留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Y元素及双步轧制对CuAlMn合金微观结构和力学特性的影响

千佳祥 郝刚领 杨院霞 许巧平 王幸福 王伟国

千佳祥, 郝刚领, 杨院霞, 等. Y元素及双步轧制对CuAlMn合金微观结构和力学特性的影响[J]. 复合材料学报, 2024, 42(0): 1-14.
引用本文: 千佳祥, 郝刚领, 杨院霞, 等. Y元素及双步轧制对CuAlMn合金微观结构和力学特性的影响[J]. 复合材料学报, 2024, 42(0): 1-14.
QIAN Jiaxiang, HAO Gangling, YANG Yuanxia, et al. Effects of Y element and dual-step rolling on microstructure and mechanical properties of CuAlMn alloy[J]. Acta Materiae Compositae Sinica.
Citation: QIAN Jiaxiang, HAO Gangling, YANG Yuanxia, et al. Effects of Y element and dual-step rolling on microstructure and mechanical properties of CuAlMn alloy[J]. Acta Materiae Compositae Sinica.

Y元素及双步轧制对CuAlMn合金微观结构和力学特性的影响

基金项目: 国家自然科学基金 (52061038;12064044;51661032;51301150);陕西省青年科技新星人才专项 (2013KJXX-11);陕西省“特支计划”区域发展人才专项 (2020-44)
详细信息
    通讯作者:

    郝刚领,博士,教授,硕士生导师,研究方向为金属基高阻尼复合材料和形状记忆合金 E-mail: glhao@issp.ac.cn

    许巧平,高级实验师,研究方向为超轻泡沫金属材料和高阻尼金属材料 E-mail: xiaoppingxu@126.com

  • 中图分类号: TG146.1;TG115.5;TB331

Effects of Y element and dual-step rolling on microstructure and mechanical properties of CuAlMn alloy

Funds: National Natural Science Foundation of China (Nos. 52061038;12064044;51661032;51301150); Special Program of Youth New-star of Science and Technology of Shaanxi Province, China (No. 2013KJXX-11); Special Support Plan for Regional Development of Talents Special Project of Shaanxi Province, China (No.2020-44)
  • 摘要: Cu基形状记忆合金由于晶粒粗大和弹性各向异性,呈现出较低的力学断裂强度和塑性形变能力。本文通过添加微量稀土Y元素制备了系列Cu-11.36Al-5Mn合金,并经热轧和双步轧制(热轧+冷轧)实现了对合金微观结构的调控。实验发现,CuAlMn合金由奥氏体和少量的18R马氏体组成。Y元素添加后,晶粒得到显著细化,基体中可见沿晶分布的含Y沉淀析出相以及伴生的富Al相,热轧形变后晶粒进一步细化,高密度位错和位错胞元结构出现。双步轧制退火后,位错密度持续增大并出现了高密度位错缠结,沿晶析出大量富铜 沉淀相,孪晶和马氏体条交替排列。拉伸力学性能测试表明,稀土Y元素可显著提升合金的力学性能,热轧和双步轧制后进一步提高,拉伸断裂强度从366.67 MPa (原始态)→546.99 MPa (0.4% Y )→879.25 MPa (80%热轧)→1025.25 MPa (60%热轧-60%冷轧)。断后伸长率与拉伸断裂强度具有相同的变化趋势,从原始态的3.05%提升至双步轧制形变后的8.38%。最大超弹性应变随Y元素的添加而增大,但相同应变下原始态CuAlMn具有更高的超弹性,且经历轧制形变后超弹性应变迅速下降。最后,通过微观结构的演变系统讨论了合金力学性能提升机制。

     

  • 图  1  拉伸试样

    Figure  1.  Tensile specimen

    图  2  Cu-11.36Al-5Mn-xY(x=0, 0.4)合金DSC曲线

    Figure  2.  DSC curves of Cu-11.36Al-5Mn-xY(x=0, 0.4) alloys

    图  3  Cu-11.36Al-5Mn-xY(x=0, 0.4)合金XRD谱图

    Figure  3.  XRD patterns of Cu-11.36 Al-xY(x=0, 0.4) alloys

    图  4  Cu-11.36Al-5Mn-0.4Y合金TEM和SEM微观图像:(a) 明场图;(b) (a)中蓝色虚线框的选取电子衍射;(c) 析出相的明场图;(d) (c)的元素分布;(e) (c)中黄色虚线框的选取电子衍射;(f) 析出相的点扫结果

    Figure  4.  TEM and SEM microstructures of Cu-11.36Al-5Mn-0.4Y alloy: (a) bright-field image; (b) corresponding selected area electron diffraction (SAED) pattern of area in blue dashed box in (a); (c) bright-field image of precipitate phase; (d) elemental distribution of (c); (e) corresponding SAED pattern of area in yellow dashed box in (c); (f) result of EDS point scanning of precipitate phase

    图  5  Cu-11.36Al-5Mn-xY合金拉伸力学性能:(a) 应力-应变曲线;(b) 拉伸断裂强度和断后伸长率

    Figure  5.  Tensile mechanical properties of Cu-11.36Al-5Mn-xY alloys: (a) stress-strain curves; (b) tensile strength and elongation

    图  6  热轧Cu-11.36Al-5Mn-0.4Y合金金相显微组织:(a) 未轧制;(b) 20%HR;(c) 40%HR;(d) 60%HR;(e) 80%HR;(f) 平均晶粒尺寸

    Figure  6.  Metallographic microstructures of hot rolled Cu-11.36Al-5Mn-0.4Y alloys: (a) unrolled; (b) 20%HR; (c) 40%HR; (d) 60%HR; (e) 80%HR; (f) average grain size

    图  7  热轧Cu-11.36Al-5Mn-0.4Y合金XRD谱图

    Figure  7.  XRD patterns of hot rolled Cu-11.36Al-5Mn-0.4Y alloys

    图  8  60% HR Cu-11.36Al-5Mn-0.4Y 合金TEM微观图像:(a) 高分辨图像,插图为黄色区域的放大图;(b) (a)图的FFT衍射图;(c) 低倍率明场图;(d) 位错明场图

    Figure  8.  TEM microstructures of 60% HR Cu-11.36Al-5Mn-0.4Y alloy: (a) high-resolution image, the inset shows the high magnification image of area in yellow dashed box; (b) fast Fourier transform (FFT) pattern of (a); (c) bright-field image; (d) bright-field image of dislocations

    图  9  双步轧制Cu-11.36Al-5Mn-0.4Y合金XRD谱图:(a) 60%HR;(b) 80%HR;(1) 20%CR;(2) 40%CR;(3) 60%CR

    Figure  9.  XRD patterns of two-step rolled Cu-11.36Al-5Mn-0.4Y alloys: (a) 60%HR; (b) 80%HR; (1) 20%CR; (2) 40%CR; (3) 60%CR

    图  10  双步轧制Cu-11.36Al-5Mn-0.4金相显微组织:(a) 60%HR;(b) 80%HR; (1) 20%CR;(2) 40%CR;(3) 60%CR

    Figure  10.  Metallographic microstructure of two-step rolled Cu-11.36Al-5Mn-0.4 alloy: (a) 60%HR; (b) 80%HR; (1) 20%CR; (2) 40%CR; (3) 60%CR

    图  11  双步轧制Cu-11.36Al-5Mn-0.4Y合金SEM微观图像和EDS点扫结果:(a) 60%HR-60%CR;(b) 80%HR-60%CR

    Figure  11.  SEM microstructure and result of EDS point scanning of two-step rolled Cu-11.36Al-5Mn-0.4Y alloy: (a) 60%HR-60%CR; (b) 80%HR-60%CR

    图  12  60%HR-60%CR Cu-11.36Al-5Mn-0.4Y合金α相微观组织:(a/c) α相明场图;(b) (a)中黄色虚线区域选取电子衍射

    Figure  12.  α phase microstructures of 60% HR and 60% CR Cu-11.36Al-5Mn-0.4Y alloy: (a/c) bright-field image of α phase; (b) SAED pattern of area in yellow dashed box in (a)

    图  13  60%HR-60%CR Cu-11.36Al-5Mn-0.4Y合金TEM微观图像:(a) 明场图;(b) (a)中蓝色虚线框的分辨图像;(c) (b)的FFT衍射图;(d) (b)的IFFT图;(e/f) 位错的明场图;(g/h) 析出相的STEM图和元素分布,插图为A和B区域的选取电子衍射

    Figure  13.  TEM microstructures of 60% HR and 60% CR Cu-11.36Al-5Mn-0.4Y alloy: (a) bright-field image; (b) high-resolution image of area in blue dashed box in (a); (c) FFT pattern of (b); (d) inverse fast Fourier transform (IFFT) pattern of (b); (e/f) bright-field image of dislocations; (g/h) STEM image and elemental distribution of precipitate phase, inset shows the SAED pattern of area A and B

    图  14  热轧Cu-11.36Al-5Mn-0.4Y合金拉伸力学性能:(a)应力-应变曲线;(b) 拉伸断裂强度和断后伸长率

    Figure  14.  Tensile mechanical properties of Cu-11.36Al-5Mn-xY alloys: (a) stress-strain curves; (b) tensile strength and elongation

    图  15  双步轧制Cu-11.36Al-5Mn-0.4合金拉伸力学性能:(a) 应力-应变曲线;(b) 拉伸断裂强度和断后伸长率

    Figure  15.  Tensile mechanical properties of two-step rolled Cu-11.36Al-5Mn-0.4Y alloy: (a) stress-strain curves; (b) tensile strength and elongation

    图  16  合金拉伸断口形貌:(a) Cu-11.36Al-5Mn;(b) Cu-11.36Al-5Mn-0.4Y (1) unrolled;(2) 60%HR;(3) 60%HR-60%CR

    Figure  16.  Tensile fracture morphologies (a) Cu-11.36Al-5Mn; (b) Cu-11.36Al-5Mn-0.4Y; (1) unrolled; (2) 60%HR; (3) 60%HR-60%CR

    图  17  合金拉伸循环应力-应变曲线:(a) Cu-11.36Al-5Mn; (b) Cu-11.36Al-5Mn-0.4Y; (1) unrolled; (2) 60%HR; (3) 60%HR-60%CR

    Figure  17.  Cyclic stress-strain curves of alloys: (a) Cu-11.36Al-5Mn; (b) Cu-11.36Al-5Mn-0.4Y; (1) unrolled; (2) 60%HR; (3) 60%HR-60%CR

    图  18  合金超弹性应变(εSE)与外加应变(εt-εe)的关系

    Figure  18.  Relationship between superelastic strain εSE and applied strain εt-εe of alloys

  • [1] ALANEME K K, ANAELE J U, BODUNRIN M O. Hot deformation processing of shape memory alloys: A review of effects on plastic flow behaviour, deformation mechanisms, and functional characteristics[J]. Alexandria Engineering Journal, 2022, 61(12): 12759-12783. doi: 10.1016/j.aej.2022.06.055
    [2] RASHIDI K, SULONG A B, MUHAMAD N, et al. Martensitic transformation characteristics, mechanical properties and damping behavior of Cu–Al–Ni shape memory alloys: A review of their modifications and improvements[J]. Journal of Materials Research and Technology, 2024, 29: 2732-2749. doi: 10.1016/j.jmrt.2024.02.012
    [3] LIU J L, HUANG H Y, XIE J X. Superelastic anisotropy characteristics of columnar-grained Cu–Al–Mn shape memory alloys and its potential applications[J]. Materials & Design, 2015, 85: 211-220.
    [4] WANG H Y, HUANG J L, XU D, et al. Comparison of microstructure and shape memory properties between two Cu-Al-Mn alloys produced by additive manufacturing technology[J]. Materialia, 2022, 26: 101594. doi: 10.1016/j.mtla.2022.101594
    [5] LIU J L, CHEN Z H, HUANG H Y, et al. Microstructure and superelasticity control by rolling and heat treatment in columnar-grained Cu-Al-Mn shape memory alloy[J]. Materials Science and Engineering A, 2017, 696: 315-322. doi: 10.1016/j.msea.2017.04.085
    [6] LI X H, LIAN H K, ZHANG Z W, et al. Columnar grain growth of superelastic CuAlMn alloy during directional recrystallization[J]. Materials Characterization, 2023, 201: 112943. doi: 10.1016/j.matchar.2023.112943
    [7] AGRAWAL A, DUBE R K. Methods of fabricating Cu-Al-Ni shape memory alloys[J]. Journal of Alloys and Compounds, 2018, 750: 235-247. doi: 10.1016/j.jallcom.2018.03.390
    [8] KUMAR P, LAGOUDAS D C. Introduction to Shape Memory Alloys[J]. Advanced Topics of Thin-Walled Structures, 2021.
    [9] ALANEME K K, ANAELE J U, OKOTETE E A. Martensite aging phenomena in Cu-based alloys: Effects on structural transformation, mechanical and shape memory properties: A critical review[J]. Scientific African, 2021, 12: e760.
    [10] ALANEME K K, OKOTETE E A. Reconciling viability and cost-effective shape memory alloy options–A review of copper and iron based shape memory metallic systems[J]. Engineering Science and Technology An International Journal, 2016, 19(3): 1582-1592. doi: 10.1016/j.jestch.2016.05.010
    [11] DAWOOD N, ALI A. Effect of Aging on Corrosion Behavior of Martensite Phase in Cu-Al-Ni Shape Memory Alloy[J]. Key Engineering Materials, 2022, 911: 96-102. doi: 10.4028/p-3jm065
    [12] MUNTASIR BILLAH A, RAHMAN J, ZHANG Qi. Shape memory alloys (SMAs) for resilient bridges: A state-of-the-art review[J]. Structures, 2022, 37: 514-527. doi: 10.1016/j.istruc.2022.01.034
    [13] XI X Y, TANG H, ZHANG J T, et al. Unraveling effect of Nb addition on the microstructure, phase transformation behaviour and shape memory effect of CuAlMn alloy fabricated by laser powder bed fusion[J]. Journal of Materials Research and Technology, 2024, 29: 4163-4172. doi: 10.1016/j.jmrt.2024.02.147
    [14] TU J, WANG Y N, HE D Y, et al. Ductile CuAlMn shape memory alloys with higher strength by Fe alloying and grain boundary engineering[J]. Materials Science and Engineering A, 2022, 841: 143032. doi: 10.1016/j.msea.2022.143032
    [15] SUN L, HUANG W M, DING Z M, et al. Stimulus-responsive shape memory materials: A review[J]. Materials & Design, 2012, 33: 577-640.
    [16] JIAO Z X, WANG Q Z, YIN F X, et al. Novel laminated multi-layer graphene/Cu–Al–Mn composites with ultrahigh damping capacity and superior tensile mechanical properties[J]. Carbon, 2022, 188: 45-58. doi: 10.1016/j.carbon.2021.11.055
    [17] SUTOU Y, OMORI T, YAMAUCHI K, et al. Effect of grain size and texture on pseudoelasticity in Cu–Al–Mn-based shape memory wire[J]. Acta Materialia, 2005, 53(15): 4121-4133. doi: 10.1016/j.actamat.2005.05.013
    [18] LIU N, LI Z, XU G Y, et al. Effect of tellurium on machinability and mechanical property of CuAlMnZn shape memory alloy[J]. Materials Science and Engineering A, 2011, 528(27): 7956-7961. doi: 10.1016/j.msea.2011.07.030
    [19] LU X L, CHEN F, LI W S, et al. Effect of Ce addition on the microstructure and damping properties of Cu–Al–Mn shape memory alloys[J]. Journal of Alloys and Compounds, 2009, 480(2): 608-611. doi: 10.1016/j.jallcom.2009.01.134
    [20] JIAO Z X, YIN F X, WANG Q Z, et al. Refining effect of an intermetallic inoculant on a Cu–Al–Mn shape memory alloy[J]. Materials Chemistry and Physics, 2022, 280: 125835. doi: 10.1016/j.matchemphys.2022.125835
    [21] JIAO Z X, WANG Q Z, YIN F X, et al. Effects of Cu51Zr14 inoculant and caliber rolling on microstructures and comprehensive properties of a Cu–Al–Mn shape memory alloy[J]. Materials Science and Engineering A, 2020, 772: 138773. doi: 10.1016/j.msea.2019.138773
    [22] ĆORIĆ D, ŽMAK I. Influence of Ausforming Treatment on Super Elasticity of Cu-Zn-Al Shape Memory Alloy for Seismic Energy Dissipaters[J]. Buildings, 2021, 11(1): 22. doi: 10.3390/buildings11010022
    [23] 千佳祥, 杨院霞, 张江, 等. 稀土Y元素对CuAlMn合金晶粒细化及其力学性能的影响[J]. 材料工程, 2023, 52(8): 214-224.

    QIAN Jiaxiang, YANG Yuanxia, ZHANG Jiang, et al. Effect of rare earth Y element on grain refinement and mechanical property of CuAlMn alloy[J]. Journal of Materials Engineering, 2023, 52(8): 214-224(in Chinese).
    [24] LA ROCA P, ISOLA L, VERMAUT P, et al. β-grainsize Effects on the 18R-martensite Microstructure in Cu-based SMA[J]. Procedia Materials Science, 2015, 8: 1133-1139. doi: 10.1016/j.mspro.2015.04.177
    [25] LA ROCA P, ISOLA L, VERMAUT P, et al. Relationship between martensitic plate size and austenitic grain size in martensitic transformations[J]. Applied physics letters, 2015, 106(22).
    [26] MORRISON K R, CHERUKARA M J, KIM H, et al. Role of grain size on the martensitic transformation and ultra-fast superelasticity in shape memory alloys[J]. Acta Materialia, 2015, 95: 37-43. doi: 10.1016/j.actamat.2015.05.015
    [27] ZHANG Y K, XU L Y, ZHAO L, et al. Process-microstructure-properties of CuAlNi shape memory alloys fabricated by laser powder bed fusion[J]. Journal of Materials Science & Technology, 2023, 152: 1-15.
    [28] KRACHAN T, STEL MAKHOVYCH B, KUZ MA Y. The Y–Cu–Al system[J]. Journal of alloys and compounds, 2003, 349(1): 134-139.
    [29] MANDAL G K, STANFORD N, HODGSON P, et al. Static recrystallisation study of as-cast austenitic stainless steel[J]. Materials Science and Engineering A, 2013, 576: 118-125. doi: 10.1016/j.msea.2013.03.076
    [30] MALLIK U S, SAMPATH V. Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy[J]. Journal of Alloys and Compounds, 2009, 469(1-2): 156-163. doi: 10.1016/j.jallcom.2008.01.128
    [31] YE C, TELANG A, GILL A S, et al. Gradient nanostructure and residual stresses induced by Ultrasonic Nano-crystal Surface Modification in 304 austenitic stainless steel for high strength and high ductility[J]. Materials Science and Engineering A, 2014, 613: 274-288. doi: 10.1016/j.msea.2014.06.114
    [32] ZHANG Y K, XU L Y, ZHAO L, et al. Deformation mechanism of Cu-Al-Ni shape memory alloys fabricated via laser powder bed fusion: Tension-compression asymmetry[J]. Journal of Materials Science & Technology, 2023, 167: 14-26.
    [33] XIAO Z, FANG M, LI Z, et al. Structure and properties of ductile CuAlMn shape memory alloy synthesized by mechanical alloying and powder metallurgy[J]. Materials & Design, 2014, 58: 451-456.
    [34] OMORI T, KUSAMA T, KAWATA S, et al. Abnormal Grain Growth Induced by Cyclic Heat Treatment[J]. Science, 2013, 341(6153): 1500-1502. doi: 10.1126/science.1238017
    [35] ZENG M T, YANG Y, TAN Y B, et al. Recrystallization behavior and texture evolution of cryo-rolled GH159 superalloy with an ultra-high strength[J]. Materials Characterization, 2023, 197: 112656. doi: 10.1016/j.matchar.2023.112656
    [36] YANG W G, LI M G, ZHOU T, et al. Deformation behavior and dynamic recrystallization mechanism of a novel high Nb containing TiAl alloy in (α+γ) dual-phase field[J]. Journal of Alloys and Compounds, 2023, 945: 169250. doi: 10.1016/j.jallcom.2023.169250
    [37] LIU J W, ZHANG K, YANG Y, et al. Grain boundary α-phase precipitation and coarsening: Comparing laser powder bed fusion with as-cast Ti-6Al-4V[J]. Scripta Materialia, 2022, 207: 114261. doi: 10.1016/j.scriptamat.2021.114261
    [38] MAZZER E M, KIMINAMI C S, BOLFARINI C, et al. Phase transformation and shape memory effect of a Cu-Al-Ni-Mn-Nb high temperature shape memory alloy[J]. Materials Science and Engineering A, 2016, 663: 64-68. doi: 10.1016/j.msea.2016.03.017
    [39] JOHN H, GRRGORY S ROHRER, ANTHONY R. Recrystallization and related annealing phenomena (Third Edition), Chapter 2-The Deformed State[M]. Oxford: Elsevier, 2017, 13-79.
    [40] WANG L, QIAO J W, MA S G, et al. Mechanical response and deformation behavior of Al0.6CoCrFeNi high-entropy alloys upon dynamic loading[J]. Materials Science and Engineering A, 2018, 727: 208-213. doi: 10.1016/j.msea.2018.05.001
    [41] 李杰, 吴凯迪, 牛利冲, 等. 退火温度对(Fe50Mn30Co10Cr10)97Al3高熵合金再结晶行为及力学性能的影响[J]. 稀有金属材料与工程, 2023, 52(12): 4251-4259.

    LI Jie, WU Kaidi, NIU Lichong, et al. Effect of annealing temperatures on recrystallization behavior and mechanical properties of (Fe50Mn30Co10Cr10)97Al3 High-Entropy Alloy[J]. Rare Metal Materials and Engineering, 2023, 52(12): 4251-4259(in Chinese).
    [42] ZHANG Y T, WEI D X, CHEN Y, et al. Non-negligible role of gradient porous structure in superelasticity deterioration and improvement of NiTi shape memory alloys[J]. Journal of Materials Science & Technology, 2024, 186: 48-63.
    [43] SIMON T, KRӦGER A, SOMSEN C, et al. On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys[J]. Acta Materialia, 2010, 58(5): 1850-1860. doi: 10.1016/j.actamat.2009.11.028
    [44] WANG H S, FAN M Y, CUI Y, et al. Effects of Cr on the abnormal grain growth of Cu-Al-Mn-Ni-Cr superelastic alloy[J]. Materials Today Communications, 2024, 38: 108432. doi: 10.1016/j.mtcomm.2024.108432
    [45] KUMAR A, PALANI I A, YADAV M. Comprehensive study of microstructure, phase transformations, and mechanical properties of nitinol alloys made of shape memory and superelastic wires and a novel approach to manufacture Belleville spring using wire arc additive manufacturing[J]. Materials Today Communications, 2024, 38: 107881. doi: 10.1016/j.mtcomm.2023.107881
    [46] ZHANG M G, LI X Z, WANG B L, et al. Prominent superelastic response induced by Ni4Ti3 phase in NiTi alloys fabricated via wire-arc directed energy deposition[J]. Materials Science and Engineering A, 2024, 897: 146366. doi: 10.1016/j.msea.2024.146366
  • 加载中
计量
  • 文章访问数:  38
  • HTML全文浏览量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-17
  • 修回日期:  2024-07-20
  • 录用日期:  2024-07-24
  • 网络出版日期:  2024-08-06

目录

    /

    返回文章
    返回