留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

法兰-套管组合连接的圆CFRP-钢管混凝土节点抗弯性能

吕柏行 赵恒 刘博 咸贵军 肖海荣 郭志光 何俊

吕柏行, 赵恒, 刘博, 等. 法兰-套管组合连接的圆CFRP-钢管混凝土节点抗弯性能[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 吕柏行, 赵恒, 刘博, 等. 法兰-套管组合连接的圆CFRP-钢管混凝土节点抗弯性能[J]. 复合材料学报, 2024, 42(0): 1-12.
LV Baihang, ZHAO Heng, LIU Bo, et al. Flexural behavior of concrete-filled circular CFRP-steel tube with flange-sleeve joints[J]. Acta Materiae Compositae Sinica.
Citation: LV Baihang, ZHAO Heng, LIU Bo, et al. Flexural behavior of concrete-filled circular CFRP-steel tube with flange-sleeve joints[J]. Acta Materiae Compositae Sinica.

法兰-套管组合连接的圆CFRP-钢管混凝土节点抗弯性能

基金项目: 国家自然科学基金 (51808047);陕西省自然科学基础研究项目(2020JQ-388)
详细信息
    通讯作者:

    何俊,博士,副教授,硕士生导师,研究方向为纤维增强复合材料(FRP)增强结构 E-mail:hejun@chd.edu.cn

  • 中图分类号: TB332

Flexural behavior of concrete-filled circular CFRP-steel tube with flange-sleeve joints

Funds: National Natural Science Foundation of China (51808047); Natural Science Foundation of Shaanxi Province (2020JQ-388)
  • 摘要: 在钢管混凝土外侧粘贴碳纤维增强复合材料(Carbon Fiber Reinforced Polymer,CFRP)形成的CFRP-钢管混凝土拱架具有高承载力与刚度的优点,用于高应力、极软岩、强采动和断层破碎带等不良地质条件下的大断面隧道支护。本文提出了一种新型法兰-套管组合连接形式,用于CFRP-钢管混凝土拱架的节点。通过四点弯曲试验研究了法兰厚度(20 mm、30 mm、40 mm)对CFRP-钢管混凝土节点破坏模式、抗弯承载力、刚度等弯曲性能的影响。试验结果表明:试件的破坏模式均为CFRP沿轴向剥离破坏,法兰-套管节点完好,该连接方式有效;法兰厚度为20 mm时,抗弯承载力和刚度与无节点试件的基本一致,且抗弯承载力和刚度随着法兰厚度的增加而增大。通过有限元分析,研究法兰厚度、套管长度和套管壁厚对CFRP-钢混凝土节点弯曲性能影响规律。有限元结果表明:内聚力模型能较好地模拟CFRP剥离过程;法兰厚度对节点力学特性影响显著,套管长度和壁厚对节点力学特性影响较小;对于工程中常用的直径为140 mm的CFRP-钢管混凝土拱架节点,建议法兰厚度取20 mm,套管长度取200 mm,套管壁厚取5.5 mm。

     

  • 图  1  钢管混凝土常用连接形式

    Figure  1.  Common connection forms of concrete-filled steel tube

    图  2  法兰-套管组合连接CFRP-钢管混凝土

    Figure  2.  Flange-sleeve combination connection of concrete-filled CFRP-steel tube

    图  3  加载测试装置

    Figure  3.  Loading and Testing System

    图  4  测点布置(单位:mm)

    Figure  4.  Measuring point arrangement (Unit: mm)

    图  5  试件B-1~B-4破坏形态

    Figure  5.  Failure mode of specimens B-1~B-4

    图  6  试件B-1~B-4荷载-跨中挠度曲线

    Figure  6.  Load-mid span deflection curves of specimens B-1~B-4

    图  7  试件B-1~B-3截面高度轴向应变分布

    Figure  7.  Axial strain distribution with cross-section height of specimens B-1~B-3

    图  8  圆CFRP-钢管混凝土梁有限元模型

    Figure  8.  Finite element model of concrete-filled circular CFRP-steel tube beam

    图  9  试件B-1~B-4有限元模型和试验荷载-跨中挠度曲线

    Figure  9.  Load-mid span deflection curve of finite element model and experiment of specimens B-1~B-4

    图  10  试件B-1~B-4有限元模型和试验荷载-轴向应变曲线

    Figure  10.  Load-axial strain curve of finite element model and experiment of specimens B-1~B-4

    图  11  峰值荷载时试件B-1和B-2的有限元模型应力云图

    Figure  11.  Stress nephogram of finite element model of specimens B-1 and B-2 under maximum load

    图  12  B-2套管内胶层损伤云图

    Figure  12.  damage nephogram of adhesive inside sleeve

    图  13  不同法兰厚度下试件的荷载-跨中挠度曲线

    Figure  13.  Load-mid span deflection curves of specimens under different flange thicknesses

    图  14  套管长度和厚度对试件荷载-跨中挠度曲线的影响

    Figure  14.  Influence of the length and thickness of sleeve on the Load-mid span deflection curves of specimens

    表  1  法兰-套管节点的主要参数

    Table  1.   Main parameters of flange-sleeve joints

    Specimen Thickness of flange/mm Diameter of bolt/mm Length of flange-sleeve/mm Thickness of sleeve/mm
    B-1 - - - -
    B-2 20 33 300 8
    B-3 30 33 300 8
    B-4 40 33 300 8
    下载: 导出CSV

    表  2  碳纤维布力学性能

    Table  2.   Mechanical properties of CFRP sheet

    Thickness/
    mm
    Tensile
    strength/MPa
    Young’s
    modulus/GPa
    Elongation
    rate/%
    0.167 3400 240 1.6
    下载: 导出CSV

    表  3  钢材力学性能

    Table  3.   Mechanical properties of steel

    Yield strength/MPaTensile strength/MPaYoung’s modulus/GPaPoisson’s rate
    2904052000.3
    下载: 导出CSV

    表  4  环氧树脂胶力学性能

    Table  4.   Mechanical properties of epoxy resin adhesive

    Tensile strength/MPaYoung’s modulus/MPaElongation rate
    5025004%
    下载: 导出CSV

    表  5  试件B-1~B-4各阶段特征荷载与变形

    Table  5.   Characteristic loads and deformations at each stage of specimens B-1~B-4

    Specimen Eigenvalue Point A Point B Point C Point D Load ratio of point C to point D
    B-1 Load/kN 15.6 100.7 176.9 120.2 1.47
    Deflection/mm 0.9 7.1 23.0 28.1
    B-2 Load /kN 15.6 94.0 174.2 131.7 1.32
    Deflection/mm 0.7 6.3 22.2 29.3
    B-3 Load /kN 19.8 126.4 206.6 145.6 1.42
    Deflection/mm 1.3 9.7 26.4 34.0
    B-4 Load /kN 24.2 114.2 218.9 165.4 1.32
    Deflection/mm 0.7 6.7 24.0 33.1
    下载: 导出CSV

    表  6  有限元模型和试验极限荷载对比

    Table  6.   Comparison of ultimate load between finite element model and test

    SpecimenUltimate load of test PT/kNUltimate load of simulation PF/kNRatio of ultimate load PT/PF
    B-1176.9160.30.91
    B-2174.2198.91.14
    B-3206.6210.01.02
    B-4218.9211.80.97
    下载: 导出CSV
  • [1] 王琦, 许硕, 江贝, 等. 地下工程约束混凝土支护理论与技术研究进展[J]. 煤炭学报, 2020, 45(8): 2760-2776.

    WANG Qi, XU Shuo, JIANG Bei, et al. Research progress of confined concrete support theory and technology for underground engineering[J]. Journal of China Coal Society, 2020, 45(8): 2760-2776(in Chinese).
    [2] 王琦, 肖宇驰, 江贝, 等. 交通隧道高强约束混凝土拱架性能研究与应用[J]. 中国公路学报, 2021, 34(9): 263-272. doi: 10.3969/j.issn.1001-7372.2021.09.022

    WANG Qi, XIAO Yuchi, JIANG Bei, et al. Research and Application of High Strength Confined Concrete Arch in Traffic Tunnel[J]. China Journal of Highway and Transport, 2021, 34(9): 263-272(in Chinese). doi: 10.3969/j.issn.1001-7372.2021.09.022
    [3] ZHANG W, LI W, YANG N, et al. Determination of the bearing capacity of a Concrete-filled Steel Tubular arch support for tunnel engineering: Experimental and theoretical studies[J]. Ksce Journal of Civil Engineering, 2017, 21(7): 1-14.
    [4] 赵卫平, 何宇翔, 徐国正, 等. 钢管混凝土支架节点压弯承载性能数值模拟[J/OL]. 煤炭学报, 2023: 1-12. http://doi.org/10.13225/j.cnki.jccs.2023.0835 (in Chinese

    ZHAO Weiping, HE Yuxiang, XU Guozheng, et al. Numerical simulation of compression bending bearing property of concrete filled steel tubular support joints[J/OL]. Journal of China Coal Society. 2023: 1-12.
    [5] 滕锦光. 新材料组合结构[J]. 土木工程学报, 2018, 51(12): 1-11.

    TENG Jinguang. New-material hybrid structures[J]. China civil engineering journal, 2018, 51(12): 1-11(in Chinese).
    [6] MIYANO Y, NAKADA M. Accelerated testing methodology for durability of CFRP[J]. Composites Part B Engineering, 2020, 191: 107977. doi: 10.1016/j.compositesb.2020.107977
    [7] 李为腾, 王乾, 杨宁, 等. 钢管混凝土拱架在巷道支护中的发展与现状[J]. 土木工程学报, 2016, 49(11): 97-114+128.

    LI Weiteng, WANG Qian, YANG Ning, et al. Development and present status of concrete filled steel tubular supporting arch in mine roadway[J] China civil engineering journal, 2016, 49(11): 97-114+128. (in Chinese).
    [8] 鹿伟, 江贝, 王琦, 等. 深部软岩巷道方钢约束混凝土拱架基本构件力学特性及参数影响机制研究[J]. 采矿与安全工程学报, 2020, 37(3): 473-480.

    LU Wei, JIANG Bei, WANG Qi, et al. Mechanical characteristics and parameter influencing mechanism of square steel confined concrete arch components in deep soft rock roadway[J]. Journal of Mining & Safety Engineering, 2020, 37(3): 473-480(in Chinese).
    [9] TENG J G, YU T, FERNANDO D. Strengthening of steel structures with fiber-reinforced polymer composites[J]. Journal of Constructional Steel Research, 2012, 78: 131-143. doi: 10.1016/j.jcsr.2012.06.011
    [10] HE J, XIAN G J. Debonding of CFRP-to-steel joints with CFRP delamination[J]. Composite Structures, 2016, 153: 12-20. doi: 10.1016/j.compstruct.2016.05.100
    [11] XIA S H, TENG J G. Behaviour of FRP-to-steel bonded joints[C]// International Institute for FRP in Construction (IIFC). Proceedings of the International Symposium on Bond Behaviour of FRP in Structures, BBFS 2005. HONG KONG: Iifc Secretariat, 2005: 419-426.
    [12] 国家市场监督管理总局 GB/T 228.1-2021, 金属材料 拉伸试验 第1部分: 室温试验方法[S]. 北京: 中国标准出版社, 2021.

    State Administration for Market Regulation: GB/T 228.1-2021, Metallic materials - Tensile testing Part 1: Method of test at room temperature[S]. Standards Press of China, 2021. (in Chinese)
    [13] 中华人民共和国住房和城乡建设部 GB/T 50081-2019, 混凝土物理力学性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2019.

    Code for design of concrete structures: GB/T 50081-2019, Standard for test methods of concrete physical and mechanical properties[S]. China Architecture & Building Press, 2019. (in Chinese)
    [14] American Concrete Institute: ACI 318, Building code requirements for structural concrete and commentary[S]. 2011: 33.
    [15] 武芳文, 刘一帆, 何岚清, 等. 钢纤维磷酸镁水泥混凝土梁受弯性能研究[J]. 中国公路学报, 2023, 36(9): 106-118.

    WU Fangwen, LIU Yifan, HE Lanqing, et al. Flexural Performance of Steel Fiber Magnesium Phosphate Cement Concrete Beams[J]. China Journal of Highway and Transport, 2023, 36(9): 106-118(in Chinese).
    [16] TAO Z, WANG Z B, YU Q. Finite element modelling of concrete-filled steel stub columns under axial compression[J]. Journal Construction Steel Research, 2013, 89: 121-131. doi: 10.1016/j.jcsr.2013.07.001
    [17] BAŽANT Z P, BECQ-GIRAUDON E. Statistical prediction of fracture parameters of concrete and implications for choice of testing standard[J]. Cement & Concrete Research, 2002, 32(4): 529-556.
    [18] Comite Euro-international Du Beton. CEB-FIP Model Code 1990[S]. Thomas Telford Ltd, 1993.
    [19] TAO Z, WANG X Q, UY B. Stress-Strain Curves of Structural and Reinforcing Steels after Exposure to Elevated Temperatures[J]. Journal of Materials in Civil Engineering, 2013, 25(9): 1306-1316. doi: 10.1061/(ASCE)MT.1943-5533.0000676
    [20] CAMPILHO R D S G, MOURA M F S F D, DOMINGUES J J M S. Using a cohesive damage model to predict the tensile behaviour of CFRP single-strap repairs[J]. International Journal of Solids and Structures, 2008, 45(5): 1497-1512. doi: 10.1016/j.ijsolstr.2007.10.003
    [21] WANG H T, WU G. Bond-slip models for CFRP plates externally bonded to steel substrates[J]. Composite Structures, 2018, 184: 1204-1214. doi: 10.1016/j.compstruct.2017.10.033
    [22] TENG J G, FERNANDO D, YU T. Finite element modelling of debonding failures in steel beams flexurally strengthened with CFRP laminates[J]. Engineering Structures, 2015, 86: 213-224. doi: 10.1016/j.engstruct.2015.01.003
  • 加载中
计量
  • 文章访问数:  51
  • HTML全文浏览量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-14
  • 修回日期:  2024-07-01
  • 录用日期:  2024-07-12
  • 网络出版日期:  2024-07-30

目录

    /

    返回文章
    返回