Molecular dynamics simulation of atomic migration and diffusion in composite interface for non-coherent metals
-
摘要: 深入探究不锈钢/碳钢金属界面原子扩散行为以及相变的发生发展规律,对于提升金属间冶金结合质量、实现产品性能调控具有重要意义。本文基于分子动力学材料计算方法,建立COMPASS力场下的不锈钢FCC-Fe和碳钢BCC-Fe晶胞模型;在热压缩高温保温和连续压缩两个阶段分别采用NVT和NPT系综,保温温度1423K,压应力分别为2GPa和4GPa;通过研究界面微观结构、均方位移分布、径向分布函数和界面元素分布模拟非共格金属界面结构演变行为。结果表明,在保温阶段,碳钢侧晶体发生BCC-Fe→FCC-Fe相变,空间群由P1向FM-3M的转变过程为无序长程扩散。在加载200ps弛豫结束时刻,不锈钢与碳钢侧原子相互嵌入,形成统一的面心立方晶体;且随着压力增加,界面结构以最密排的(111)晶面为单位产生大量的滑移和错排,两组元原子能够发生有效的扩散迁移。Abstract: Pointing to the diffusion behavior of atom and the law of phase transition in metal interface for stainless steel and carbon steel, a further research is of great significance for improving the quality of metallurgical bonding and realizing the property regulation of product. In this paper, based on the kind of material calculation method of molecular dynamics, cell models including carbon steel BCC-Fe and stainless steel FCC-Fe were established apart under COMPASS force field. And NVT and NPT systems were also employed in the two different stages of high-temperature insulation with the temperature of 1423K and continuous compression with the stress of 2 GPa and 4 GPa, respectively. On this base, the change behavior of non-congruent metal interface was simulated through the indicators of interfacial microstructure, the mean-squared displacement distribution, the radial displacement function and the interface elemental distribution. The results show that the phase transition of BCC-Fe→FCC-Fe happens to occur in the carbon steel side during the high-temperature insulation stage, accompaning the space transition of P1→FM-3M in a disordered and long-range diffusion process. During the loading relaxation stage of 200ps, the boundary atoms are embedded in each other until the inferface forms a unified face-centered cubic crystal. With the increase of pressure, the interface structure produces a large number of slips and misalignments along the most densely-rowed crystal face of (111), and the two groups of atoms could success an effective diffusion and migration.
-
图 4 不同阶段304/Q235界面结构模型:(a) 0 ps;(b) 100 ps;(c) 2 GPa, 200 ps;(d) 4 GPa, 200 ps;(e) 100 ps, 两侧;(f) 2 GPa, 200 ps, 两侧;(g) 4 GPa, 200 ps, 两侧
Figure 4. Models of 304/Q235 interface structure in different stages (a) 0 ps (b) 100 ps (c) 2 GPa, 200 ps (d) 4 GPa, 200 ps (e) 100 ps, two sdes (f) 2 GPa, 200 ps, two sdes (g) 4 GPa, 200 ps, two sdes
表 1 基体晶胞的基本参数
Table 1. Basic parameters of the unit cell
Atom Group name Lattice constant/nm FCC-Fe FM-3 M a=b=c=0.3582 BCC-Fe P1 a=b=c=0.2859 -
[1] Jiang J, Ding H, Luo Z, et al. Interfacial microstructure and mechanical properties of stainless steel clad plate prepared by vacuum hot rolling[J]. Journal of Iron and Steel Research International, 2018, 25: 732-738. doi: 10.1007/s42243-018-0090-7 [2] Jin J C, Cho S, Kim K, et al. Microstructures and intergranular corrosion resistances of hot-rolled austenitic stainless steel clad plates[J]. Journal of Materials Research and Technology, 2023, 26: 1-13. doi: 10.1016/j.jmrt.2023.07.192 [3] 班慧勇, 梅镱潇, 石永久. 不锈钢复合钢材钢结构研究进展[J]. 工程力学, 2021, 38(6): 1-23. doi: 10.6052/j.issn.1000-4750.2020.04.ST01BAN Huiyong, MEI Yixiao, SHI Yongjiu. Research progress of stainless steel compo-site steel structure[J]. Engineering Mechan-ics, 2021, 38(6): 1-23(in Chinese). doi: 10.6052/j.issn.1000-4750.2020.04.ST01 [4] Mudhaffar M A, Saleh N A, Aassy A. Influence of hot clad rolling process parameters on life cycle of reinforced bar of stainless steel carbon steel bars[J]. Procedia Manufacturing, 2017, 8: 353-360. doi: 10.1016/j.promfg.2017.02.045 [5] 潘帅航, 尹念, 张执南. 微动界面连续干摩擦行为的分子动力学模拟[J]. 机械工程学报, 2018, 54(3): 82-87. doi: 10.3901/JME.2018.03.082PAN Shuaihang, YIN Nian, ZHANG Zhinan. Molecular dynamics simulation of continu-ous dry friction behavior of micromotor in-terfaces[J]. Journal of Mechanical Engineer-ing, 2018, 54(3): 82-87(in Chinese). doi: 10.3901/JME.2018.03.082 [6] 王路生. 基于分子动力学与有限元方法的金属材料变形及失效的多尺度模拟[D]. 重庆: 重庆理工大学, 2018.WANG Lusheng. Multi-scale simulation of deformation and failure of metal materials based on molecular dynamics and finite element method [D]. Chongqing: Chongqing University of Technology, 2018. (in Chinese) [7] Degiacomi MT, Tian S, Greenwell HC, et al. DynDen: Assessing convergence of molecular dynamics simulations of interfaces[J]. Computer Physics Communications, 2021, 269: 108126. doi: 10.1016/j.cpc.2021.108126 [8] Chen S Y, Wu Z W, Liu K X, et al. Atomic diffusion behavior in Cu-Al explosive welding process[J]. Journal of Applied physics, 2013, 113(4): 044901-044906. doi: 10.1063/1.4775788 [9] 王锐, 韩秀丽, 康鹏超, 等. 镀镍石墨烯/钛复合材料界面力学行为的分子动力学研究[J]. 精密成形工程, 2024, 16(4): 45-52. doi: 10.3969/j.issn.1674-6457.2024.04.006WANG Rui, HAN Xiuli, KANG Pengchao, et al. Molecular Dynamics study of interfacial Mechanical Behavior of Nickel-coated graphene/titanium Composites[J]. Precision Forming Engineering, 2024, 16(4): 45-52(in Chinese). doi: 10.3969/j.issn.1674-6457.2024.04.006 [10] Chen S D, Soh A K, Ke F J. Molecular dynamics modeling of diffusion bonding[J]. Scripta Materialia, 2005, 52(11): 1135-1140. doi: 10.1016/j.scriptamat.2005.02.004 [11] 崔云峰, 王文焱, 谢敬佩, 等. 分子动力学分析Cu/Al2Cu/Al体系的扩散过程[J]. 材料热处理学报, 2023,44(11): 167−175. doi: 10.13289/j.issn.1009-6264.2023-0136CUI Yunfeng, WANG Wenyan, XIE Jingpei, et al. Cu/Al2Cu/Al system for molecular dynamics analysis of diffusion process[J]. Journal of materials, heat treatment,2023,44(11): 167−175. doi: 10.13289/j.issn.1009-6264.2023-0136 [12] Luo M, Liang L, Lang L, et al. Molecular dynamics simulations of the characteristics of MoTi interfaces[J]. Computational Materials Science, 2018, 141: 293-301. doi: 10.1016/j.commatsci.2017.09.039 [13] Bhasker-Ranganath S, Wick C D, Ramachandran B R. Computational insights into the molecular mechanisms for chromium passivation of stainless-steel surfaces[J]. Materials today chemistry, 2020, 17: 100298. doi: 10.1016/j.mtchem.2020.100298 [14] Kumagai T, Takahashi A, Takahashi K, et al. Velocity of mixed dislocations in body centered cubic iron studied by classical molecular dynamics calculations[J]. Computational Materials Science, 2020, 180: 109721. doi: 10.1016/j.commatsci.2020.109721 [15] Wang H, Han E. Ab initio molecular dynamics simulation on interfacial reaction behavior of Fe-Cr-Ni stainless steel in high temperature water[J]. Computational Materials Science, 2018, 149: 143-152. doi: 10.1016/j.commatsci.2018.03.025 [16] 吕昭平, 雷智锋, 黄海龙, 等. 高熵合金的变形行为及强韧化[J]. 金属学报, 2018, 54(11): 1553-1566. doi: 10.11900/0412.1961.2018.00372LV Zhaoping, LEI Zhifeng, HUANG Hailong, et al. Deformation behavior and strengthening and toughening of high entropy alloys[J]. Acta Metallica Sinica, 2018, 54(11): 1553-1566(in Chinese). doi: 10.11900/0412.1961.2018.00372 [17] Wu B, Dong H, Li P, et al. Vacuum diffusion bonding of TC4 titanium alloy and T2 copper by a slow cooling heat treatment[J]. Journal of Materials Processing Technology, 2022, 305: 117595. doi: 10.1016/j.jmatprotec.2022.117595 [18] 佘武昌. CoSb_3/Ti界面原子扩散的分子动力学模拟[D]. 武汉理工大学, 2012.SHE Wuchang. Molecular Dynamics simulation of atomic diffusion at CoSb_3/Ti interface [D]. Wuhan University of Technology, 2012. (in Chinese) [19] 张清东, 李硕, 张勃洋, 等. 金属轧制复合过程微观变形行为的分子动力学建模及研究[J]. 金属学报, 2019, 55(7): 919-927. doi: 10.11900/0412.1961.2018.00524ZHANG Qingdong, LI Shuo, ZHANG Boyang, et al. Molecular dynamics Modeling and study of microscopic deformation behavior in Metal rolling Composite Process[J]. Acta Metallica Sinica, 2019, 55(7): 919-927(in Chinese). doi: 10.11900/0412.1961.2018.00524 [20] 罗龙, 王宝峰, 李丽荣. 铜/铝热轧扩散复合界面扩散的分子动力学模拟[J]. 热处理技术与装备, 2011, 32(2): 55-60. doi: 10.3969/j.issn.1673-4971.2011.02.016LUO Long, WANG Baofeng, LI Lirong. Molecular Dynamics Simulation of interfacial diffusion of Copper/aluminum hot rolling diffusion composite[J]. Heat Treatment Technology and Equipment, 2011, 32(2): 55-60(in Chinese). doi: 10.3969/j.issn.1673-4971.2011.02.016 [21] Asche T S, Behrens P, Schneider A M. Validation of the COMPASS force field for complex inorganic–organic hybrid polymers[J]. Journal of Sol-Gel Science and Technology, 2017, 81: 195-204. doi: 10.1007/s10971-016-4185-y [22] 殷开梁, 邹定辉, 杨波, 等. Materials Studio 软件涉及力场中氢键的研究[J]. 计算机与应用化学, 2006, 23(12): 1335-1340. doi: 10.3969/j.issn.1001-4160.2006.12.037YIN Kailiang, ZOU Dinghui, YANG Bo, et al. Materials Studio software involved in hydrogen bond research in force field[J]. Computer and Applied Chemistry, 2006, 23(12): 1335-1340(in Chinese). doi: 10.3969/j.issn.1001-4160.2006.12.037 [23] Li Y, Wang S, He E, et al. The effect of sliding velocity on the tribological properties of polymer/carbon nanotube composites[J]. Carbon, 2016, 106: 106-109. doi: 10.1016/j.carbon.2016.04.077 [24] 肖继军, 谷成刚, 方国勇, 等. TATB 基 PBX 结合能和力学性能的理论研究[J]. 化学学报, 2005, 63(6): 439. doi: 10.3321/j.issn:0567-7351.2005.06.001XIAO Jijun, GU Chenggang, FANG Guoyong, et al. Theoretical study on binding energy and mechanical properties of TATB-based PBX[J]. Acta Chimica Sinica, 2005, 63(6): 439(in Chinese). doi: 10.3321/j.issn:0567-7351.2005.06.001 [25] 梅平. 金属键能, 熔, 沸点之间的相互关系[J]. 江汉大学学报, 1991, (3): 5-9.MEI Ping. The Relationship between metal bond energy, melting point and boiling Point[J]. Journal of Jianghan University, 1991, (3): 5-9(in Chinese). [26] Ma Y, Zhang S, Wang T, et al. Atomic diffusion behavior near the bond interface during the explosive welding process based on molecular dynamics simulations[J]. Materials Today Communications, 2022, 31: 103552. doi: 10.1016/j.mtcomm.2022.103552 [27] 李硕. 不锈钢/碳钢层合板轧制复合机理与规律研究[D]. 北京科技大学, 2020.LI Shuo. Research on Mechanism and Law of Stainless Steel/Carbon Steel Laminated plate rolling [D]. University of Science and Technology Beijing, 2020. (in Chinese) [28] 范同祥, 刘悦, 杨昆明, 等. 碳/金属复合材料界面结构优化及界面作用机制的研究进展[J]. 金属学报, 2019, 55(1): 16-32. doi: 10.11900/0412.1961.2018.00509FAN Tongxiang, LIU Yue, YANG Kunming, et al. Research progress on optimization of interfacial structure and interaction mechanism of carbon/metal composites[J]. Acta Metalica Sinica, 2019, 55(1): 16-32(in Chinese). doi: 10.11900/0412.1961.2018.00509 [29] Liang, L. W. , Wang, Y. J. , Chen, Y. , et al. Dislocation nucleation and evolution at the ferrite-cementite interface under cyclic loadings[J]. Acta Materialia, 2020, 186: 267-277. [30] Zepeda-Ruiz L A, Stukowski A, Oppelstrup T, et al. Probing the limits of metal plasticity with molecular dynamics simulations[J]. Nature, 2017, 550(7677): 492-495. doi: 10.1038/nature23472 [31] 程江伟, 张先明, 吴永全, 等. α-Fe 和 γ-Fe 长程 FS 势的分子动力学模拟[J]. 物理化学学报, 2007, 23(5): 779-785. doi: 10.3866/PKU.WHXB20070531CHENG Jiangwei, ZHANG Xianming, WU Yongquan, et al. Molecular Dynamics Simulation of α-Fe and γ-Fe long range FS potential[J]. Journal of Physical Chemistry, 2007, 23(5): 779-785(in Chinese). doi: 10.3866/PKU.WHXB20070531 [32] Liu B X, An Q, Yin F X, et al. Interface formation and bonding mechanisms of hot-rolled stainless steel clad plate[J]. Journal of Materials Science, 2019, 54(17): 11357-11377. doi: 10.1007/s10853-019-03581-x [33] 李岩, 刘琪, 李聚才, 等. 钛/铝爆炸焊接界面扩散行为分子动力学模拟(英文)[J]. 稀有金属材料与工程, 2023, 52(6): 2017-2023. doi: 10.12442/j.issn.1002-185X.20221003LI Yan, LIU Qi, LI Jucai, et al. Molecular Dynamics Simulation of interfacial diffusion behavior in Titanium/Aluminum explosive welding[J]. Rare Metal Materials and Engineering, 2023, 52(6): 2017-2023(in Chinese). doi: 10.12442/j.issn.1002-185X.20221003 [34] Zhang T T, Wang W X, Zhou J, et al. Molecular dynamics simulations and experimental investigations of atomic diffusion behavior at bonding interface in an explosively welded Al/Mg alloy composite plate[J]. Acta Metallurgica Sinica (English Letters), 2017, 30: 983-991. doi: 10.1007/s40195-017-0628-x [35] 刘鑫, 帅美荣, 李海斌, 等. 微张力对不锈钢/碳钢界面复合质量及原子扩散的影响[J]. 材料导报, 2022, 36(23): 127-132.LIU Xin, SHUAI Meirong, LI Haibin, et al. Effects of Micro-tension on composite mass and atomic diffusion of stainless steel/Carbon steel[J]. Materials Review, 202, 36(23): 127-132. (in Chinese) [36] 郭星星, 帅美荣, 楚志兵, 等. 不锈钢复合钢筋近界面微观组织演变及元素扩散动力学[J/OL]. 金属学报: 1-22[2024-04-19]. http://kns.cnki.net/kcms/detail/21.1139.TG.20230823.0945.006.html.GUO Xingxing, SHUAI Meirong, CHU Zhibing, et al. Near-interface microstructure evolution and element diffusion kinetics of stainless steel composite bars [J/OL]. Journal of metal: 1-22 [2024-04-19]. http://kns.cnki.net/kcms/detail/21.1139.TG.20230823.0945.006.html. (in Chinese)
计量
- 文章访问数: 100
- HTML全文浏览量: 52
- 被引次数: 0