留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同温度下改性聚氨酯混凝土单轴拉伸试验及本构关系

朱赫 黄方林 张爱品 冯帆 温伟斌

朱赫, 黄方林, 张爱品, 等. 不同温度下改性聚氨酯混凝土单轴拉伸试验及本构关系[J]. 复合材料学报, 2023, 40(8): 4659-4669. doi: 10.13801/j.cnki.fhclxb.20221123.001
引用本文: 朱赫, 黄方林, 张爱品, 等. 不同温度下改性聚氨酯混凝土单轴拉伸试验及本构关系[J]. 复合材料学报, 2023, 40(8): 4659-4669. doi: 10.13801/j.cnki.fhclxb.20221123.001
ZHU He, HUANG Fanglin, ZHANG Aipin, et al. Tensile properties and constitutive relation of modified polyurethane concrete at different temperatures[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4659-4669. doi: 10.13801/j.cnki.fhclxb.20221123.001
Citation: ZHU He, HUANG Fanglin, ZHANG Aipin, et al. Tensile properties and constitutive relation of modified polyurethane concrete at different temperatures[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4659-4669. doi: 10.13801/j.cnki.fhclxb.20221123.001

不同温度下改性聚氨酯混凝土单轴拉伸试验及本构关系

doi: 10.13801/j.cnki.fhclxb.20221123.001
基金项目: 湖南省自然科学基金项(2021 JJ40710);“中铁开投科技研究开发计划(2021-B类-04)”基金
详细信息
    通讯作者:

    温伟斌,博士,副教授,博士生导师,研究方向为力学中的数值计算方法和桥梁结构设计 E-mail: wenwbin@126.com

  • 中图分类号: U443.33;TB333

Tensile properties and constitutive relation of modified polyurethane concrete at different temperatures

Funds: Natural Science Foundation of Hunan Province (2021 JJ40710); Science and Technology Research and Development Plan of China Railway Development and Investment Group CO., LTD. (2021-Category B-04)
  • 摘要: 钢桥面铺装材料易受温度影响而产生破坏,其中拉伸破坏最为常见。改性聚氨酯混凝土是一种新型钢桥面铺装材料,为研究温度对其拉伸性能的影响,在−10℃、0℃、15℃、40℃和60℃这5组温度环境下分别进行单轴拉伸试验研究。为保证拉伸试验成功,率先设计并制作了两种拉伸试件(哑铃形试件、经圆弧过渡的哑铃形试件)。同时设计用于匹配试件的拉伸试验新型夹具,开展两种试件的对比试验。通过拉伸试验,测得该材料在单轴受拉时的应力-应变曲线,依据该曲线计算得到各拉伸性能指标。研究结果表明:使用经圆弧过渡的哑铃形试件与新夹具的组合方案的拉伸效果更优。新型夹具可通过增设螺栓约束夹具的变形,从而有效改善加载过程中试件的局部应力集中效应。随温度的升高,改性聚氨酯混凝土的抗拉强度、拉伸弹性模量均呈减小趋势;峰值应变、断裂能密度和拉压比均呈增大趋势。提出了各拉伸性能指标的温度相关计算式。构建适用于改性聚氨酯混凝土的单轴拉伸本构关系,计算与试验结果吻合良好,为该材料未来的工程应用提供参考。

     

  • 图  1  单轴拉伸试件尺寸图

    R—Radius of the arc transition zone; LS—Name of the tensile specimen

    Figure  1.  Size of uniaxial tensile specimen

    图  2  夹具变形示意图

    Figure  2.  Diagram of fixture deformation

    图  3  单轴拉伸试验试件

    Figure  3.  Uniaxial tensile experiment specimens

    图  4  恒温恒湿箱

    Figure  4.  Constant temperature box

    图  5  单轴拉伸试验装置

    p1, p2, p3—Strain gauge paste position

    Figure  5.  Uniaxial tensile experiment device

    图  6  部分改性聚氨酯混凝土试件断裂图

    Figure  6.  Fracture of some specimens for modified polyurethane concrete

    图  7  部分改性聚氨酯混凝土试件断裂面图

    Figure  7.  Fracture cross section of some specimens for modified polyurethane concrete

    图  8  改性聚氨酯混凝土抗拉强度与温度的关系

    T, T0—Test temperature and 15℃; ft, T, ${f_{t,{T_0}}} $—Axial tensile strength of modified polyurethane concrete at temperature T and T0; R2—Coefficient of determination; v2—Residual sum of squares

    Figure  8.  Relationship between tensile strength and temperature of modified polyurethane concrete

    图  9  改性聚氨酯混凝土峰值应变与温度的关系

    εt, T, ${\varepsilon _{t,{T_0}}} $—Peak strain of modified polyurethane concrete at temperature T and T0

    Figure  9.  Relationship between peak stress and temperature of modified polyurethane concrete

    图  10  改性聚氨酯混凝土拉伸弹性模量与温度的关系

    Et, T, ${E_{t,{T_0}}} $—Tensile elastic modulus of modified polyurethane concrete at temperature T and T0

    Figure  10.  Relationship between elastic modulus and temperature of modified polyurethane concrete

    图  11  温度对改性聚氨酯混凝土轴向拉伸应力-应变曲线的影响

    Figure  11.  Effect of temperature on stress-strain curves of modified polyurethane concrete

    图  12  改性聚氨酯混凝土单轴拉伸本构关系模型计算值与试验值的对比

    Figure  12.  Comparison between calculated values of constitutive relation model and experiment values for modified polyurethane concrete

    表  1  改性聚氨酯混凝土配合比

    Table  1.   Mix proportion of modified polyurethane concrete

    ComponentParticle size D/mmMass fraction/wt%Fineness modulusApparent density
    /(kg·m−3)
    Coarse aggregate
    (4.76-9.52 mm)
    4.76≤D≤9.52303.42600
    Fine aggregate
    (0.16-4.76 mm)
    0.16≤D≤0.6217.82.52580
    0.62≤D≤2.3520
    2.35≤D≤4.7616.8
    Modified polyurethane binder15.2
    Catalyst 0.2
    下载: 导出CSV

    表  2  改性聚氨酯混凝土单轴拉伸试验方法效果对比

    Table  2.   Effect comparison of uniaxial tensile experiment method for modified polyurethane concrete

    NumberExperimental methodDiagramThickness wSpecimen failureDamage featureReference
    LS-1End bond tensile
    dumbbell-shaped specimen
    w=75 mmCracks mostly occur at the loading
    end and finally destroyed
    [24-25]
    LS-2End bond tensile
    dumbbell-shaped specimen with circular arc edge
    (bolts added)
    w=75 mmSpecimens are broken
    in the middle without obvious
    stress concentration
    New design
    Note: ϕ—Diameter of the steel bar.
    下载: 导出CSV

    表  3  改性聚氨酯混凝土单轴拉伸试验结果

    Table  3.   Results of uniaxial tensile experiment for modified polyurethane concrete

    Temperature/℃Tensile strength/MPaPeak strain/%Elastic modulus/GPaFracture energy density/(N·mm−2)Compressive strength/MPa[9]
    −10 10.28 0.0681 16.86 3.304 81.78
    0 10.80 0.0690 16.16 3.929 81.83
    15 9.79 0.0958 11.93 4.247 58.87
    40 5.87 0.1432 6.23 5.561 39.50
    60 3.95 0.4967 1.21 12.843 20.91
    下载: 导出CSV

    表  4  不同温度下的改性聚氨酯混凝土拉压比

    Table  4.   Tensile-compression ratio of modified polyurethane concrete at different temperatures

    Temperature/℃Tensile
    strength
    /MPa
    Compressive
    strength/MPa
    Splitting tensile
    strength/MPa
    Tension-compression
    ratio W1/%
    Tension-compression
    ratio W2[32]/%
    Relative error/%
    −10 10.28 86.67 8.24 11.86 9.51 19.81
    0 10.80 79.62 7.93 13.56 9.96 26.55
    15 9.79 71.93 7.11 13.61 9.88 27.40
    40 5.87 42.97 4.77 13.66 11.1 18.74
    60 3.95 26.19 2.67 15.08 10.19 32.43
    下载: 导出CSV

    表  5  改性聚氨酯混凝土5组温度下与温度相关的上升段参数aTbT的拟合值

    Table  5.   Fitting values of aT and bT of modified polyurethane concrete under five groups of temperatures

    Temperature/°C aT bT
    −10 1.30 1.06
    0 1.00 1.00
    15 1.19 0.98
    40 0.51 1.23
    60 0.37 1.36
    下载: 导出CSV
  • [1] 徐世法, 张业兴, 郭昱涛, 等. 基于贯入阻力测试系统的聚氨酯混凝土压实时机确定方法[J]. 中国公路学报, 2021, 34(7):226-235. doi: 10.3969/j.issn.1001-7372.2021.07.019

    XU Shifa, ZHANG Yexing, GUO Yutao, et al. Determination of polyurethane concrete compaction timing based on penetration resistance test system[J]. China Journal of Highway and Transport,2021,34(7):226-235(in Chinese). doi: 10.3969/j.issn.1001-7372.2021.07.019
    [2] 吴淑印. 钢桥面高延性水泥基材料铺装结构界面特性研究[D]. 南京: 东南大学, 2019.

    WU Shuyin. Study on interfacial characteristics of steel deck pavement with engineered cementitious composites[D]. Nanjing: Southeast University, 2019(in Chinese).
    [3] ZHANG K X, SUN Q S. Experimental study of reinforced concrete T-beams strengthened with a composite of prestressed steel wire ropes embedded in polyurethane cement (PSWR-PUC)[J]. International Journal of Civil Engineering,2017,16:1109-1123.
    [4] VIJAYARAGHAVAN J, JEEVAKKUMAR R, VENKATESAN G, et al. Influence of kaolin and dolomite as filler on bond strength of polyurethane coated reinforcement concrete[J]. Construction and Building Materials,2022,325:126675. doi: 10.1016/j.conbuildmat.2022.126675
    [5] 刘小祥, 刘翼, 安珈璇, 等. 连续长玻璃纤维/聚氨酯复合材料的制备与力学性能[J]. 复合材料学报, 2019, 36(3):617-623.

    LIU Xiaoxiang, LIU Yi, AN Jiaxuan, et al. Preparation and mechanical properties of continuous long glass fiber/polyurethane composites[J]. Acta Materiae Compositae Sinica,2019,36(3):617-623(in Chinese).
    [6] HONG B, LU G Y, GAO J L. Evaluation of polyurethane dense graded concrete prepared using the vacuum assisted resin transfer molding technology[J]. Construction and Building Materials,2021,269:121340. doi: 10.1016/j.conbuildmat.2020.121340
    [7] ALEIS K A, LABARCA I K. Evaluation of the URETEK method & of pavement lifting: WI-02-07[R]. Washington: Wisconsin Department of Transportation, 2007.
    [8] HUSSAIN H K, ZHANG L Z, LIU G W. An experimental study on strengthening reinforced concrete I-beams using new material polyurethane-cement (PUC)[J]. Construction and Building Materials,2013,40:104-117. doi: 10.1016/j.conbuildmat.2012.09.088
    [9] 雷建华, 徐斌, 何旭辉. 改性聚氨酯混凝土受压性能及本构关系研究[J]. 铁道科学与工程学报, 2023, 20(1): 278-288.

    LEI Jianhua, XU Bin, HE Xuhui. Research on compressive properties and constitutive relation of modified polyurethane concrete[J]. Journal of Railway Science and Engineering, 2023, 20(1): 278-288(in Chinese).
    [10] 徐斌, 徐速, 胡风, 等. 一种钢桥面复合式铺装结构及铺装方法: 中国, CN109056525 B[P]. 2020-10-27.

    XU Bin, XU Su, HU Feng, et al. A composite pavement structure and method of steel deck: China, CN109056525 B[P]. 2020-10-27(in Chinese).
    [11] 胡淑芳, 杨辉. 基于保通条件下某特大桥钢桥面铺装快速提升改造技术实践[J]. 江西建材, 2021(6):136, 138. doi: 10.3969/j.issn.1006-2890.2021.06.086

    HU Shufang, YANG Hui. Practice of rapid upgrading and reconstruction technology of steel deck pavement of a super large bridge based on the condition of communication[J]. Jiangxi Building Materials,2021(6):136, 138(in Chinese). doi: 10.3969/j.issn.1006-2890.2021.06.086
    [12] 李博强. 沈阳市长青桥钢桥桥面铺装的对比与选用[J]. 北方交通, 2019(6):25-28.

    LI Boqiang. Comparison and selection of steel bridge deck pavement of changqing bridge in shenyang[J]. Northern Communications,2019(6):25-28(in Chinese).
    [13] 李继宏. ECO改性聚氨酯混凝土在寒冷地区钢桥桥面铺装施工中的应用[J]. 北方交通, 2019(6):29-32.

    LI Jihong. Application of ECO modified polyurethane concrete on steel bridge deck pavement in cold area[J]. Northern Communications,2019(6):29-32(in Chinese).
    [14] LOOK K, HEEK P, MARK P. Direct tensile tests of supercritical steel fibre reinforced concrete[J]. Fibre Reinforced Concrete: Improvements and Innovations II,2022,36:132-142.
    [15] 郭耀东, 刘元珍, 王文婧, 等. 玄武岩纤维特征参数对混凝土单轴受拉性能的影响[J]. 复合材料学报, 2023, 40(5):2897-2912.

    GUO Yaodong, LIU Yuanzhen, WANG Wenjing, et al. Influence of basalt fiber characteristic parameters on uniaxial tensile properties of concrete[J]. Acta Materiae Compositae Sinica,2023,40(5):2897-2912(in Chinese).
    [16] 张哲, 邵旭东, 李文光, 等. 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28(8):50-58. doi: 10.3969/j.issn.1001-7372.2015.08.007

    ZHANG Zhe, SHAO Xudong, LI Wenguang, et al. Axial tensile behavior test of ultra high performance concrete[J]. China Journal of Highway and Transport,2015,28(8):50-58(in Chinese). doi: 10.3969/j.issn.1001-7372.2015.08.007
    [17] KAMIL Z, ANDRZEJ G, SANDRA C, et al. Tensile properties of polymer repair materials-effect of test parameters[J]. Advanced Materials Research,2015,1129:445-452. doi: 10.4028/www.scientific.net/AMR.1129.445
    [18] WILLE K, EL-TAWIL S, NAAMAN A E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading[J]. Cement and Concrete Composites,2014,48:53-66. doi: 10.1016/j.cemconcomp.2013.12.015
    [19] DENG Z Y, LIU X R, YANG X, et al. A study of tensile and compressive properties of hybrid basalt-polypropylene fiber-reinforced concrete under uniaxial loads[J]. Structural Concrete,2021,22:396-409. doi: 10.1002/suco.202000006
    [20] 杲晓龙, 王俊颜, 郭君渊, 等. 循环荷载作用下超高性能混凝土的轴拉力学性能及本构关系模型[J]. 复合材料学报, 2021, 38(11):3925-3938.

    GAO Xiaolong, WANG Junyan, GUO Junyuan, et al. Axial tensile mechanical properties and constitutive relation model of ultra-high performance concrete under cyclic loading[J]. Acta Materiae Compositae Sinica,2021,38(11):3925-3938(in Chinese).
    [21] DONNINI J, DE CASOY BASALO F, CORINALDESI V, et al. Fabric-reinforced cementitious matrix behavior at high-temperature: Experimental and numerical results[J]. Composites Part B: Engineering,2017,108:108-121. doi: 10.1016/j.compositesb.2016.10.004
    [22] JIN H, YANG S, XU H, et al. Uniaxial tensile performance of PP-ECC: Effect of curing temperatures and fly ash contents[J]. KSCE Journal of Civil Engineering,2020,24:3435-3446. doi: 10.1007/s12205-020-0402-x
    [23] 徐斌, 徐速, 尤其, 等. 树脂混凝土及其制备方法、钢桥面铺装结构及其施工方法: 中国, CN113666665 A[P]. 2022-04-12.

    XU Bin, XU Su, YOU Qi, et al. Resin concrete and its preparation method, steel deck pavement structure and construction method: China, CN113666665 A[P]. 2022-04-12(in Chinese).
    [24] 胡翱翔, 梁兴文, 于婧, 等. 超高性能混凝土轴心受拉力学性能试验研究[J]. 湖南大学学报(自然科学版), 2018, 45(9):30-37.

    HU Aoxiang, LIANG Xingwen, YU Jing, et al. Experimental study of uniaxial tensile characteristics of ultra-high performance concrete[J]. Journal of Hunan University (Natural Sciences),2018,45(9):30-37(in Chinese).
    [25] KAMAL A, KUNIEDA M, NAOSHI U. Evaluation of crack opening performance of a repair material with strain hardening behavior[J]. Cement and Concrete Composites,2008,30:863-871. doi: 10.1016/j.cemconcomp.2008.08.003
    [26] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).
    [27] 郝增恒, 王滔, 王民, 等. 钢桥面铺层温度场分析[J]. 公路交通科技, 2018, 35(11):36-43.

    HAO Zengheng, WANG Tao, WANG Min, et al. Analysis on temperature field of steel bridge deck pavement[J]. Jour-nal of Highway and Transportation Research and Development,2018,35(11):36-43(in Chinese).
    [28] 徐鸥明, 向顺琳, 杨星皓. 钢桥面铺装层材料应用与发展[J]. 公路, 2022(9):44-50.

    XU Ouming, XIANG Shunlin, YANG Xinghao. Application and development of steel bridge deck pavement structure and materials[J]. Highway,2022(9):44-50(in Chinese).
    [29] ZHANG J, SHEN H Z, ZHANG X, et al. Experimental and theoretical investigation of mechanical behavior related to temperature, humidity and strain rate on silane-modified polyurethane sealant[J]. Polymer Testing,2021,103:107370. doi: 10.1016/j.polymertesting.2021.107370
    [30] CHEN X L, ZHOU J, LUO Y L, et al. Molecular dynamics simulation insight into the temperature dependence and healing mechanism of an intrinsic self-healing polyurethane elastomer[J]. Physical Chemistry Chemical Physics,2020,22:17620-17631. doi: 10.1039/D0CP03013A
    [31] LI J, ZHANG J W, CHEN S. Study on dynamic viscoelastic properties and constitutive model of non-water reacted polyurethane grouting materials[J]. Measurement,2021,176:109115. doi: 10.1016/j.measurement.2021.109115
    [32] LEI J, FENG F, XU S, et al. Study on mechanical properties of modified polyurethane concrete at different tempera-tures[J]. Applied Sciences,2022,12:3184. doi: 10.3390/app12063184
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  695
  • HTML全文浏览量:  318
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-16
  • 修回日期:  2022-10-25
  • 录用日期:  2022-11-12
  • 网络出版日期:  2022-11-25
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回