留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非共格金属复合界面原子迁移扩散分子动力学模拟

陈新毅 帅美荣 王建梅 李海斌 史靖 邬莹

陈新毅, 帅美荣, 王建梅, 等. 非共格金属复合界面原子迁移扩散分子动力学模拟[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 陈新毅, 帅美荣, 王建梅, 等. 非共格金属复合界面原子迁移扩散分子动力学模拟[J]. 复合材料学报, 2024, 42(0): 1-11.
CHEN Xinyi, SHUAI Meirong, WANG Jianmei, et al. Molecular dynamics simulation of atomic migration and diffusion in composite interface for non-coherent metals[J]. Acta Materiae Compositae Sinica.
Citation: CHEN Xinyi, SHUAI Meirong, WANG Jianmei, et al. Molecular dynamics simulation of atomic migration and diffusion in composite interface for non-coherent metals[J]. Acta Materiae Compositae Sinica.

非共格金属复合界面原子迁移扩散分子动力学模拟

基金项目: 国家自然科学基金资助项目(52175353);山西省重点研发计划项目(202102150401002);太原市关键核心技术攻关“揭榜挂帅”项目(2024 TYJB0114);太原科技大学校级研究生创新项目(SY2023021)
详细信息
    通讯作者:

    帅美荣,博士,教授,研究方向为金属塑性变形理论与技术、复合材料界面科学、激光熔覆先进制造技术以及高性能材料损伤修复 E-mail: 2001041@tyust.edu.cn

  • 中图分类号: TG335

Molecular dynamics simulation of atomic migration and diffusion in composite interface for non-coherent metals

Funds: National Natural Science Foundation of China Funded Projects (52175353); Key Research and Development Program Projects of Shanxi Province (202102150401002); Key core technology research in Taiyuan City, "unveiling the list of commanders" Project (2024 TYJB0114); Research Program for Graduate Students at Taiyuan University of Science and Technology (SY2023021)
  • 摘要: 深入探究不锈钢/碳钢金属界面原子扩散行为以及相变的发生发展规律,对于提升金属间冶金结合质量、实现产品性能调控具有重要意义。本文基于分子动力学材料计算方法,建立COMPASS力场下的不锈钢FCC-Fe和碳钢BCC-Fe晶胞模型;在热压缩高温保温和连续压缩两个阶段分别采用NVT和NPT系综,保温温度1423K,压应力分别为2GPa和4GPa;通过研究界面微观结构、均方位移分布、径向分布函数和界面元素分布模拟非共格金属界面结构演变行为。结果表明,在保温阶段,碳钢侧晶体发生BCC-Fe→FCC-Fe相变,空间群由P1向FM-3M的转变过程为无序长程扩散。在加载200ps弛豫结束时刻,不锈钢与碳钢侧原子相互嵌入,形成统一的面心立方晶体;且随着压力增加,界面结构以最密排的(111)晶面为单位产生大量的滑移和错排,两组元原子能够发生有效的扩散迁移。

     

  • 图  1  晶胞三维模型:(a) FCC-Fe;(b) BCC-Fe

    Figure  1.  Three-dimensional modeling of cell structures: (a) FCC-Fe; (b) BCC-Fe

    图  2  FeCrNi/Fe模型的初始构型:(a)左视图;(b)主视图

    Figure  2.  Initial configuration of FeCrNi/Fe: (a) Left view; (b) Front view

    图  3  高温热压缩工艺及系综示意图:(a)高温热压缩工艺;(b)NVT和NPT系综

    Figure  3.  Schematic diagram of thermal compression process and NVT and NPT systems: (a) Thermal compression process; (b) NVT and NPT systems

    图  4  不同阶段304/Q235界面结构模型:(a) 0 ps;(b) 100 ps;(c) 2 GPa, 200 ps;(d) 4 GPa, 200 ps;(e) 100 ps, 两侧;(f) 2 GPa, 200 ps, 两侧;(g) 4 GPa, 200 ps, 两侧

    Figure  4.  Models of 304/Q235 interface structure in different stages (a) 0 ps (b) 100 ps (c) 2 GPa, 200 ps (d) 4 GPa, 200 ps (e) 100 ps, two sdes (f) 2 GPa, 200 ps, two sdes (g) 4 GPa, 200 ps, two sdes

    图  5  304/Q235界面各原子均方位移曲线图:(a)NVT系综;(b)NPT系综, 2 GPa;(c) NPT系综, 4 GPa

    Figure  5.  MSD of different atoms in 304/Q235 inteface: (a)NVT ensemble; (b)NPT system, 2 GPa; (c)NPT system, 4 GPa

    图  6  NPT系综2 GPa下的304/Q235界面结构演变:(a)150 ps;(b)170 ps;(c)190 ps

    Figure  6.  Interfacial structural evolution of 304/Q235 at 2 GPa in NPT system: (a)150 ps; (b)170 ps; (c)190 ps

    图  7  热压缩实验中各基材厚度的变化

    Figure  7.  Thickness variation of each metal during thermal compression experiments

    图  8  不同阶段径向分布函数:(a)碳钢侧;(b)不锈钢侧;(c)结合界面

    Figure  8.  Radial distribution function in different stages: (a) Side of carbon steel; (b) Side of stainless steel; (c) Interface

    图  9  304/Q235界面元素浓度分布仿真曲线:(a) NPT系综, 2 GPa, 200 ps;(b) NPT系综,4 GPa, 200 ps

    Figure  9.  Simulation curves of elemental concentration distribution in 304/Q235 interface: (a) NPT system, 2 GPa, 200 ps; (b) NPT system, 4 GPa, 200 ps

    图  10  304/Q235界面元素扩散分布实验结果:(a) 20%;(b) 35%;(c) 55%

    Figure  10.  Experiment results of elemental diffusion in 304/Q235 interface: (a) 20%; (b) 35%; (c) 55%

    图  11  1150℃下不同变形量对304/Q235界面元素扩散距离的影响

    Figure  11.  Effect of different deformation degree on the diffusion distance of 304/Q235 interface elements at 1150℃

    表  1  基体晶胞的基本参数

    Table  1.   Basic parameters of the unit cell

    AtomGroup nameLattice constant/nm
    FCC-FeFM-3 Ma=b=c=0.3582
    BCC-FeP1a=b=c=0.2859
    下载: 导出CSV
  • [1] Jiang J, Ding H, Luo Z, et al. Interfacial microstructure and mechanical properties of stainless steel clad plate prepared by vacuum hot rolling[J]. Journal of Iron and Steel Research International, 2018, 25: 732-738. doi: 10.1007/s42243-018-0090-7
    [2] Jin J C, Cho S, Kim K, et al. Microstructures and intergranular corrosion resistances of hot-rolled austenitic stainless steel clad plates[J]. Journal of Materials Research and Technology, 2023, 26: 1-13. doi: 10.1016/j.jmrt.2023.07.192
    [3] 班慧勇, 梅镱潇, 石永久. 不锈钢复合钢材钢结构研究进展[J]. 工程力学, 2021, 38(6): 1-23. doi: 10.6052/j.issn.1000-4750.2020.04.ST01

    BAN Huiyong, MEI Yixiao, SHI Yongjiu. Research progress of stainless steel compo-site steel structure[J]. Engineering Mechan-ics, 2021, 38(6): 1-23(in Chinese). doi: 10.6052/j.issn.1000-4750.2020.04.ST01
    [4] Mudhaffar M A, Saleh N A, Aassy A. Influence of hot clad rolling process parameters on life cycle of reinforced bar of stainless steel carbon steel bars[J]. Procedia Manufacturing, 2017, 8: 353-360. doi: 10.1016/j.promfg.2017.02.045
    [5] 潘帅航, 尹念, 张执南. 微动界面连续干摩擦行为的分子动力学模拟[J]. 机械工程学报, 2018, 54(3): 82-87. doi: 10.3901/JME.2018.03.082

    PAN Shuaihang, YIN Nian, ZHANG Zhinan. Molecular dynamics simulation of continu-ous dry friction behavior of micromotor in-terfaces[J]. Journal of Mechanical Engineer-ing, 2018, 54(3): 82-87(in Chinese). doi: 10.3901/JME.2018.03.082
    [6] 王路生. 基于分子动力学与有限元方法的金属材料变形及失效的多尺度模拟[D]. 重庆: 重庆理工大学, 2018.

    WANG Lusheng. Multi-scale simulation of deformation and failure of metal materials based on molecular dynamics and finite element method [D]. Chongqing: Chongqing University of Technology, 2018. (in Chinese)
    [7] Degiacomi MT, Tian S, Greenwell HC, et al. DynDen: Assessing convergence of molecular dynamics simulations of interfaces[J]. Computer Physics Communications, 2021, 269: 108126. doi: 10.1016/j.cpc.2021.108126
    [8] Chen S Y, Wu Z W, Liu K X, et al. Atomic diffusion behavior in Cu-Al explosive welding process[J]. Journal of Applied physics, 2013, 113(4): 044901-044906. doi: 10.1063/1.4775788
    [9] 王锐, 韩秀丽, 康鹏超, 等. 镀镍石墨烯/钛复合材料界面力学行为的分子动力学研究[J]. 精密成形工程, 2024, 16(4): 45-52. doi: 10.3969/j.issn.1674-6457.2024.04.006

    WANG Rui, HAN Xiuli, KANG Pengchao, et al. Molecular Dynamics study of interfacial Mechanical Behavior of Nickel-coated graphene/titanium Composites[J]. Precision Forming Engineering, 2024, 16(4): 45-52(in Chinese). doi: 10.3969/j.issn.1674-6457.2024.04.006
    [10] Chen S D, Soh A K, Ke F J. Molecular dynamics modeling of diffusion bonding[J]. Scripta Materialia, 2005, 52(11): 1135-1140. doi: 10.1016/j.scriptamat.2005.02.004
    [11] 崔云峰, 王文焱, 谢敬佩, 等. 分子动力学分析Cu/Al2Cu/Al体系的扩散过程[J]. 材料热处理学报, 2023,44(11): 167−175. doi: 10.13289/j.issn.1009-6264.2023-0136

    CUI Yunfeng, WANG Wenyan, XIE Jingpei, et al. Cu/Al2Cu/Al system for molecular dynamics analysis of diffusion process[J]. Journal of materials, heat treatment,2023,44(11): 167−175. doi: 10.13289/j.issn.1009-6264.2023-0136
    [12] Luo M, Liang L, Lang L, et al. Molecular dynamics simulations of the characteristics of MoTi interfaces[J]. Computational Materials Science, 2018, 141: 293-301. doi: 10.1016/j.commatsci.2017.09.039
    [13] Bhasker-Ranganath S, Wick C D, Ramachandran B R. Computational insights into the molecular mechanisms for chromium passivation of stainless-steel surfaces[J]. Materials today chemistry, 2020, 17: 100298. doi: 10.1016/j.mtchem.2020.100298
    [14] Kumagai T, Takahashi A, Takahashi K, et al. Velocity of mixed dislocations in body centered cubic iron studied by classical molecular dynamics calculations[J]. Computational Materials Science, 2020, 180: 109721. doi: 10.1016/j.commatsci.2020.109721
    [15] Wang H, Han E. Ab initio molecular dynamics simulation on interfacial reaction behavior of Fe-Cr-Ni stainless steel in high temperature water[J]. Computational Materials Science, 2018, 149: 143-152. doi: 10.1016/j.commatsci.2018.03.025
    [16] 吕昭平, 雷智锋, 黄海龙, 等. 高熵合金的变形行为及强韧化[J]. 金属学报, 2018, 54(11): 1553-1566. doi: 10.11900/0412.1961.2018.00372

    LV Zhaoping, LEI Zhifeng, HUANG Hailong, et al. Deformation behavior and strengthening and toughening of high entropy alloys[J]. Acta Metallica Sinica, 2018, 54(11): 1553-1566(in Chinese). doi: 10.11900/0412.1961.2018.00372
    [17] Wu B, Dong H, Li P, et al. Vacuum diffusion bonding of TC4 titanium alloy and T2 copper by a slow cooling heat treatment[J]. Journal of Materials Processing Technology, 2022, 305: 117595. doi: 10.1016/j.jmatprotec.2022.117595
    [18] 佘武昌. CoSb_3/Ti界面原子扩散的分子动力学模拟[D]. 武汉理工大学, 2012.

    SHE Wuchang. Molecular Dynamics simulation of atomic diffusion at CoSb_3/Ti interface [D]. Wuhan University of Technology, 2012. (in Chinese)
    [19] 张清东, 李硕, 张勃洋, 等. 金属轧制复合过程微观变形行为的分子动力学建模及研究[J]. 金属学报, 2019, 55(7): 919-927. doi: 10.11900/0412.1961.2018.00524

    ZHANG Qingdong, LI Shuo, ZHANG Boyang, et al. Molecular dynamics Modeling and study of microscopic deformation behavior in Metal rolling Composite Process[J]. Acta Metallica Sinica, 2019, 55(7): 919-927(in Chinese). doi: 10.11900/0412.1961.2018.00524
    [20] 罗龙, 王宝峰, 李丽荣. 铜/铝热轧扩散复合界面扩散的分子动力学模拟[J]. 热处理技术与装备, 2011, 32(2): 55-60. doi: 10.3969/j.issn.1673-4971.2011.02.016

    LUO Long, WANG Baofeng, LI Lirong. Molecular Dynamics Simulation of interfacial diffusion of Copper/aluminum hot rolling diffusion composite[J]. Heat Treatment Technology and Equipment, 2011, 32(2): 55-60(in Chinese). doi: 10.3969/j.issn.1673-4971.2011.02.016
    [21] Asche T S, Behrens P, Schneider A M. Validation of the COMPASS force field for complex inorganic–organic hybrid polymers[J]. Journal of Sol-Gel Science and Technology, 2017, 81: 195-204. doi: 10.1007/s10971-016-4185-y
    [22] 殷开梁, 邹定辉, 杨波, 等. Materials Studio 软件涉及力场中氢键的研究[J]. 计算机与应用化学, 2006, 23(12): 1335-1340. doi: 10.3969/j.issn.1001-4160.2006.12.037

    YIN Kailiang, ZOU Dinghui, YANG Bo, et al. Materials Studio software involved in hydrogen bond research in force field[J]. Computer and Applied Chemistry, 2006, 23(12): 1335-1340(in Chinese). doi: 10.3969/j.issn.1001-4160.2006.12.037
    [23] Li Y, Wang S, He E, et al. The effect of sliding velocity on the tribological properties of polymer/carbon nanotube composites[J]. Carbon, 2016, 106: 106-109. doi: 10.1016/j.carbon.2016.04.077
    [24] 肖继军, 谷成刚, 方国勇, 等. TATB 基 PBX 结合能和力学性能的理论研究[J]. 化学学报, 2005, 63(6): 439. doi: 10.3321/j.issn:0567-7351.2005.06.001

    XIAO Jijun, GU Chenggang, FANG Guoyong, et al. Theoretical study on binding energy and mechanical properties of TATB-based PBX[J]. Acta Chimica Sinica, 2005, 63(6): 439(in Chinese). doi: 10.3321/j.issn:0567-7351.2005.06.001
    [25] 梅平. 金属键能, 熔, 沸点之间的相互关系[J]. 江汉大学学报, 1991, (3): 5-9.

    MEI Ping. The Relationship between metal bond energy, melting point and boiling Point[J]. Journal of Jianghan University, 1991, (3): 5-9(in Chinese).
    [26] Ma Y, Zhang S, Wang T, et al. Atomic diffusion behavior near the bond interface during the explosive welding process based on molecular dynamics simulations[J]. Materials Today Communications, 2022, 31: 103552. doi: 10.1016/j.mtcomm.2022.103552
    [27] 李硕. 不锈钢/碳钢层合板轧制复合机理与规律研究[D]. 北京科技大学, 2020.

    LI Shuo. Research on Mechanism and Law of Stainless Steel/Carbon Steel Laminated plate rolling [D]. University of Science and Technology Beijing, 2020. (in Chinese)
    [28] 范同祥, 刘悦, 杨昆明, 等. 碳/金属复合材料界面结构优化及界面作用机制的研究进展[J]. 金属学报, 2019, 55(1): 16-32. doi: 10.11900/0412.1961.2018.00509

    FAN Tongxiang, LIU Yue, YANG Kunming, et al. Research progress on optimization of interfacial structure and interaction mechanism of carbon/metal composites[J]. Acta Metalica Sinica, 2019, 55(1): 16-32(in Chinese). doi: 10.11900/0412.1961.2018.00509
    [29] Liang, L. W. , Wang, Y. J. , Chen, Y. , et al. Dislocation nucleation and evolution at the ferrite-cementite interface under cyclic loadings[J]. Acta Materialia, 2020, 186: 267-277.
    [30] Zepeda-Ruiz L A, Stukowski A, Oppelstrup T, et al. Probing the limits of metal plasticity with molecular dynamics simulations[J]. Nature, 2017, 550(7677): 492-495. doi: 10.1038/nature23472
    [31] 程江伟, 张先明, 吴永全, 等. α-Fe 和 γ-Fe 长程 FS 势的分子动力学模拟[J]. 物理化学学报, 2007, 23(5): 779-785. doi: 10.3866/PKU.WHXB20070531

    CHENG Jiangwei, ZHANG Xianming, WU Yongquan, et al. Molecular Dynamics Simulation of α-Fe and γ-Fe long range FS potential[J]. Journal of Physical Chemistry, 2007, 23(5): 779-785(in Chinese). doi: 10.3866/PKU.WHXB20070531
    [32] Liu B X, An Q, Yin F X, et al. Interface formation and bonding mechanisms of hot-rolled stainless steel clad plate[J]. Journal of Materials Science, 2019, 54(17): 11357-11377. doi: 10.1007/s10853-019-03581-x
    [33] 李岩, 刘琪, 李聚才, 等. 钛/铝爆炸焊接界面扩散行为分子动力学模拟(英文)[J]. 稀有金属材料与工程, 2023, 52(6): 2017-2023. doi: 10.12442/j.issn.1002-185X.20221003

    LI Yan, LIU Qi, LI Jucai, et al. Molecular Dynamics Simulation of interfacial diffusion behavior in Titanium/Aluminum explosive welding[J]. Rare Metal Materials and Engineering, 2023, 52(6): 2017-2023(in Chinese). doi: 10.12442/j.issn.1002-185X.20221003
    [34] Zhang T T, Wang W X, Zhou J, et al. Molecular dynamics simulations and experimental investigations of atomic diffusion behavior at bonding interface in an explosively welded Al/Mg alloy composite plate[J]. Acta Metallurgica Sinica (English Letters), 2017, 30: 983-991. doi: 10.1007/s40195-017-0628-x
    [35] 刘鑫, 帅美荣, 李海斌, 等. 微张力对不锈钢/碳钢界面复合质量及原子扩散的影响[J]. 材料导报, 2022, 36(23): 127-132.

    LIU Xin, SHUAI Meirong, LI Haibin, et al. Effects of Micro-tension on composite mass and atomic diffusion of stainless steel/Carbon steel[J]. Materials Review, 202, 36(23): 127-132. (in Chinese)
    [36] 郭星星, 帅美荣, 楚志兵, 等. 不锈钢复合钢筋近界面微观组织演变及元素扩散动力学[J/OL]. 金属学报: 1-22[2024-04-19]. http://kns.cnki.net/kcms/detail/21.1139.TG.20230823.0945.006.html.

    GUO Xingxing, SHUAI Meirong, CHU Zhibing, et al. Near-interface microstructure evolution and element diffusion kinetics of stainless steel composite bars [J/OL]. Journal of metal: 1-22 [2024-04-19]. http://kns.cnki.net/kcms/detail/21.1139.TG.20230823.0945.006.html. (in Chinese)
  • 加载中
计量
  • 文章访问数:  43
  • HTML全文浏览量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-28
  • 修回日期:  2024-06-01
  • 录用日期:  2024-06-07
  • 网络出版日期:  2024-06-29

目录

    /

    返回文章
    返回