [37] CHEN M, LUO W, XU Z, et al. An ultrahigh resolution pressure sensor based on percolative metal nanoparticle arrays[J]. Nature Communications,2019,10(1):1-9. doi: 10.1038/s41467-018-07882-8
    [38] CHANG H, KIM S, KANG T H, et al. Wearable piezoresistive sensors with ultrawide pressure range and circuit compatibility based on conductive-island-bridging nanonetworks[J]. ACS Applied Materials & Interfaces,2019,11(35):32291-32300.
    [39] DOSHI S M, THOSTENSON E T. Thin and flexible carbon nanotube-based pressure sensors with ultrawide sensing range[J]. ACS Sensors,2018,3(7):1276-1282. doi: 10.1021/acssensors.8b00378
    [40] ZHU B, LING Y, YAP L W, et al. Hierarchically structured vertical gold nanowire array-based wearable pressure sensors for wireless health monitoring[J]. ACS Applied Materials & Interfaces,2019,11(32):29014-29021.
    [41] HA M, LIM S, PARK J, et al. Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins[J]. Advanced Functional Materials,2015,25(19):2841-2849. doi: 10.1002/adfm.201500453
    [42] SONG Y X, XU W M, RONG M Z, et al. A sunlight self-healable fibrous flexible pressure sensor based on electrically conductive composite wool yarns[J]. Express Polymer Letters, 2020, 14(11): 1089-1104.
    [43] LUO C, LIU N, ZHANG H, et al. A new approach for ultrahigh-performance piezoresistive sensor based on wrinkled PPy film with electrospun PVA nanowires as spacer[J]. Nano Energy,2017,41:527-534. doi: 10.1016/j.nanoen.2017.10.007
    [44] ZHAO X F, HANG C Z, WEN X H, et al. Ultrahigh-sensitive finlike double-sided E-skin for force direction detection[J]. ACS Applied Materials & Interfaces,2020,12(12):14136-14144.
    [45] PANG Y, ZHANG K, YANG Z, et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity[J]. ACS nano,2018,12(3):2346-2354. doi: 10.1021/acsnano.7b07613
    [46] HE J, XIAO P, LU W, et al. A universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor[J]. Nano Energy,2019,59:422-433. doi: 10.1016/j.nanoen.2019.02.036
    [47] YUE Z, YE X, LIU S, et al. Towards ultra-wide operation range and high sensitivity: Graphene film based pressure sensors for fingertips[J]. Biosensors and Bioelectronics,2019,139:111296. doi: 10.1016/j.bios.2019.05.001
    [48] CHENG Y, MA Y, LI L, et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor[J]. ACS Nano,2020,14(2):2145-2155. doi: 10.1021/acsnano.9b08952
    [49] ZHENG Y, YIN R, ZHAO Y, et al. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin[J]. Chemical Engineering Journal,2021,420:127720. doi: 10.1016/j.cej.2020.127720
    [50] XIANG Y, FANG L, WU F, et al. 3D crinkled alk-Ti3C2 MXene based flexible piezoresistive sensors with ultra-high sensitivity and ultra-wide pressure range[J]. Advanced Materials Technologies,2021,6(6):2001157. doi: 10.1002/admt.202001157
    [51] PATANIYA P M, BHAKHAR S A, TANNARANA M, et al. Highly sensitive and flexible pressure sensor based on two-dimensional MoSe2 nanosheets for online wrist pulse monitoring[J]. Journal of Colloid and Interface Science,2021,584:495-504. doi: 10.1016/j.jcis.2020.10.006
    [52] TANNARANA M, SOLANKI G K, BHAKHAR S A, et al. 2D-SnSe2 nanosheet functionalized piezo-resistive flexible sensor for pressure and human breath monitoring[J]. ACS Sustainable Chemistry & Engineering,2020,8(20):7741-7749.
    [53] LI W, HE K, ZHANG D, et al. Flexible and high performance piezoresistive pressure sensors based on hierarchical flower-shaped SnSe2 nanoplates[J]. ACS Applied Energy Materials,2019,2(4):2803-2809. doi: 10.1021/acsaem.9b00147
    [54] TEN ELSHOF J E, YUAN H, GONZALEZ RODRIGUEZ P. Two-dimensional metal oxide and metal hydroxide nanosheets: Synthesis, controlled assembly and applications in energy conversion and storage[J]. Advanced Energy Materials,2016,6(23):1600355. doi: 10.1002/aenm.201600355
    [55] MATSUBA K, WANG C, SARUWATARI K, et al. Neat monolayer tiling of molecularly thin two-dimensional materials in 1 min[J]. Science Advances,2017,3(6):e1700414. doi: 10.1126/sciadv.1700414
    [56] ZHONG M, ZHANG L, LIU X, et al. Wide linear range and highly sensitive flexible pressure sensor based on multistage sensing process for health monitoring and human-machine interfaces[J]. Chemical Engineering Journal,2021,412:128649. doi: 10.1016/j.cej.2021.128649
    [57] FU X, ZHAO L, YUAN Z, et al. Hierarchical MXene@ZIF-67 film based high performance tactile sensor with large sensing range from motion monitoring to sound wave detection[J]. Advanced Materials Technologies,2022,7(8):2101511.
    [58] ZHANG H, LIU N, SHI Y, et al. Piezoresistive sensor with high elasticity based on 3D hybrid network of sponge@CNTs@Ag NPs[J]. ACS Applied Materials & Interfaces,2016,8(34):22374-22381.
    [59] SU T, LIU N, GAO Y, et al. MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances[J]. Nano Energy,2021,87:106151. doi: 10.1016/j.nanoen.2021.106151
    [60] LI X, FAN Y J, LI H Y, et al. Ultracomfortable hierarchical nanonetwork for highly sensitive pressure sensor[J]. ACS Nano,2020,14(8):9605-9612. doi: 10.1021/acsnano.9b10230
    [61] CAO X, ZHANG J, CHEN S, et al. 1D/2D nanomaterials synergistic, compressible, and response rapidly 3D graphene aerogel for piezoresistive sensor[J]. Advanced Functional Materials,2020,30(35):2003618. doi: 10.1002/adfm.202003618
    [62] WOO H K, KIM H, JEON S, et al. One-step chemical treatment to design an ideal nanospacer structure for a highly sensitive and transparent pressure sensor[J]. Journal of Materials Chemistry C,2019,7(17):5059-5066. doi: 10.1039/C9TC00820A
    [63] WEI Y, CHEN S, DONG X, et al. Flexible piezoresistive sensors based on "dynamic bridging effect" of silver nanowires toward graphene[J]. Carbon,2017,113:395-403. doi: 10.1016/j.carbon.2016.11.027
    [64] ZHENG S, WU X, HUANG Y, et al. Multifunctional and highly sensitive piezoresistive sensing textile based on a hierarchical architecture[J]. Composites Science and Technology,2020,197:108255. doi: 10.1016/j.compscitech.2020.108255
    [65] LI Y, CUI Y, ZHANG M, et al. Ultrasensitive pressure sensor sponge using liquid metal modulated nitrogen-doped graphene nanosheets[J]. Nano Letters,2022,22(7):2817-2825. doi: 10.1021/acs.nanolett.1c04976
    [66] CHEN T, WU G, PANAHI-SARMAD M, et al. A novel flexible piezoresistive sensor using superelastic fabric coated with highly durable SEBS/TPU/CB/CNF nanocomposite for detection of human motions[J]. Composites Science and Technology,2022,227:109563. doi: 10.1016/j.compscitech.2022.109563
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  1226
  • HTML全文浏览量:  927
  • PDF下载量:  215
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-01
  • 修回日期:  2023-01-30
  • 录用日期:  2023-02-16
  • 网络出版日期:  2023-02-27
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回