留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吸湿环境下环氧树脂内应力场的确定

彭术 倪爱清 王昌增 王继辉

彭术, 倪爱清, 王昌增, 等. 吸湿环境下环氧树脂内应力场的确定[J]. 复合材料学报, 2023, 41(0): 1-11
引用本文: 彭术, 倪爱清, 王昌增, 等. 吸湿环境下环氧树脂内应力场的确定[J]. 复合材料学报, 2023, 41(0): 1-11
Shu PENG, Aiqing NI, Changzeng WANG, Jihui WANG. Inner stress field in epoxy resin with moisture absorption[J]. Acta Materiae Compositae Sinica.
Citation: Shu PENG, Aiqing NI, Changzeng WANG, Jihui WANG. Inner stress field in epoxy resin with moisture absorption[J]. Acta Materiae Compositae Sinica.

吸湿环境下环氧树脂内应力场的确定

详细信息
    通讯作者:

    王继辉,博士,教授,博士生导师,研究方向为树脂基复合材料力学 E-mail :jhwang@whut.edu.cn

  • 中图分类号: TB324

Inner stress field in epoxy resin with moisture absorption

  • 摘要: 环氧树脂及其制品因其优良性能广泛应用在船舶制造中,长期在潮湿环境中服役时,基体吸收水分易引起膨胀翘曲等变形,进而引发失效隐患。本文采用重量分析试验、光纤布拉格光栅(FBG)传感器应变监测技术,确定了环氧树脂中的饱和吸湿量、水分扩散系数和湿膨胀系数等吸湿系数,在此基础上构建了能够预测环氧树脂中随时间变化的水分扩散及应力场分布的湿-力模型,用有限元方法实现了对随吸湿时间变化的树脂中应力场的数值模拟。并结合相移数字光弹试验方法,将数值模拟结果与试验结果进行了比较,显示了良好的一致性,发现环氧树脂吸湿过程中切应力随时间呈现出先升后降的趋势。

     

  • 图  1  光纤埋置位置与试样尺寸

    Figure  1.  Embedding position of FBG and dimension of test piece

    图  2  温度补偿器

    Figure  2.  Temperature compensator

    图  3  平面环氧树脂模型

    Figure  3.  Plate epoxy resin model

    图  4  平面偏振光场元件及布置

    Figure  4.  Planar polarized light field set-up

    $\alpha $—Angle between the transmission axis of the polarizer and the horizontal reference axis; $\beta $—Angle between the transmission axis of the analyser and the horizontal reference axis; P—Polarization direction of polarizer; A—Polarization direction of analyzer; ${\theta _1}$,${\theta _2}$—Principal stresses(${\theta _1}$>${\theta _2}$)

    图  5  圆偏振光场元件及布置

    Figure  5.  Circularly polarized light field set-up

    $\xi $—Angle between the horizontal reference axis and the fast axis of the input (P) quarterwave plate; $\eta $—Angle between the horizontal reference axis and the slow axis of the output (A) quarterwave plate; F—Fast axis of the output or the input quarter-wave plate; S—Slow axis of the output or the input quarter-wave plate

    图  6  对径压缩试验

    Figure  6.  Diameter compression experiment

    图  7  DER330-DER732树脂的水分浓度与浸泡时间平方根的关系

    Figure  7.  Dependence of the moisture content in DER330-DER732 resin on the square root of immersion time

    图  8  DER330-DER732树脂应变随平均水分浓度的变化

    Figure  8.  Dependence of the strains on average moisture absorption in DER330-DER732 resin

    图  9  DER330-DER732树脂拉伸模量随水分浓度变化曲线

    Figure  9.  Experimental Young’s modulus of DER330-DER732 resin vs. water absorption

    图  10  未吸湿DER330-DER732树脂与65天吸湿DER330-DER732树脂FTIR图谱

    Figure  10.  FTIR spectra of the dry (0 day) and soaked DER330-DER732 resin samples (65 days)

    图  11  DER330-DER732树脂对径压缩试验图像

    Figure  11.  Image of diameter compression experiment of DER330-DER732 resin

    图  12  DER330-DER732树脂圆偏振光场中吸湿过程中等差线条纹的变化

    Figure  12.  Evolution of the isochromatic fringes of DER330-DER732 resin during absorption obtained in a circular field polariscope

    图  13  圆偏振光场中采集的数字图像I1~I6

    Figure  13.  Images I1-I6 captured in circularly polarized light field

    图  14  平面偏振光场中采集的数字图像I7~I10

    Figure  14.  Images I7-I10 captured in plane polarized light field

    图  15  在吸湿15 h时DER330-DER732树脂应力光弹分析结果

    Figure  15.  Stresses distributions of DER330-DER732 resin at 15 h

    图  16  在15 h、39 h、63 h、159 h、255 h、351 h时DER330-DER732树脂切应力τxy光弹分析结果

    Figure  16.  Photoelastic results of shear stresses τxy of DER330-DER732 resin at 15 h、39 h、63 h、159 h、255 h、351 h

    图  17  沿路径a在15 h、39 h、63 h、159 h、255 h、351 h时DER330-DER732树脂切应力τxy的光弹分析结果

    Figure  17.  Photoelastic results of the shear stresses τxy of DER330-DER732 resin at 15 h、39 h、63 h、159 h、255 h、351 h along path a

    图  18  在15 h、39 h、63 h、159 h、255 h、351 h时DER330-DER732树脂切应力τxy的数值模拟结果

    Figure  18.  Numerical results of shear stresses τxy of DER330-DER732 resin at 15 h、39 h、63 h、159 h、255 h、351 h

    图  19  在15 h、39 h、63 h、159 h、255 h、351 h时沿路径a的DER330-DER732树脂切应力τxy的数值结果

    Figure  19.  Numerical results of the shear stresses τxy of DER330-DER732 resin at 15 h、39 h、63 h、159 h、255 h、351 h along path a

    图  20  在15 h、39 h、63 h、159 h、255 h、351 h时DER330-DER732树脂切应力τxy最大值与最小值曲线

    Figure  20.  Maximum and minimum of shear stresses τxy of DER330-DER732 resin at 15 h、39 h、63 h、159 h、255 h、351 h

    表  1  左右六步相移法的偏振光场设置与光强等式

    Table  1.   Polarized light field set-up and Light intensities equations of six phase steps method

    Α/(°)ξ/(°)η/(°)β/(°)Light intensities
    90 135 45 90 I1
    90 135 45 0 I2
    90 135 0 0 I3
    90 135 45 45 I4
    90 45 0 0 I5
    90 45 135 45 I6
    下载: 导出CSV

    表  2  四步相移法的偏振光场设置与光强等式

    Table  2.   Polarized light field set-up and Light intensities equations of four phase steps method

    α/(°)β/(°)Light intensities equation
    90 0 I7
    112.5 22.5 I8
    135 45 I9
    157.5 67.5 I10
    下载: 导出CSV
  • [1] KARAD S K, JONES F R, ATTWOOD D. Moisture absorption by cyanate ester modified epoxy resin matrices. Part II. The reverse thermal effect[J]. Polymer,2002,43(21):5643-9. doi: 10.1016/S0032-3861(02)00484-6
    [2] BAO L R, YEE A F. Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites: part II - woven and hybrid composites[J]. Compos Sci Technol,2002,62(16):2111-9. doi: 10.1016/S0266-3538(02)00162-8
    [3] BAO L R, YEE A F. Effect of temperature on moisture absorption in a bismaleimide resin and its carbon fiber composites[J]. Polymer,2002,43(14):3987-97. doi: 10.1016/S0032-3861(02)00189-1
    [4] PARK H, YANG S, HAN J, et al. Prediction of quasistatic constitutive equations of moisture-absorbed epoxy polymers using atomistic simulations [J]. Extreme Mechanics Letters, 2020, 41.
    [5] JAIN D, MUKHERJEE A, KWATRA N. Effect of fibre topology on hygro-mechanical response of polymer matrix composites[J]. International Journal of Heat and Mass Transfer,2015,86:787-95. doi: 10.1016/j.ijheatmasstransfer.2015.03.054
    [6] 李能. Non-Fickian溶剂扩散与凝胶溶胀变形的耦合行为研究 [D]; 武汉理工大学, 2021.

    LI Neng. Non-Fickian solvent diffusion coupled with deformation of swelling gels [D]. Wuhan: Wuhan University of Technology, 2021(in Chinese).
    [7] SHREEPANNAGA D, KINI M V, PAI D. The Ageing Effect on Static and Dynamic Mechanical Properties of Fibre Reinforced Polymer Composites under Marine Environment- A Review[J]. Mater Today-Proc,2022,52:689-96. doi: 10.1016/j.matpr.2021.10.084
    [8] SUN T, YU C, YANG W, et al. Experimental and numerical research on the nonlinear creep response of polymeric composites under humid environments[J]. Compos Struct,2020,251:112673. doi: 10.1016/j.compstruct.2020.112673
    [9] GU J, ZHAO S, ZHANG X, et al. A hygro-thermo-mechanical constitutive model for hygrothermally activated shape memory polymers under finite deformations[J]. Mechanics of Materials,2020,150:103594. doi: 10.1016/j.mechmat.2020.103594
    [10] KARALEKAS D, CUGNONI J, BOTSIS J. Monitoring of process induced strains in a single fibre composite using FBG sensor: A methodological study[J]. Compos Part a-Appl S,2008,39(7):1118-27. doi: 10.1016/j.compositesa.2008.04.010
    [11] DAVIES P, RAJAPAKSE Y D. Durability of composites in a marine environment [M]. Springer, 2014: 70-72.
    [12] MATERIALS A S F T A. Standard test method for water absorption of plastics: Annual Book of ASTM Standards: D570-98 [S]. 2018.
    [13] 孙亮亮. 碳纤维复合材料固化残余应力及变形研究 [D]; 武汉理工大学, 2016.

    SUN Liangliang. Research on process-induced residual stress and deformation of CFRP [D]. Wuhan: Wuhan University of Technology, 2016(in Chinese).
    [14] GENG X Y, JIANG M S, GAO L L, et al. Sensing characteristics of FBG sensor embedded in CFRP laminate[J]. Measurement,2017,98:199-204. doi: 10.1016/j.measurement.2016.12.003
    [15] 孙亮亮. 复合材料基体裂纹预测分析与光纤光栅检测研究 [D]; 武汉理工大学, 2019.

    SUN Liangliang. Prediction and Fiber Bragg Grating Detection Research on Matrix Cracks of Composite Materials [D]. Wuhan: Wuhan University of Technology, 2019(in Chinese).
    [16] ANTONUCCI V, GIORDANO M, CUSANO A, et al. Real time monitoring of cure and gelification of a thermoset matrix[J]. Compos Sci Technol,2006,66(16):3273-80. doi: 10.1016/j.compscitech.2005.07.009
    [17] MATERIALS A S F T A. ASTM D638-14: Standard test method for tensile properties of plastics: ASTM D638 [S]. Annual Book of ASTM Standards, 2014.
    [18] HECKER F, MORCHE B. Computer-aided measurement of relative retardations in plane photoelasticity [M]. Experimental stress analysis. Springer. 1986: 535-42.
    [19] 天津大学材料力学教研室光弹组[M]. 北京: 光 弹 性 原 理 及 测 试 技 术, 1980, 94.

    Photoelastic Group, Department of Material Mechanics, Tianjin University. Photoelastic principle and testing technology [M]. Beijing: Science Press, 1980: 94(in Chinese).
    [20] TOSCANO A, PITARRESI G, SCAFIDI M, et al. Water diffusion and swelling stresses in highly crosslinked epoxy matrices[J]. Polym Degrad Stabil,2016,133:255-63. doi: 10.1016/j.polymdegradstab.2016.09.004
    [21] DUNDOVIĆ M, MARKOVIĆ K, FRANULOVIĆ M, et al. Digital light processing in photoelastic models production for material behavior modeling[J]. Procedia Structural Integrity,2021,31:111-5. doi: 10.1016/j.prostr.2021.03.018
    [22] AJOVALASIT A, BARONE S, PETRUCCI G. A method for reducing the influence of quarter-wave plate errors in phase stepping photoelasticity[J]. The Journal of Strain Analysis for Engineering Design,1998,33(3):207-16. doi: 10.1243/0309324981512922
    [23] 雷振坤. 结构分析数字光测力学 [M]. 大连: 大连理工大学出版社, 2012: 118-122.

    LEI Zhenkun. Digital photomechanics for structural analysis[M]. Dalian: Dalian University of Technology Press, 2012: 118-122(in Chinese).
    [24] 黄兴, 冯捷敏, 吴凤琳, et al. 引入新型光弹性实验设备的实验教学实践与探索[J]. 中国现代教育装备, 2022(7):27-30. doi: 10.3969/j.issn.1672-1438.2022.7.zgxdjyzb202207010

    HUANG Xing, FENG Jiemin, WU Fenglin, et al. Experiment Teaching Practice and Exploration with New Photoelastic Experimental Equipment[J]. China Modern Education Equipment,2022(7):27-30(in Chinese). doi: 10.3969/j.issn.1672-1438.2022.7.zgxdjyzb202207010
    [25] 戴福隆, 沈观林, 谢惠民. 实验力学 [M]. 北京: 清华大学出版社. 2010: 312-315.

    DAI Fulong, SHEN Guanlin, XIE Huimin. Experimental mechanics [M]. Beijing: Tsinghua University Press, 2010: 312-315. (in Chinese).
    [26] VOLOSHIN A S, BURGER C. Half-fringe photoelasticity: a new approach to whole-field stress analysis[J]. Exp Mech,1983,23:304-13. doi: 10.1007/BF02319257
    [27] SHEN C-H, SPRINGER G S. Moisture absorption and desorption of composite materials[J]. Journal of composite materials,1976,10(1):2-20. doi: 10.1177/002199837601000101
    [28] Daniel I M, Ishai O, Daniel I M, et al. Engineering mechanics of composite materials[M]. New York: Oxford university press, 2006: 208-211.
    [29] Pitarresi G, Scafidi M, Alessi S, et al. Absorption kinetics and swelling stresses in hydrothermally aged epoxies investigated by photoelastic image analysis[J]. Polymer Degradation and Stability,2015,111:55-63. doi: 10.1016/j.polymdegradstab.2014.10.019
  • 加载中
计量
  • 文章访问数:  54
  • HTML全文浏览量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-24
  • 修回日期:  2023-04-06
  • 录用日期:  2023-04-07
  • 网络出版日期:  2023-04-24

目录

    /

    返回文章
    返回