留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于孔体积分形维数的稻壳灰混凝土冻融损伤劣化机制

张韦 刘超 刘化威 林鑫 张治宁

张韦, 刘超, 刘化威, 等. 基于孔体积分形维数的稻壳灰混凝土冻融损伤劣化机制[J]. 复合材料学报, 2023, 40(8): 4733-4744. doi: 10.13801/j.cnki.fhclxb.20221014.004
引用本文: 张韦, 刘超, 刘化威, 等. 基于孔体积分形维数的稻壳灰混凝土冻融损伤劣化机制[J]. 复合材料学报, 2023, 40(8): 4733-4744. doi: 10.13801/j.cnki.fhclxb.20221014.004
ZHANG Wei, LIU Chao, LIU Huawei, et al. Freeze-thaw damage deterioration mechanism of rice husk ash concrete based on pore volume fractal dimension[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4733-4744. doi: 10.13801/j.cnki.fhclxb.20221014.004
Citation: ZHANG Wei, LIU Chao, LIU Huawei, et al. Freeze-thaw damage deterioration mechanism of rice husk ash concrete based on pore volume fractal dimension[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4733-4744. doi: 10.13801/j.cnki.fhclxb.20221014.004

基于孔体积分形维数的稻壳灰混凝土冻融损伤劣化机制

doi: 10.13801/j.cnki.fhclxb.20221014.004
基金项目: 国家自然科学基金项目(51878546;52178251);陕西省杰出青年科学基金项目(2020 JC-46);陕西省重点研究发展项目(2020 SF-367)
详细信息
    通讯作者:

    刘超,博士,教授,博士生导师,研究方向为建筑固废资源化利用 E-mail:chaoliu@xauat.edu.cn

  • 中图分类号: TU528;TB333

Freeze-thaw damage deterioration mechanism of rice husk ash concrete based on pore volume fractal dimension

Funds: National Natural Science Foundation of China (51878546; 52178251); Science Foundation Project for Outstanding Youth of Shaanxi Province (2020 JC-46); Key Research and Development Projects of Shaanxi Province (2020 SF-367)
  • 摘要: 在日益严峻的环境压力下,稻壳灰(RHA)等农业副产品在混凝土中的应用引起了广泛关注。为研究稻壳灰等质量部分取代(0%、10%、20%、30%)硅酸盐水泥对混凝土抗冻性能的影响,对冻融循环作用下的稻壳灰混凝土进行表观形貌、质量损失、动弹性模量和抗压强度试验,并通过建立孔体积分形维数模型来探究水泥浆体孔空间分布形态,揭示了稻壳灰混凝土冻融损伤劣化机制。结果表明:随着冻融循环次数增加,混凝土表面剥落损伤逐渐加剧,质量损失率呈现先减小后增加的趋势,相对动弹性模量和相对抗压强度呈现下降趋势。此外,由于冻融循环前后的硬化水泥浆体表现出明显的多重分形特征,可将其孔结构分为大孔和小孔两类。冻融循环作用下,稻壳灰介孔结构改善了小孔的孔径分布,其分形维数增加。而大孔对冻融循环更敏感,其孔隙结构会由于膨胀压的逐渐累积而发生冻融破坏。

     

  • 图  1  (a)稻壳灰(RHA)的微观形貌;(b) RHA表面的介孔结构

    Figure  1.  (a) Micromorphology of rice husk ash (RHA); (b) Mesoporous structure on the surface of RHA

    图  2  原材料的粒径分布

    Figure  2.  Particle size distribution of raw materials

    图  3  RHA/NC冻融循环试验

    Figure  3.  Freeze-thaw cycles test of RHA/NC

    图  4  不同稻壳灰取代率的RHA/NC试件在100、200、300次冻融循环后的表观形貌

    Figure  4.  Apparent morphology of RHA/NC specimens with different RHA replacement ratios after 100, 200 and 300 freeze-thaw cycles

    图  5  不同稻壳灰取代率的RHA/NC试件质量损失率与冻融循环次数的关系

    Figure  5.  Relationship between the mass loss rate of RHA/NC specimens with different RHA replacement ratios and the number of freeze-thaw cycles

    图  6  不同稻壳灰取代率的RHA/NC试件相对动弹性模量与冻融循环次数的关系

    Figure  6.  Relationship between the relative dynamic elastic modulus of RHA/NC specimens with different RHA replacement ratios and the number of freeze-thaw cycles

    图  7  不同稻壳灰取代率的RHA/NC试件相对抗压强度与冻融循环次数的关系

    Figure  7.  Relationship between the relative compressive strength of RHA/NC specimens with different RHA replacement ratios and freeze-thaw cycles number of RHA concrete

    图  8  Menger海绵体模型

    Figure  8.  Model of Menger sponge

    图  9  $ \mathrm{l}\mathrm{g}(1-V) $$ \mathrm{l}\mathrm{g}({l}_{k}/L) $关系曲线

    1–V—Residual relative volume of sample; lk/L—Ratio of the aperture to the maximum aperture at the corresponding pressure

    Figure  9.  Relationship between $ \mathrm{l}\mathrm{g}(1-V) $ and $ \mathrm{l}\mathrm{g}({l}_{k}/L) $

    图  10  冻融循环前后不同稻壳灰取代率的RHA/NC试件的累计孔体积分布曲线

    FTCS—Freeze-thaw cycle

    Figure  10.  Cumulative pore volume distribution curves of RHA/NC specimens with different replacement ratios before and after freeze-thaw cycles

    图  11  大孔和小孔径范围内$ \mathrm{l}\mathrm{g}(1-V) $$ \mathrm{l}\mathrm{g}({l}_{k}/L) $的线性拟合关系:在冻融循环之前:(a) 0%RHA/NC;(c) 10%RHA/NC;(e) 30%RHA/NC;在冻融循环之后:(b) 0%RHA/NC;(d) 10%RHA/NC;(f) 30%RHA/NC

    Figure  11.  Line fitting relationship between lg(1–V) and lg($ {l}_{k} $/L) in great and small pore diameter range: Before the FTCS: (a) 0%RHA/NC; (c) 10%RHA/NC; (e) 30%RHA/NC; After the FTCS: (b) 0%RHA/NC; (d) 10%RHA/NC; (f) 30%RHA/NC

    图  12  不同稻壳灰取代率的RHA/NC试件冻融损伤劣化机制示意图

    Figure  12.  Schematic of freeze-thaw damage deterioration mechanism of RHA/NC specimens with different RHA replacement ratios

    表  1  水泥和RHA的化学组成和物理特性

    Table  1.   Chemical composition and physical properties of cement and RHA

    Raw materialChemical composition/wt%BET surface area/(m2·g−1)
    SiO2Al2O3Fe2O3K2OCaOMgOSO3Loss on ignition
    Cement21.074.913.780.5965.361.432.454.521.723
    RHA92.080.110.053.50 0.780.490.921.838.604
    下载: 导出CSV

    表  2  稻壳灰混凝土(RHA/NC)配合比及28天抗压强度

    Table  2.   Mix proportions and 28 days compressive strength of rice husk ash concrete (RHA/NC)

    Notation
    Mix proportion/(kg·m−3)
    W/B28 d compressive
    strength/MPa
    CementRHASandNAWaterSP
    0%RHA/NC390082010851568.50.4053.9
    10%RHA/NC3513982010851569.20.4057.6
    20%RHA/NC31278820108515611.50.4059.2
    30%RHA/NC273117820108515612.00.4051.6
    Notes: NA—Natural aggregate; SP—Super plasticizer; 0%RHA/NC—Ordinary concrete; 10%RHA/NC, 20%RHA/NC, 30%RHA/NC—Concrete with the RHA replacement ratio of 10%, 20% and 30% by equal mass; W/B—Water-to-binder ratio.
    下载: 导出CSV

    表  3  混凝土中的孔结构参数及统计指标

    Table  3.   Pore structure parameter and statistical indicators of concrete

    SampleDemarcation
    point/nm
    Great poreSmall poreRMSE
    SlopeFractal dimensionCorrelationSlopeFractal dimensionCorrelation
    Before

    the FTCS
    0%RHA/NC 204.59 0.0042 2.9958 0.98 0.0081 2.9919 0.99 0.0042
    10%RHA/NC 65.36 0.0027 2.9973 0.99 0.0126 2.9874 0.99 0.0003
    30%RHA/NC 66.04 0.0031 2.9969 0.99 0.0188 2.9812 0.99 0.0005
    After

    the FTCS
    0%RHA/NC 291.93 0.0024 2.9976 0.95 0.0107 2.9893 0.99 0.0008
    10%RHA/NC 67.87 0.0054 2.9946 0.99 0.0120 2.9880 0.99 0.0009
    30%RHA/NC 82.76 0.0055 2.9945 0.99 0.0133 2.9867 0.99 0.0008
    Note: RMSE—Root mean square error.
    下载: 导出CSV
  • [1] FARIED A S, MOSTAFA S A, TAYEH B A. The effect of using nano rice husk ash of different burning degrees on ultra-high-performance concrete properties[J]. Construction and Building Materials,2021,290:123279. doi: 10.1016/j.conbuildmat.2021.123279
    [2] VIEIRA A P, TOLEDO FILHO R D, TAVARES L M, et al. Effect of particle size, porous structure and content of rice husk ash on the hydration process and compressive strength evolution of concrete[J]. Construction and Building Materials,2020,236:117553. doi: 10.1016/j.conbuildmat.2019.117553.
    [3] CORDEIRO G C, TOLEDO FILHO R D, TAVARES L M, et al. Influence of particle size and specific surface area on the pozzolanic activity of residual rice husk ash[J]. Cement and Concrete Research, 2021, 33(5): 529-534.
    [4] PRASITTISOPIN L, TREJO D. Hydration and phase formation of blended cementitious systems incorporating chemically transformed rice husk ash[J]. Cement and Concrete Composites,2015,59:100-106. doi: 10.1016/j.cemconcomp.2015.03.002
    [5] AMIN M, ABDELSALAM B A. Efficiency of rice husk ash and fly ash as reactivity materials in sustainable concrete[J]. Sustainable Environment Research,2019,29(1):30.
    [6] VAN V T A, RÖSSLER C, BUI D D, et al. Rice husk ash as both pozzolanic admixture and internal curing agent in ultra-high performance concrete[J]. Cement and Concrete Composites,2014,53:270-278. doi: 10.1016/j.cemconcomp.2014.07.015
    [7] RODRÍGUEZ D E, SENSALE G. Strength development of concrete with rice-husk ash[J]. Cement and Concrete Composites,2006,28(2):158-160. doi: 10.1016/j.cemconcomp.2005.09.005
    [8] ALEX J, DHANALAKSHMI J, AMBEDKAR B. Experimental investigation on rice husk ash as cement replacement on concrete production[J]. Construction and Building Materials,2016,127:353-362. doi: 10.1016/j.conbuildmat.2016.09.150
    [9] KANG S H, HONG S G, MOON J. The use of rice husk ash as reactive filler in ultra-high performance concrete[J]. Cement and Concrete Research,2019,115:389-400. doi: 10.1016/j.cemconres.2018.09.004
    [10] KHAN K, ULLAH M F, SHAHZADA K, et al. Effective use of micro-silica extracted from rice husk ash for the production of high-performance and sustainable cement mortar[J]. Construction and Building Materials,2020,258:119589. doi: 10.1016/j.conbuildmat.2020.119589
    [11] RATTANACHU P, TOOLKASIKORN P, TANGCHIRAPAT W, et al. Performance of recycled aggregate concrete with rice husk ash as cement binder[J]. Cement and Concrete Composites,2020,108:103533. doi: 10.1016/j.cemconcomp.2020.103533
    [12] 姚韦靖, 刘宜思, 庞建勇, 等. 硫酸盐侵蚀下掺稻壳灰混凝土的劣化性能及损伤模型[J]. 复合材料学报, 2022, 39(10): 4813-4823.

    YAO Weijing, LIU Yisi, PANG Jianyong, et al. Performance degradation and damage model of concrete incorporating rice husk ash concrete under sulfate attack[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4813-4823(in Chinese).
    [13] WANG Y T, DIAMOND S. A fractal study of the fracture surfaces of cement pastes and mortars using a stereoscopic SEM method[J]. Cement and Concrete Research,2001,31:1385-1392. doi: 10.1016/S0008-8846(01)00591-9
    [14] JIN S S, ZHANG J X, HUANG B S, et al. Fractal analysis of effect of air void on freeze-thaw resistance of concrete[J]. Construction and Building Materials,2013,47:126-130. doi: 10.1016/j.conbuildmat.2013.04.040
    [15] JIN S S, ZHENG G P, YU J, et al. A micro freeze-thaw damage model of concrete with fractal dimension[J]. Construction and Building Materials,2020,257:119434. doi: 10.1016/j.conbuildmat.2020.119434
    [16] DOU W C, LIU L F, JIA L B, et al. Pore structure, fractal characteristics and permeability prediction of tight sandstones: A case study from Yanchang Formation, Ordos Basin, China[J]. Marine and Petroleum Geology,2021,123:104737.
    [17] JIN S S, ZHANG J X, HAN S, et al. Fractal analysis of relation between strength and pore structure of hardened mortar[J]. Construction and Building Materials,2017,135:1-7. doi: 10.1016/j.conbuildmat.2016.12.152
    [18] VAN V T A, RÖSSLER C, BUI D D, et al. Mesoporous structure and pozzolanic reactivity of rice husk ash in cementitious system[J]. Construction and Building Materials,2013,43:208-216. doi: 10.1016/j.conbuildmat.2013.02.004
    [19] VAN V T A, RÖSSLER C, BUI D D, et al. Pozzolanic reactivity of mesoporous amorphous rice husk ash in portlandite solution[J]. Construction and Building Materials,2014,59:111-119. doi: 10.1016/j.conbuildmat.2014.02.046
    [20] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能实验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test method of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Building Industry Press, 2019(in Chinese).
    [21] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Building Industry Press, 2009(in Chinese).
    [22] ZHANG W H, PI Y, KONG W P, et al. Influence of damage degree on the degradation of concrete under freezing-thawing cycles[J]. Construction and Building Materials, 2020, 260: 119903.
    [23] ZHANG Z G, YANG F, LIU J C, et al. Eco-friendly high strength, high ductility engineered cementitious compo-sites (ECC) with substitution of fly ash by rice husk ash[J]. Cement and Concrete Research,2020,137:106200. doi: 10.1016/j.cemconres.2020.106200
    [24] LIU C, ZHANG W, LIU H W, et al. A compressive strength prediction model based on the hydration reaction of cement paste by rice husk ash[J]. Construction and Building Materials, 2022, 340: 127841.
    [25] SYLVIA KESSLER C T, CHRISTIAN U, GROSSE, et al. Effect of freeze-thaw damage on chloride ingress into concrete[J]. Materials and Structures,2017,50:121-134. doi: 10.1617/s11527-016-0984-4
    [26] KIZHAKKUMODOM V H, RANGARAJU P R. Effect of grinding of low-carbon rice husk ash on the microstructure and performance properties of blended cement concrete[J]. Cement and Concrete Composites,2015,55:348-363. doi: 10.1016/j.cemconcomp.2014.09.021
    [27] 曹峰, 乔宏霞, 李双营, 等. 青稞秸秆灰-氯氧镁水泥复合复合材料盐冻耦合损伤强度特性及孔隙特征[J]. 复合材料学报, 2023, 40(5): 2972-2987.

    CAO Feng, QIAO Hongxia, LI Shuangying, et al. Strength and pore characteristics of highland barley straw ash-magnesium oxychloride cement composite under salt freezing coupling damage[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2972-2987(in Chinese).
    [28] ZHANG W H, PI Y, KONG W P, et al. Influence of damage degree on the degradation of concrete under freezing-thawing cycles[J]. Construction and Building Materials,2020,260:119903. doi: 10.1016/j.conbuildmat.2020.119903
    [29] WANG L, ZENG X M, YANG H M, et al. Investigation and application of fractal theory in cement-based materials: A review[J]. Fractal and Fractional, 2021, 5(4): 247-288.
    [30] LEON C A L Y. New perspectives in mercury porosimetry[J]. Advances in Colloid and Interface Science,1998,76:341-372.
    [31] 韦江雄, 余其俊, 曾小星, 等. 混凝土中孔结构的分形维数研究[J]. 华南理工大学学报, 2007, 35(2):121-124.

    WEI Jiangxiong, YU Qijun, ZENG Xiaoxing, et al. Study of the fractal dimension of pore structures in concrete[J]. Journal of South China University of Technology,2007,35(2):121-124(in Chinese).
    [32] 肖乐勤, 李煜, 左海丽, 等. 可燃药筒孔结构的分形维数研究[J]. 兵工学报, 2011, 32(5):569-573.

    XIAO Leqin, LI Yu, ZUO Haili, et al. Fractal dimension of pore structure of combustible cartridge cases[J]. Acta Armamentarii,2011,32(5):569-573(in Chinese).
    [33] JALAL F E, XU Y, IQBAL M, et al. Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP[J]. Journal of Environmental Management, 2021, 289: 112420.
    [34] ASTERIS P G, SKENTOU A D, BARDHAN A. Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models[J]. Cement and Concrete Research,2021,145:10644.
    [35] ZARNAGHI V N, FOUROGHI-ASL A, NOURANI V, et al. On the pore structures of lightweight self-compacting concrete containing silica fume[J]. Construction and Building Materials,2018,193:557-564. doi: 10.1016/j.conbuildmat.2018.09.080
    [36] LIU L, WANG X C, ZHOU J, et al. Investigation of pore structure and mechanical property of cement paste subjected to the coupled action of freezing/thawing and calcium leaching[J]. Cement and Concrete Research,2018,109:133-146. doi: 10.1016/j.cemconres.2018.04.015
    [37] WANG Z D, ZENG Q, WU Y K, et al. Relative humidity and deterioration of concrete under freeze-thaw load[J]. Construction and Building Materials,2014,62:18-27. doi: 10.1016/j.conbuildmat.2014.03.027
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  590
  • HTML全文浏览量:  306
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-29
  • 修回日期:  2022-09-20
  • 录用日期:  2022-10-06
  • 网络出版日期:  2022-10-17
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回