Flexural behavior of concrete-filled circular CFRP-steel tube with flange-sleeve joints
-
摘要: 在钢管混凝土外侧粘贴碳纤维增强复合材料(Carbon Fiber Reinforced Polymer,CFRP)形成的CFRP-钢管混凝土拱架具有高承载力与刚度的优点,用于高应力、极软岩、强采动和断层破碎带等不良地质条件下的大断面隧道支护。本文提出了一种新型法兰-套管组合连接形式,用于CFRP-钢管混凝土拱架的节点。通过四点弯曲试验研究了法兰厚度(20 mm、30 mm、40 mm)对CFRP-钢管混凝土节点破坏模式、抗弯承载力、刚度等弯曲性能的影响。试验结果表明:试件的破坏模式均为CFRP沿轴向剥离破坏,法兰-套管节点完好,该连接方式有效;法兰厚度为20 mm时,抗弯承载力和刚度与无节点试件的基本一致,且抗弯承载力和刚度随着法兰厚度的增加而增大。通过有限元分析,研究法兰厚度、套管长度和套管壁厚对CFRP-钢混凝土节点弯曲性能影响规律。有限元结果表明:内聚力模型能较好地模拟CFRP剥离过程;法兰厚度对节点力学特性影响显著,套管长度和壁厚对节点力学特性影响较小;对于工程中常用的直径为140 mm的CFRP-钢管混凝土拱架节点,建议法兰厚度取20 mm,套管长度取200 mm,套管壁厚取5.5 mm。Abstract: The concrete filled circular CFRP-steel tube arch formed by pasting carbon fiber reinforced polymer (CFRP) on the outer side of the concrete filled steel tube has higher bearing capacity and stiffness, and can be used for tunnel support under adverse geological conditions such as high stress, extremely soft rock, strong mining, and fault fracture zones. This article proposes a new type of flange-sleeve joint, which is used for concrete filled circular CFRP-steel tube arch in tunnel engineering. The influence of different flange thicknesses (20 mm, 30 mm, 40 mm) on the failure mode, flexural bearing capacity of concrete filled CFRP-steel tube joint under four-point bending was experimentally studied. The results show that the failure mode of the specimens is CFRP axial delamination, and the flange-sleeve joint is intact, indicating that this connection method is effective; When the flange thickness is 20 mm, the bending bearing capacity and stiffness of the specimen are basically the same as those of the node free specimen, and the bending bearing capacity and stiffness increase with the increase of flange thickness. Based on ABAQUS finite element analysis, a comparison was made with experimental results, and parameterized analysis was conducted using flange thickness, casing length, and casing wall thickness as variables. The finite element results indicate that the cohesive zone model can effectively simulate the delamination process of CFRP; The thickness of the flange has a significant influence on the mechanical properties of the joint, while the length and wall thickness of the sleeve have a relatively small influence on the mechanical properties of the joint; For specimens with a steel tube diameter of 140 mm and a CFRP thickness of 3 mm, it is recommended to take a flange thickness of 20 mm, a sleeve length of 200 mm, and a sleeve wall thickness of 5.5 mm.
-
表 1 法兰-套管节点的主要参数
Table 1. Main parameters of flange-sleeve joints
Specimen Thickness of flange/mm Diameter of bolt/mm Length of flange-sleeve/mm Thickness of sleeve/mm B-1 - - - - B-2 20 33 300 8 B-3 30 33 300 8 B-4 40 33 300 8 表 2 碳纤维布力学性能
Table 2. Mechanical properties of CFRP sheet
Thickness/
mmTensile
strength/MPaYoung’s
modulus/GPaElongation
rate/%0.167 3400 240 1.6 表 3 钢材力学性能
Table 3. Mechanical properties of steel
Yield strength/MPa Tensile strength/MPa Young’s modulus/GPa Poisson’s rate 290 405 200 0.3 表 4 环氧树脂胶力学性能
Table 4. Mechanical properties of epoxy resin adhesive
Tensile strength/MPa Young’s modulus/MPa Elongation rate 50 2500 4% 表 5 试件B-1~B-4各阶段特征荷载与变形
Table 5. Characteristic loads and deformations at each stage of specimens B-1~B-4
Specimen Eigenvalue Point A Point B Point C Point D Load ratio of point C to point D B-1 Load/kN 15.6 100.7 176.9 120.2 1.47 Deflection/mm 0.9 7.1 23.0 28.1 B-2 Load /kN 15.6 94.0 174.2 131.7 1.32 Deflection/mm 0.7 6.3 22.2 29.3 B-3 Load /kN 19.8 126.4 206.6 145.6 1.42 Deflection/mm 1.3 9.7 26.4 34.0 B-4 Load /kN 24.2 114.2 218.9 165.4 1.32 Deflection/mm 0.7 6.7 24.0 33.1 表 6 有限元模型和试验极限荷载对比
Table 6. Comparison of ultimate load between finite element model and test
Specimen Ultimate load of test PT/kN Ultimate load of simulation PF/kN Ratio of ultimate load PT/PF B-1 176.9 160.3 0.91 B-2 174.2 198.9 1.14 B-3 206.6 210.0 1.02 B-4 218.9 211.8 0.97 -
[1] 王琦, 许硕, 江贝, 等. 地下工程约束混凝土支护理论与技术研究进展[J]. 煤炭学报, 2020, 45(8): 2760-2776.WANG Qi, XU Shuo, JIANG Bei, et al. Research progress of confined concrete support theory and technology for underground engineering[J]. Journal of China Coal Society, 2020, 45(8): 2760-2776(in Chinese). [2] 王琦, 肖宇驰, 江贝, 等. 交通隧道高强约束混凝土拱架性能研究与应用[J]. 中国公路学报, 2021, 34(9): 263-272. doi: 10.3969/j.issn.1001-7372.2021.09.022WANG Qi, XIAO Yuchi, JIANG Bei, et al. Research and Application of High Strength Confined Concrete Arch in Traffic Tunnel[J]. China Journal of Highway and Transport, 2021, 34(9): 263-272(in Chinese). doi: 10.3969/j.issn.1001-7372.2021.09.022 [3] ZHANG W, LI W, YANG N, et al. Determination of the bearing capacity of a Concrete-filled Steel Tubular arch support for tunnel engineering: Experimental and theoretical studies[J]. Ksce Journal of Civil Engineering, 2017, 21(7): 1-14. [4] 赵卫平, 何宇翔, 徐国正, 等. 钢管混凝土支架节点压弯承载性能数值模拟[J/OL]. 煤炭学报, 2023: 1-12. http://doi.org/10.13225/j.cnki.jccs.2023.0835 (in ChineseZHAO Weiping, HE Yuxiang, XU Guozheng, et al. Numerical simulation of compression bending bearing property of concrete filled steel tubular support joints[J/OL]. Journal of China Coal Society. 2023: 1-12. [5] 滕锦光. 新材料组合结构[J]. 土木工程学报, 2018, 51(12): 1-11.TENG Jinguang. New-material hybrid structures[J]. China civil engineering journal, 2018, 51(12): 1-11(in Chinese). [6] MIYANO Y, NAKADA M. Accelerated testing methodology for durability of CFRP[J]. Composites Part B Engineering, 2020, 191: 107977. doi: 10.1016/j.compositesb.2020.107977 [7] 李为腾, 王乾, 杨宁, 等. 钢管混凝土拱架在巷道支护中的发展与现状[J]. 土木工程学报, 2016, 49(11): 97-114+128.LI Weiteng, WANG Qian, YANG Ning, et al. Development and present status of concrete filled steel tubular supporting arch in mine roadway[J] China civil engineering journal, 2016, 49(11): 97-114+128. (in Chinese). [8] 鹿伟, 江贝, 王琦, 等. 深部软岩巷道方钢约束混凝土拱架基本构件力学特性及参数影响机制研究[J]. 采矿与安全工程学报, 2020, 37(3): 473-480.LU Wei, JIANG Bei, WANG Qi, et al. Mechanical characteristics and parameter influencing mechanism of square steel confined concrete arch components in deep soft rock roadway[J]. Journal of Mining & Safety Engineering, 2020, 37(3): 473-480(in Chinese). [9] TENG J G, YU T, FERNANDO D. Strengthening of steel structures with fiber-reinforced polymer composites[J]. Journal of Constructional Steel Research, 2012, 78: 131-143. doi: 10.1016/j.jcsr.2012.06.011 [10] HE J, XIAN G J. Debonding of CFRP-to-steel joints with CFRP delamination[J]. Composite Structures, 2016, 153: 12-20. doi: 10.1016/j.compstruct.2016.05.100 [11] XIA S H, TENG J G. Behaviour of FRP-to-steel bonded joints[C]// International Institute for FRP in Construction (IIFC). Proceedings of the International Symposium on Bond Behaviour of FRP in Structures, BBFS 2005. HONG KONG: Iifc Secretariat, 2005: 419-426. [12] 国家市场监督管理总局 GB/T 228.1-2021, 金属材料 拉伸试验 第1部分: 室温试验方法[S]. 北京: 中国标准出版社, 2021.State Administration for Market Regulation: GB/T 228.1-2021, Metallic materials - Tensile testing Part 1: Method of test at room temperature[S]. Standards Press of China, 2021. (in Chinese) [13] 中华人民共和国住房和城乡建设部 GB/T 50081-2019, 混凝土物理力学性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2019.Code for design of concrete structures: GB/T 50081-2019, Standard for test methods of concrete physical and mechanical properties[S]. China Architecture & Building Press, 2019. (in Chinese) [14] American Concrete Institute: ACI 318, Building code requirements for structural concrete and commentary[S]. 2011: 33. [15] 武芳文, 刘一帆, 何岚清, 等. 钢纤维磷酸镁水泥混凝土梁受弯性能研究[J]. 中国公路学报, 2023, 36(9): 106-118.WU Fangwen, LIU Yifan, HE Lanqing, et al. Flexural Performance of Steel Fiber Magnesium Phosphate Cement Concrete Beams[J]. China Journal of Highway and Transport, 2023, 36(9): 106-118(in Chinese). [16] TAO Z, WANG Z B, YU Q. Finite element modelling of concrete-filled steel stub columns under axial compression[J]. Journal Construction Steel Research, 2013, 89: 121-131. doi: 10.1016/j.jcsr.2013.07.001 [17] BAŽANT Z P, BECQ-GIRAUDON E. Statistical prediction of fracture parameters of concrete and implications for choice of testing standard[J]. Cement & Concrete Research, 2002, 32(4): 529-556. [18] Comite Euro-international Du Beton. CEB-FIP Model Code 1990[S]. Thomas Telford Ltd, 1993. [19] TAO Z, WANG X Q, UY B. Stress-Strain Curves of Structural and Reinforcing Steels after Exposure to Elevated Temperatures[J]. Journal of Materials in Civil Engineering, 2013, 25(9): 1306-1316. doi: 10.1061/(ASCE)MT.1943-5533.0000676 [20] CAMPILHO R D S G, MOURA M F S F D, DOMINGUES J J M S. Using a cohesive damage model to predict the tensile behaviour of CFRP single-strap repairs[J]. International Journal of Solids and Structures, 2008, 45(5): 1497-1512. doi: 10.1016/j.ijsolstr.2007.10.003 [21] WANG H T, WU G. Bond-slip models for CFRP plates externally bonded to steel substrates[J]. Composite Structures, 2018, 184: 1204-1214. doi: 10.1016/j.compstruct.2017.10.033 [22] TENG J G, FERNANDO D, YU T. Finite element modelling of debonding failures in steel beams flexurally strengthened with CFRP laminates[J]. Engineering Structures, 2015, 86: 213-224. doi: 10.1016/j.engstruct.2015.01.003
计量
- 文章访问数: 51
- HTML全文浏览量: 34
- 被引次数: 0