留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玻璃纤维立体织物增强环氧树脂泡沫夹层复合材料的制备及力学性能

李华冠 丁颖 章月 项俊贤 汪杰 李建春

李华冠, 丁颖, 章月, 等. 玻璃纤维立体织物增强环氧树脂泡沫夹层复合材料的制备及力学性能[J]. 复合材料学报, 2022, 39(0): 1-11
引用本文: 李华冠, 丁颖, 章月, 等. 玻璃纤维立体织物增强环氧树脂泡沫夹层复合材料的制备及力学性能[J]. 复合材料学报, 2022, 39(0): 1-11
Huaguan LI, Ying DING, Yue ZHANG, Junxian XIANG, Jie WANG, Jianchun LI. Preparation and mechanical properties of glass fiber reinforced 3D fabric reinforced epoxy foam sandwich composites[J]. Acta Materiae Compositae Sinica.
Citation: Huaguan LI, Ying DING, Yue ZHANG, Junxian XIANG, Jie WANG, Jianchun LI. Preparation and mechanical properties of glass fiber reinforced 3D fabric reinforced epoxy foam sandwich composites[J]. Acta Materiae Compositae Sinica.

玻璃纤维立体织物增强环氧树脂泡沫夹层复合材料的制备及力学性能

基金项目: 国家自然科学基金 (52175327)
详细信息
    通讯作者:

    李华冠,博士,副教授,硕士生导师,研究方向为超混杂复合材料及夹层结构设计制造技术 E-mail: lihuaguan@njit.edu.cn

Preparation and mechanical properties of glass fiber reinforced 3D fabric reinforced epoxy foam sandwich composites

  • 摘要: 为了进一步提高泡沫夹层复合材料的承载能力和综合性能,实现其在轨道交通及汽车等工业领域的应用,开展了玻璃纤维立体织物增强环氧树脂泡沫复合材料(下称GF-Fabric/EP复合材料)的制备及其力学性能的研究。制备GF-Fabric/EP复合材料及其夹层结构,探索了GF-Fabric/EP复合材料及其夹层结构的失效行为,以揭示立体织物的增强机制。结果表明:立体织物的引入可显著改善GF-Fabric/EP复合材料的强度、刚度及破坏应变;但在不同承载条件下,各纱线发挥承载作用和效果不同。面板、芯材各自的性能、尺寸,以及面/芯界面性能均是影响与GF-Fabric/EP夹层复合材料力学性能及失效特征的重要因素。以三点加载下的弯曲性能为例,针对不同的GF-Fabric/EP夹层复合材料,需调整跨厚比和试样尺寸并获得理想的失效特征,方可对其弯曲性能或层间剪切性能进行有效、合理的评价。

     

  • 图  1  玻璃纤维立体织物示意图:(a) 整体外观;(b) 俯视图;(c) 经纱截面;(d) 纬纱截面

    Figure  1.  Schematic diagram of glass fiber three-dimensional fabric: (a) Overall appearance; (b) Top view; (c) warp cross section; (d) Weft cross section

    图  2  玻璃纤维立体织物增强环氧树脂泡沫复合材料(GF-Fabric/EP复合材料)及夹层结构的制备流程示意图

    Figure  2.  Schematic diagram of preparation process of glass fiber 3D fabric reinforced epoxy foam composites (GF-Fabric/EP composites) and sandwich structure

    图  3  试验过程示意图:(a) 压缩试验;(b) 拉伸试验;(c) 弯曲试验

    Figure  3.  Schematic diagram of test process: (a) Compression test; (b) Tensile test; (c) Bending test

    图  4  GF-Fabric/EP复合材料压缩有限元模型

    Figure  4.  Compression finite element model of GF-fabric/EP composite

    图  5  GF-Fabric/EP复合材料三点弯曲有限元模型

    Figure  5.  Three-point bending finite element model of GF-Fabric/EP composite

    图  6  GF-Fabric/EP复合材料与环氧树脂泡沫及其夹层复合材料的对比:(a) 载荷-位移曲线;(b) 压缩强度、压缩模量对比;(c) 试验与模拟载荷-位移曲线对比

    Figure  6.  Comparison of GF-Fabric/EP composites with epoxy foams and their sandwich composites: (a) Load-displacement curve; (b) Comparison of compressive strength and modulus; (c) Comparison between test and simulated load-displacement curves

    图  7  GF-Fabric/EP复合材料压缩仿真应力云图及实际失效图

    Figure  7.  Stress nephogram and actual failure diagram of GF-fabric/EP composite compression simulation

    图  8  模拟失效过程应变云图:(a) 环氧树脂泡沫;(b) 玻璃纤维中空织物填充的环氧树脂泡沫

    Figure  8.  Strain nephogram of simulated failure process: (a) Epoxy resin foam; (b) Epoxy resin foam filled with glass fiber 3D hollow fabric

    图  9  GF-Fabric/EP复合材料与环氧树脂泡沫及其夹层结构的弯曲性能:(a) 载荷-位移曲线; (b) 弯曲强度、弯曲模量对比;(c) 0.5 mm/1.5mm厚铝合金面板夹层结构载荷-位移曲线对比

    Figure  9.  Bending performance of GF-Fabric/EP composite and epoxy foam and their sandwich structures: (a) Load-displacement curve (b) Comparison of bending strength and modulus (c) Comparison of load-displacement curves of 0.5 mm/1.5 mm thick aluminum alloy panel sandwich structures

    图  10  玻璃纤维立体织物弯曲过程变量云图

    Figure  10.  Variable nephogram of bending process of glass fiber 3D fabric

    图  11  GF-Fabric/EP复合材料模拟与试验失效形貌对比

    Figure  11.  Comparison of simulated and experimental failure morphology of GF-Fabric/EP composites

    图  12  环氧树脂泡沫夹层复合材料的弯曲过程破坏应力云图:(a)~(c) 铝合金面板;(e)~(f) 环氧树脂泡沫

    Figure  12.  Failure stress nephogram of epoxy foam sandwich composites during bending process: (a)-(c) Aluminum alloy panels; (e)-(f) Epoxy foam

    图  13  环氧树脂泡沫夹层复合材料的弯曲过程形态示意图

    Figure  13.  Schematic diagram of bending process of epoxy foam sandwich composite

    图  14  环氧树脂泡沫夹层复合材料的弯曲破坏变形位移((a)~(c))及环氧树脂泡沫应力云图(d)

    Figure  14.  Bending failure deformation displacement of epoxy foam sandwich composite ((a)-(c)) and stress nephogram of epoxy foam (d)

    图  15  环氧树脂泡沫夹层复合材料(a)与GF-Fabric/EP夹层复合材料(b)的弯曲失效形貌

    Figure  15.  Bending failure morphologies of epoxy foam sandwich composite (a) and GF-Fabric/EP sandwich composite (b)

    表  1  环氧树脂泡沫的材料参数

    Table  1.   Material parameters of epoxy foam

    Elastic propertiesCrushable foam properties
    Young modulus/MPa
    27.23
    Poisson’s ratio
    0
    Compression yield stress ratio
    0.75
    Plastic Poisson’s ratio
    0
    下载: 导出CSV

    表  2  玻璃纤维立体织物基本力学性能参数

    Table  2.   Basic mechanical property parameters of glass fiber 3D fabric

    PerformanceDirectionParameter value
    Density/(g·mm−3) 2.6×10−3
    Elastic modulus/MPa E12 45000
    E13 5000
    E23 5000
    Poisson’s ratio ν12 0.33
    ν13 0.33
    ν23 0.45
    Shear modulus/MPa G12 5500
    G13 5500
    G23 3000
    下载: 导出CSV

    表  3  玻璃纤维立体织物的强度参数和损伤演化参数

    Table  3.   Strength parameters and damage evolution parameters of glass fiber 3D fabric

    PerformanceDirectionParameter value
    Strength/MPa Xt 1500
    Xc 1000
    Yt 100
    Yc 100
    S 50
    Fracture toughness/
    (kJ·m−2)
    Gft 12.5
    Gfc 12.5
    Gmt 1
    Gmc 1
    Notes:The three-dimensional Hashin criterion divides the material failure into four categories: fiber tensile failure (Gft), fiber compression failure (Gfc), matrix tensile failure (Gmt) and matrix compression failure (Gmc).
    下载: 导出CSV

    表  4  玻璃纤维立体织物与环氧树脂泡沫界面层材料参数[25]

    Table  4.   Material parameters of glass fiber 3D fabric and epoxy foam interface layer [25]

    ParameterDirectionParameter value
    Initial stiffness/(N·mm−1)Kn0
    Ks0
    Kt0
    106
    106
    106
    Interface strength/MPaτn0
    τs0
    τt0
    6
    6
    6
    下载: 导出CSV

    表  5  铝合金/环氧树脂泡沫界面层材料参数

    Table  5.   Material parameters of aluminum alloy/epoxy foam interface layer

    ParameterDirectionParameter value
    Initial stiffness/(N·mm−3)$ {K}_{\mathrm{n}\mathrm{n}}^{0}{=K}_{\mathrm{s}\mathrm{s}}^{0}{=K}_{\mathrm{t}\mathrm{t}}^{0} $106
    Interface strength/MPa$ {t}_{\mathrm{n}}^{0} $2.82
    $ {t}_{\mathrm{s}}^{0}={t}_{\mathrm{t}}^{0} $20.62
    Fracture energy/(kJ·m−2)$ {G}_{\mathrm{I}\mathrm{C}} $0.20
    $ {G}_{\mathrm{I}\mathrm{I}\mathrm{C}} $0.34
    Mixed mode indexη1.45
    下载: 导出CSV
  • [1] 王宝芹, 王沫楠, 刘长喜. 基于多尺度方法的蜂窝夹层复合材料结构轴向压缩稳定性[J]. 复合材料学报, 2020, 37(3):601-608.

    WANG BQ, WANG MN, LIU CX. Stability of honeycomb sandwich composite structure under axial compression based on multi-scale method[J]. Acta Materiae Compositae Sinica,2020,37(3):601-608(in Chinese).
    [2] HU Y, ZHU J, WANG JH, et al. Interfacial failure in stitched foam sandwich composites[J]. Matrials,2021,14(9):2275. doi: 10.3390/ma14092275
    [3] CAPRICHO JC, FOX B, HAMEED N. Multifunctionality in epoxy resins[J]. Polymer Reviews,2020,60(1):1-41. doi: 10.1080/15583724.2019.1650063
    [4] WANG Y, CHEN ZH, YU F. Preparation of epoxy-acrylic latex based on bisphenol f epoxy resin[J]. Journal of Macromolecular Science Part A-pure and Applied Chemistry,2018,55(2):205-212. doi: 10.1080/10601325.2017.1410065
    [5] ZHANG ZY, ZHANG WH, LI DS, et al. Mechanical and anticorrosive properties of graphene/epoxy resin composites coating prepared by in-situ method[J]. International Journal of Molecular Sciences,2015,16:2239-2251. doi: 10.3390/ijms16012239
    [6] 余为, 薛海龙, 钱蒙, 等. 浸泡腐蚀对玻璃纤维-空心玻璃微珠/环氧树脂复合泡沫材料弯曲性能的影响[J]. 复合材料学报, 2015, 32(6):1688-1695.

    YU W, XUE HL, QIAN M, et al. Effect of immersion corrosion on the bending properties of glass fiber hollow glass bead/epoxy composite foam[J]. Journal of composites,2015,32(6):1688-1695(in Chinese).
    [7] SHEN HB, NUTT S. Mechanical characterization of short fiber reinforced phenolic foam[J]. Composites:Part A,2003,34:899-906. doi: 10.1016/S1359-835X(03)00136-2
    [8] YA B, WANG YS, MENG LG, et al. Study on the performance of syntactic foam reinforced by hybrid functionalized carbon nanotubes[J]. Journal of Applied Polymer Science,2019,137(16):48586.
    [9] CHEN QH, DU SR, JIANG ZY, et al. Mechanical properties of foam sandwich with chopped-glass-fiber/carbon nanotube reinforced hierarchical structure interlayer[J]. Polymer Composites,2020,41(8):3411-3420. doi: 10.1002/pc.25630
    [10] 张靠民, 顾轶卓, 李敏, 等. 快速固化环氧树脂及其碳纤维/环氧复合材料性能[J]. 复合材料学报, 2013, 30(6):21-27. doi: 10.3969/j.issn.1000-3851.2013.06.004

    ZHANG KM, GU YZ, LI M, et al. Rapid curing epoxy resin and the properties of carbon fiber/epoxy composite[J]. Acta Materiae Compositae Sinica,2013,30(6):21-27(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.06.004
    [11] 马元春, 俸翔, 卢子兴, 等. 缝纫泡沫夹芯复合材料板的稳定性分析[J]. 复合材料学报, 2011, 28(2):201-205.

    MA YC, FENG X, LU ZX, et al. Stability analysis of stitched foam-core composite sandwich plates[J]. Acta Materiae Compositae Sinica,2011,28(2):201-205(in Chinese).
    [12] QUINTANA JM, MOWER TM. Thermomechanical behavior of sandwich panels with graphitic-foam cores[J]. Materials & Design,2017,135:411-422.
    [13] 王聪, 竺铝涛, 高晓平. 纳米增韧三维正交玻璃纤维机织物增强环氧树脂复合材料的力学性能[J]. 复合材料学报, 2020, 37(2):252-259.

    WANG C, ZHU LT, GAO XP. Mechanical properties of nano toughened three-dimensional orthogonal glass fiber woven fabric reinforced epoxy resin composites[J]. Journal of composites,2020,37(2):252-259(in Chinese).
    [14] 邓富泉, 张丽, 刘少祯, 等. 单向连续碳纤维-玻璃纤维层间混杂增强环氧树脂基复合材料的力学性能[J]. 复合材料学报, 2018, 35(7):1857-1863.

    DENG FQ, ZHANG L, LIU SZ, et al. Mechanical properties of unidirectional continuous carbon fiber glass fiber interlayer hybrid reinforced epoxy resin matrix composites[J]. Journal of composites,2018,35(7):1857-1863(in Chinese).
    [15] ZHANG TT, YAN Y, LI JF, et al. Low-velocity impact of honeycomb sandwich composite plates[J]. Journal of Reinforced Plastics and Composites,2015,35(01):8-32.
    [16] ANANDAN S, DHALIWAL G, GANGULY S, et al. Investigation of sandwich composite failure under three-point bending: Simulation and experimental validation[J]. Journal of Sandwich Structures & Materials,2020,22(6):1838-1858.
    [17] KULKARNI N, MAHFUZ H, JEELANI S, et al. Fatigue crack growth and life prediction of foam core sandwich composites under flexural loading[J]. Composite Structure,2003,59(04):499-505. doi: 10.1016/S0263-8223(02)00249-0
    [18] 中国国家标准化管理委员会(标准制定单位). 夹层结构或芯子平压性能试验方法: GB/T 1453-2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test method for flat compressive properties of sandwich structures or cores: GB/T 1453-2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [19] 中国国家标准化管理委员会(标准制定单位). 夹层结构平拉强度试验方法: GB/T 1452-2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test method for flat tensile strength of sandwich structures: GB/T 1452-2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [20] 中国国家标准化管理委员会(标准制定单位). 夹层结构弯曲性能试验方法: GB/T 1456-2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Test method for flexural properties of sandwich structures: GB/T 1456-2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [21] 中国国家标准化管理委员会(标准制定单位). 硬质泡沫塑料 弯曲性能的测定 第2部分: 弯曲强度和表观弯曲弹性模量的测定: GB/T 8812.2-2007[S]. 北京: 中国标准出版社, 2007.

    Standardization Administration of the People’s Republic of China. Determination of flexural properties of rigid cellular plastics second parts: Determination of flexural strength and apparent flexural modulus of elasticity: GB/T 8812.2-2007[S]. Beijing: China Standards Press, 2007(in Chinese).
    [22] HAN SH, LU AH, LIU YJ. Study on multi-axial mechanical properties of a polyurethane foam and experimental verification[J]. Advanced Materials Research,2011,311:301-308.
    [23] BELINGARDI G, MEHDIPOUR H, MANGINO E, et, al. Progressive damage analysis of a rate-dependent hybrid composite beam[J]. Composite Structures,2016,154:433-442. doi: 10.1016/j.compstruct.2016.07.055
    [24] 朱国华. 金属/碳纤维混合材料薄壁结构耐撞性研究[D]. 长沙: 湖南大学, 2018.

    ZHU GH. Study on crashworthiness of thin-walled structures made of metal/carbon fiber composites[D]. Changsha: Hunan University, 2018(in Chinese).
    [25] HASHIN Z, ROTEM A. A fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials,1973,7(4):448-464. doi: 10.1177/002199837300700404
    [26] An American National Standard. Standard Test methods for tension testing of metallic materials: ASTM E8/E 8M-08[S]. American Association State
    [27] YASAEE M, BOND I P, TRASK R S, et al. Mode I interfacial toughening through discontinuous interleaves for damage suppression and control[J]. Composites Part A:Applied Science and Manufacturing,2012,43(1):198-207. doi: 10.1016/j.compositesa.2011.10.009
    [28] KANG M S, JEON M H, KIM I G, et al. The characteristics for mode I interlaminar and intralaminar fractures of cross-ply carbon/epoxy composite laminates based on energy release rate[J]. Composites Research,2019,32(1):6-12.
  • 加载中
计量
  • 文章访问数:  127
  • HTML全文浏览量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-22
  • 录用日期:  2022-01-05
  • 修回日期:  2021-12-21
  • 网络出版日期:  2022-02-16

目录

    /

    返回文章
    返回