Effect of BN(h) content on the friction and wear properties of ultrasonic-pulse electrodeposited Ni-P-WC-BN(h) coatings
-
摘要: 为改善材料表面硬度及减磨耐磨性能,利用超声-脉冲电沉积法在20CrMnTi表面制备Ni-P-WC-BN(h)纳米复合镀层,采用X射线衍射分析(XRD)研究镀层物相并估算晶粒大小,扫描电镜(SEM)、能谱分析仪(EDS)、显微硬度仪和激光显微镜等测量手段,分析Ni-P、Ni-P-WC及不同BN(h)浓度下Ni-P-WC-BN(h)纳米复合镀层的表面形貌、组织成分、显微硬度、减磨耐磨性能。结果表明:不同纳米颗粒浓度对复合镀层表面的组织结构有重要影响,纳米复合镀层表面呈现典型的包状结构,适宜浓度的二元纳米颗粒共沉积有效改善了镀层微观形貌。Ni-P-WC-BN(h)纳米复合镀层镀态硬度可达
1156 HV1,与Ni-P-WC纳米复合镀层相比,在保证Ni-P-WC纳米复合镀层镀态高硬度的同时,摩擦系数降低22.6%,具有更好的减磨耐磨性能。-
关键词:
- Ni-P-WC-BN(h)复合镀层 /
- 超声脉冲电沉积 /
- 硬度 /
- 减磨耐磨性 /
- 二元纳米颗粒
Abstract: In order to improve the surface hardness and wear reduction and abrasion resistance of the material, Ni-P-WC-BN(h) nanocomposite coatings were prepared on the surface of 20CrMnTi by using ultrasonic-pulsed electrodeposition method, X-ray diffraction analysis (XRD) was used to study the physical phase of the coatings and estimate the grain size, and scanning electron microscopy (SEM), energy spectrum analyzer (EDS), microhardness tester, and laser microscope were used to analyze the surface morphology, tissue composition, microhardness, and wear reduction performance of Ni-P, Ni-P-WC, and Ni-P-WC-BN(h) nanocomposite coatings with different BN(h) concentrations. The results show that different nanoparticle concentrations have important effects on the organization of the composite coating surface, the surface of the nanocomposite coating shows a typical package structure, and the co-deposition of binary nanoparticles with appropriate concentrations effectively improves the coating microscopic morphology.The hardness of Ni-P-WC-BN(h) nanocomposite coating in the plated state can be up to1156 HV1, which is comparable to that of the Ni-P-WC nanocomposite coating in terms of guaranteeing the micro hardness of Ni-P-WC nanocomposite coating and its wear-resistance. Compared with Ni-P-WC nanocomposite coating, the coefficient of friction is reduced by 22.6% while ensuring the high hardness of Ni-P-WC nanocomposite coating in the plated state, which has better wear reduction and abrasion resistance. -
图 2 复合镀层表面SEM图像 (a) Ni-P,(b)Ni-P-WC,(c1)Ni-P-WC-BN(h)(15 g/L),(c2) Ni-P-WC-BN(h) (20 g/L),(c3) Ni-P-WC-BN(h)(25 g/L),(c4) Ni-P-WC-BN(h)(30 g/L)
Figure 2. SEM image of composite plated surface (a)Ni-P,(b)Ni-P-WC,(c1)Ni-P-WC-BN(h)(15 g/L),(c2) Ni-P-WC-BN(h)(20 g/L),(c3) Ni-P-WC-BN(h)(25 g/L),(c4) Ni-P-WC-BN(h)(30 g/L)
图 3 复合镀层截面SEM图像及截面元素分布 (a)Ni-P,(b)Ni-P-WC,(c1)Ni-P-WC-BN(h)(15 g/L),(c2) Ni-P-WC-BN(h) (20 g/L),(c3) Ni-P-WC-BN(h)(25 g/L),(c4) Ni-P-WC-BN(h)(30 g/L)
Figure 3. SEM image of composite plating cross-section and section element distribution (a)Ni-P,(b)Ni-P-WC,(c1)Ni-P-WC-BN(h)(15 g/L),(c2) Ni-P-WC-BN(h)(20 g/L),(c3) Ni-P-WC-BN(h)(25 g/L),(c4) Ni-P-WC-BN(h)(30 g/L)
图 4 复合镀层表面元素分布 (a)Ni-P,(b)Ni-P-WC,(c1)Ni-P-WC-BN(h)(15 g/L),(c2) Ni-P-WC-BN(h) (20 g/L),(c3) Ni-P-WC-BN(h)(25 g/L),(c4) Ni-P-WC-BN(h)(30 g/L)
Figure 4. Composite plating surface element distribution (a)Ni-P,(b)Ni-P-WC,(c1)Ni-P-WC-BN(h)(15 g/L),(c2) Ni-P-WC-BN(h)(20 g/L),(c3) Ni-P-WC-BN(h)(25 g/L),(c4) Ni-P-WC-BN(h)(30 g/L)
图 9 复合镀层磨痕SEM(左)、磨痕形貌(中)、磨痕轮廓线(右):(a)Ni-P (b)Ni-P-WC (c)Ni-P-WC-BN(h)(15 g/L) (d)Ni-P-WC-BN(h)(20 g/L) (e)Ni-P-WC-BN(h)(25 g/L) (f)Ni-P-WC-BN(h)(30 g/L)
Figure 9. SEM of composite plating wear marks (left), wear mark morphology (center), and wear mark contour lines (right): (a) Ni-P (b) Ni-P-WC (c) Ni-P-WC-BN(h)(15 g/L) (d) Ni-P-WC-BN(h)(20 g/L) (e) Ni-P-WC-BN(h)(25 g/L) (f) Ni-P-WC-BN(h)(30 g/L)
表 1 电沉积Ni-P镀液配方
Table 1. Formulation of electrodeposition Ni-P plating solution
Element Concentration/(g·L−1) NiSO4·6H2O 230 NiCl2·6H2O 30 H3PO3 5 NaH2PO2·H2O 8 NaC6H8O7·H2O 80 H3BO3 30 C₁₂H₂₅NaSO₄ 0.1 SC(NH₂)₂ 0.02 C₇H₅NO₃S 1 表 2 不同复合镀层中Ni(111)元素的晶粒尺寸
Table 2. Grain size of Ni(111) elements in different composite coatings
Type of plating 2θ/(°) FWHM Diameter/nm Ni-P 44.480 0.941 9.2 Ni-P-WC 44.670 0.848 10.2 Ni-P-WC-BN(h)(15 g/L) 44.480 0.894 9.7 Ni-P-WC-BN(h)(20 g/L) 44.340 0.908 9.5 Ni-P-WC-BN(h)(25 g/L) 44.660 0.968 8.9 Ni-P-WC-BN(h)(30 g/L) 44.710 0.677 12.8 表 3 镀层磨损体积
Table 3. Plating wear volume
Type of plating Wear volume /μm3 Ni-P 459553 Ni-P-WC 51945 Ni-P-WC-BN(h)(15 g/L) 256137 Ni-P-WC-BN(h)(20 g/L) 135765 Ni-P-WC-BN(h)(25 g/L) 53587 Ni-P-WC-BN(h)(30 g/L) 102966 表 4 磨痕元素分布
Table 4. Distribution of abrasion elements
Area Atomic fraction of an element at% Ni O P Si W B Au 1 75.01 14.08 5.15 2.71 — — 2.34 2 90.1 — 6.4 — — — 3.49 3 23.16 70.39 1.49 — 2.87 — 1.28 4 84.64 2.48 3.43 — 6.14 — 3.31 5 56.59 31.00 3.36 1.35 5.41 0.35 1.93 6 63.12 4.00 3.58 — 3.13 23.59 2.60 7 37.49 53.33 2.07 1.16 3.40 0.76 1.79 8 37.68 52.95 2.56 1.06 4.05 0.2 1.50 9 66.25 9.97 4.38 0.01 4.05 14.04 1.29 10 72.42 15.68 3.59 0.15 5.63 0.13 2.42 11 58.76 7.96 3.03 0.11 4.56 20.69 4.88 12 46.65 27.96 1.23 4.89 4.47 8.99 5.82 -
[1] 郑亚旭, 王福明, 王延露, 等. 20CrMnTi齿轮钢表面渗氮后的氧化处理工艺[J]. 材料热处理学报, 2016, 37(9): 6.ZHENG Yaxu, WANG Fuming, WANG Yanlu, et al. Oxidation treatment process of 20CrMnTi gear steel after surface nitriding[J]. Journal of Materials Heat Treatment, 2016, 37(9): 6(in Chinese). [2] 杨虎, 王仁鑫, 郭子铭, 等. 沉积温度对20CrMnTi渗碳钢表面电弧离子镀CrN涂层微观结构与性能的影响[J]. 机械工程材料, 2022, 46(10): 75-80. doi: 10.11973/jxgccl202210013YANG Hu, WANG Renxin, GUO Ziming, et al. Effect of deposition temperature on the microstructure and properties of CrN coatings on the surface of 20CrMnTi carburized steel by arc ion plating[J]. Mechanical Engineering Materials, 2022, 46(10): 75-80(in Chinese). doi: 10.11973/jxgccl202210013 [3] Ashassi-Sorkhabi H, Es'Haghi M. Corrosion resistance enhancement of electroless Ni–P coating by incorporation of ultrasonically dispersed diamond nanoparticles[J]. Corrosion Science, 2013, 77(dec.): 185-193. [4] 李吉学, 国秀珍. 化学镀Ni-P合金镀层相结构与硬度的研究[J]. 表面技术, 2001, 30(1): 4. doi: 10.3969/j.issn.1001-3660.2001.01.003LI Jixue, GUO Xiuzhen. Study on phase structure and hardness of chemically plated Ni-P alloy coatings[J]. Surface Technology, 2001, 30(1): 4(in Chinese). doi: 10.3969/j.issn.1001-3660.2001.01.003 [5] 王颖, 康敏, 傅秀清, 等. 发动机气缸电喷镀镍磷合金镀层及耐腐蚀性能[J]. 农业工程学报, 2014, 30(15): 54-61. doi: 10.3969/j.issn.1002-6819.2014.15.008WANG Ying, KANG Min, FU Xiuqing, et al. Electrospray plating of engine cylinder with nickel-phosphorus alloy coating and corrosion resistance[J]. Journal of Agricultural Engineering, 2014, 30(15): 54-61(in Chinese). doi: 10.3969/j.issn.1002-6819.2014.15.008 [6] 徐婷, 焦玉民, 刘斌, 等. 电沉积镍基复合镀层的研究概况[J]. 机械工程与自动化, 2018, (1): 3. doi: 10.3969/j.issn.1672-6413.2018.01.094XU Ting, JIAO Yumin, LIU Bin, et al. Research overview of electrodeposited nickel-based composite coatings[J]. Mechanical Engineering and Automation, 2018, (1): 3(in Chinese). doi: 10.3969/j.issn.1672-6413.2018.01.094 [7] 王吉会, 尹玫. (Ni-P)-WC纳米微粒复合电镀的研究[J]. 电镀与精饰, 2005, 27(1): 4. doi: 10.3969/j.issn.1001-3849.2005.01.002WANG Jihui, YIN Mei. Study on composite plating of (Ni-P)-WC nanoparticles[J]. Plating and Finishing, 2005, 27(1): 4(in Chinese). doi: 10.3969/j.issn.1001-3849.2005.01.002 [8] 徐梦廓, 朱世根, 丁浩, 等. WC-Al2O3纳米颗粒增强Ni-P复合镀层的电接触强化及性能[J]. 金属热处理, 2016, 41(11): 5.XU Mengkou, ZHU Shigen, DING Hao, et al. Electrical contact strengthening and properties of Ni-P composite coatings reinforced by WC-Al2O3 nanoparticles[J]. Metal Heat Treatment, 2016, 41(11): 5(in Chinese). [9] 国雪, 王金东, 马春阳, 等. SiC纳米颗粒对脉冲电沉积Ni-SiC复合镀层性能的影响[J]. 兵器材料科学与工程, 2018, 41(4): 4.GUO Xue, WANG Jindong, MA Chunyang, et al. Influence of SiC nanoparticles on the properties of pulsed electrodeposited Ni-SiC composite coatings[J]. Weapon Materials Science and Engineering, 2018, 41(4): 4(in Chinese). [10] Luo H , Leitch M , Behnamian Y , et al. Development of electroless Ni–P/nano-WC composite coatings and investigation on its properties[J]. Surface and Coatings Technology, 2015, 277: 99-106. [11] 申蓉蓉, 陈奎儒, 刘继光. 化学镀Ni-B/BN自润滑复合镀层研究[J]. 西南科技大学学报(自然科学版), 2006, (4): 33-36.SHEN Rongrong, CHEN Kuiru, LIU Jiguang. Study on self-lubricating composite plating of Ni-B/BN[J]. Journal of Southwest University of Science and Technology(Natural Science Edition), 2006, (4): 33-36(in Chinese). [12] 王兰, 邵红红, 苗润生, 等. Ni-P-MoS2自润滑复合镀层的研究[J]. 润滑与密封, 2006, (12): 3. doi: 10.3969/j.issn.0254-0150.2006.12.018WANG Lan, SHAO Honghong, MIAO Runsheng, et al. Study on Ni-P-MoS2 self-lubricating composite coating[J]. Lubrication and Sealing, 2006, (12): 3(in Chinese). doi: 10.3969/j.issn.0254-0150.2006.12.018 [13] 仵亚婷, 刘磊, 高加强, 等. 自润滑Ni-P-PTFE化学复合镀工艺及镀层性能[J]. 上海交通大学学报, 2005, 39(2): 5. doi: 10.3321/j.issn:1006-2467.2005.02.010PALL Yating, LIU Lei, GAO Jianjian, et al. Self-lubricating Ni-P-PTFE chemical composite plating process and plating performance[J]. Journal of Shanghai Jiao Tong University, 2005, 39(2): 5(in Chinese). doi: 10.3321/j.issn:1006-2467.2005.02.010 [14] 曾斌, 侯峰, 徐宏, 等. 纳米SiO2粒子/镍基复合镀层腐蚀行为[J]. 腐蚀与防护, 2012, 33(3): 222-225.ZENG B, HOU F, XU H, et al. Corrosion behavior of SiO2 nanoparticles/Ni-based composite coatings[J]. Corrosion and Protection, 2012, 33(3): 222-225(in Chinese). [15] 赵芳霞, 罗驹华, 张振忠, 等. Ni-P-纳米TiO2复合镀层的耐蚀性研究[J]. 特种铸造及有色合金, 2005, 25(5).ZHAO Fangxia, LUO Juhua, ZHANG Zhenzhong, et al. Corrosion resistance of Ni-P-nanometer TiO2 composite coatings[J]. Special Casting and Nonferrous Alloys, 2005, 25(5). (in Chinese) [16] 周宏明, 胡雪仪, 李荐. 化学镀Ni–Cu–P/n–TiN复合镀层的耐腐蚀行为与机理研究(英文)[J]. Journal of Central South University, 2018, v.25(6): 104-111.ZHOU Hongming, HU Xueyi, LI Jian. Corrosion resistance behavior and mechanism of chemically plated Ni-Cu-P/n-TiN composite coatings (in English)[J]. Journal of Central South University, 2018, v.25(6): 104-111(in Chinese). [17] 王健. Ni-P微/纳米金刚石复合镀层耐磨与耐腐蚀性能研究[D]. 广东工业大学, 2018.WANG Jian. Research on wear and corrosion resistance of Ni-P micro/nano-diamond composite coating [D]. Guangdong University of Technology, 2018. (in Chinese) [18] 张欢, 胡亚敏, 郭忠诚. Ni-W-P-SiC脉冲复合镀层的抗高温氧化性能[J]. 腐蚀与防护, 2006.ZHANG Huan, HU Yamin, HUO Zhongcheng. Anti-temperature oxidation properties of Ni-W-P-SiC pulsed composite coatings[J]. Corrosion and Protection, 2006. (in Chinese) [19] 徐义库, 范铭远, 罗宇晴, 等. 脉冲电沉积SiC/TiN颗粒增强Ni-Mo纳米复合镀层研究[J]. 稀有金属材料与工程, 2021, 50(5): 1656-1664. doi: 10.12442/j.issn.1002-185X.20200378XU Yiku, FAN Mingyuan, LUO Yuqing, et al. Study on Ni-Mo nanocomposite coatings reinforced by pulsed electrodeposition of SiC/TiN particles[J]. Rare Metal Materials and Engineering, 2021, 50(5): 1656-1664(in Chinese). doi: 10.12442/j.issn.1002-185X.20200378 [20] 张银, 康敏, 傅秀清, 等. Ni-Co-P-BN(h)-Al2O3二元纳米复合镀层表面组织结构及耐磨性研究[J]. 材料科学与工艺, 2019, 27(6): 12. doi: 10.11951/j.issn.1005-0299.20180205ZHANG Y, KANG M, FU Xiuqing, et al. Surface organization and wear resistance of Ni-Co-P-BN(h)-Al2O3 binary nanocomposite coatings[J]. Materials Science and Technology, 2019, 27(6): 12(in Chinese). doi: 10.11951/j.issn.1005-0299.20180205 [21] 王浩鑫. 单向脉冲电沉积Ni-纳米TiC-氧化石墨烯复合镀层的制备及性能研究[D]. 辽宁工程技术大学, 2023.Hao-Xin WANG. Preparation and properties of unidirectional pulsed electrodeposition of Ni-nano TiC-graphene oxide composite coatings [D]. Liaoning University of Engineering and Technology, 2023. (in Chinese) [22] 任鑫, 张雨辰, 田佳茹, 等. 不同方式电沉积Ni-纳米TiC复合镀层的微观结构与性能[J]. 复合材料学报, 2022, 39(8): 9.REN X, ZHANG Yuchen, TIAN Jaru, et al. Microstructure and properties of Ni-nano TiC composite coatings electrodeposited by different ways[J]. Journal of Composite Materials, 2022, 39(8): 9(in Chinese). [23] 张银, 康敏, 李恒征, 等. Ni-Co-P-BN(h)-Al2O3二元纳米复合镀层润湿性及耐蚀性[J]. 中国有色金属学报, 2019, 29(10): 2321-2333.Yin ZHANG, Min KANG, Hengzheng LI, et al. Wettability and corrosion resistance of binary nanocomposite coatings of Ni-Co-P-BN(h)-Al2O3[J]. Chinese Journal of Nonferrous Metals, 2019, 29(10): 2321-2333(in Chinese). [24] 申晨. 超声场中电沉积二元纳米复合镀层的试验研究[D]. 河南科技大学, 2012.SHEN Chen. Experimental study on the electrodeposition of binary nanocomposite coatings in ultrasonic field [D]. Henan University of Science and Technology, 2012. (in Chinese) [25] 夏晓健, 万芯瑗, 严康骅, 等. Ni-Mo-BN复合镀层热处理前后组织与力学性能的研究[J/OL]. 热加工工艺, 2024, (14): 21-26.XIA Xiaojian, WAN Xinwon, YAN Kanghua, et al. Study on the organization and mechanical properties of Ni-Mo-BN composite plating before and after heat treatment[J/OL]. Thermal Processing Technology, 2024, (14): 21-26(in Chinese). [26] 刘健健, 朱诚意, 李光强, 等. 石墨烯添加量对Ni基-石墨烯复合镀层性能的影响[J]. 材料保护, 2018, 51(3): 6.LIU Jianjian, ZHU Chengyi, LI Guangqiang, et al. Effect of graphene addition on the properties of Ni-based-graphene composite coatings[J]. Materials Protection, 2018, 51(3): 6(in Chinese). [27] Guglielmi, N. Kinetics of the Deposition of Inert Particles from Electrolytic Baths[J]. Journal of the Electrochemical Society, 1972, 119(8): 1009-1012. doi: 10.1149/1.2404383 [28] 黄柱, 刘美霞, 李天白, 等. 电沉积Ni-W-WC复合镀层摩擦磨损性能[J]. 有色金属科学与工程, 2016, 7(3): 5.HUANG Zhu, LIU Meixia, LI Tianbai, et al. Friction and wear properties of electrodeposited Ni-W-W-CWC composite coatings[J]. Nonferrous Metal Science and Engineering, 2016, 7(3): 5(in Chinese). [29] 王毅飞, 谢发勤, 姚小飞, 等. P110油管钢表面镀Cu与镀Ni-P摩擦磨损性能的比较[J]. 摩擦学学报, 2012, 32(1): 6.WANG Yifei, XIE Faqin, YAO Xiaofei, et al. Comparison of friction and wear properties between Cu-plated and Ni-P-plated surface of P110 oil pipe steel[J]. Journal of Tribology, 2012, 32(1): 6(in Chinese). [30] 刘演龙. 纳米SiC对高频脉冲电沉积Ni镀层性能的影响[J]. 表面技术, 2016, 45(12): 91-96.LIU Yanlong. Effect of nano-SiC on the properties of high-frequency pulsed electrodeposition of Ni coatings[J]. Surface Technology, 2016, 45(12): 91-96(in Chinese). [31] 潘蕾, 陶杰, 吴申庆, 等. 干摩擦条件下WC增强Cu-Mn-Ni复合涂层的磨损性能研究[J]. 摩擦学学报, 2002, (1): 10-13. doi: 10.3321/j.issn:1004-0595.2002.01.003PAN Lei, TAO Jie, WU Shenqing, et al. Wear performance of WC-reinforced Cu-Mn-Ni composite coatings under dry friction[J]. Journal of Tribology, 2002, (1): 10-13(in Chinese). doi: 10.3321/j.issn:1004-0595.2002.01.003
计量
- 文章访问数: 19
- HTML全文浏览量: 13
- 被引次数: 0