留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NiCo2S4纳米材料的制备及其电化学性能

王聪源 喻青松 李智铭 白京陇 魏智强

王聪源, 喻青松, 李智铭, 等. NiCo2S4纳米材料的制备及其电化学性能[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 王聪源, 喻青松, 李智铭, 等. NiCo2S4纳米材料的制备及其电化学性能[J]. 复合材料学报, 2024, 42(0): 1-11.
WANG Congyuan, YU Qingsong, LI Zhiming, et al. Preparation of NiCo2S4 nanomaterials and their electrochemical properties[J]. Acta Materiae Compositae Sinica.
Citation: WANG Congyuan, YU Qingsong, LI Zhiming, et al. Preparation of NiCo2S4 nanomaterials and their electrochemical properties[J]. Acta Materiae Compositae Sinica.

NiCo2S4纳米材料的制备及其电化学性能

基金项目: 国家自然科学基金(52268042);甘肃省自然科学基金(22JR5RA253)
详细信息
    通讯作者:

    魏智强,博士,教授,博士生导师,研究方向纳米材料 E-mail: qianweizuo@163.com

  • 中图分类号: TQ15;TB333

Preparation of NiCo2S4 nanomaterials and their electrochemical properties

Funds: National Natural Science Foundation of China (52268042); Natural Science Foundation of Gansu Province (22JR5RA253)
  • 摘要: 采用溶剂热方法制备出Co-MOF前驱体,通过Ni2+水解刻蚀前驱体得到空心NiCo-LDH材料,再将其高温煅烧硫化得到NiCo2S4材料。借助金属有机框架的特性使得NiCo2S4材料有着更加优异的性能。电化学数据表明,NiCo2S4材料1 A·g−1的电流密度下具有204.8 mA·h·g−1(1843.6 F·g−1)的高比容量,当电流密度增加到10 A·g−1时,其容量依然有着最初的50.9%。最后,以活性炭为负极,NiCo2S4材料为正极组装成为了混合型超级电容器,HSC装置在800 W·kg−1的功率密度下有着38 W·h·kg−1的能量密度并且在10 A·g−1的电流密度下循环5000圈后依然有着71.4%的容量保持率。

     

  • 图  1  NiCo2S4材料的制备流程图

    Figure  1.  Flow chart for the preparation of NiCo2S4 material

    图  2  (a) Co-MOF的XRD图;(b) NiCo2S4的XRD图

    Figure  2.  (a) XRD pattern of Co-MOF; (b) XRD pattern of NiCo2S4

    图  3  (a) Co-MOF;(b) NiCo-LDH;(c,d)不同倍数的NiCo2S4的SEM图

    Figure  3.  SEM images of (a) Co-MOF; (b) NiCo-LDH; (c, d) NiCo2S4 at different multiplicities

    图  4  (a-b)NiCo2S4不同倍镜下的TEM图像;(c)NiCo2S4选取区域的晶格条纹;(d)NiCo2S4样品的选区电子衍射图;(e)NiCo2S4的Mapping图所选区域;(f-h)NiCo2S4所含元素各自的Mapping图

    Figure  4.  (a-b) TEM images of NiCo2S4 at different magnifications; (c) lattice fringes in selected regions of NiCo2S4; (d) electron diffractograms of selected regions of NiCo2S4 samples; (e) selected regions of the Mapping map of NiCo2S4; (f-h) Mapping maps of the respective elements contained in NiCo2S4

    图  5  NiCo2S4的(a) Co 2p;(b) C 1s;(c) Ni 2p和(dS 2p的XPS图谱

    Figure  5.  XPS profiles of (a) Co 2p; (b) C 1s; (c) Ni 2p and (d) S 2p of NiCo2S4

    图  6  NiCo2S4材料的(a) N2吸附-脱附等温线;(b)吸附孔径分布曲线

    Figure  6.  (a) N2 adsorption-desorption isotherms; (b) adsorption pore size distribution curves for NiCo2S4 material

    图  7  (a) NiCo2S4、NiCo-LDH、CoS2材料在50 mV·s−1扫描速率下的CV曲线(b) NiCo2S4在不同扫描速率下的CV曲线;(c) NiCo2S4、NiCo-LDH、CoS2材料1 A·g−1时的GCD曲线;(d) NiCo2S4的GCD曲线;(e) NiCo2S4、NiCo-LDH、CoS2材料的倍率曲线;(f)NiCo2S4的电化学阻抗谱

    Figure  7.  (a) CV curves of NiCo2S4, NiCo-LDH, and CoS2 materials at a scan rate of 50 mV·s−1 (b) CV curves of NiCo2S4 at different scan rates; (c) GCD curves of NiCo2S4, NiCo-LDH, and CoS2 materials at 1 A·g−1; (d) GCD curves of NiCo2S4; (e) multiplicity curves of NiCo2S4, NiCo-LDH, and CoS2 materials; (f) electrochemical impedance spectra of NiCo2S4

    图  8  (a) NiCo2S4 CV曲线中峰值电流的位置;(b) NiCo2S4峰值电流与扫描速率对数之间的关系图;(c) NiCo2S4的赝电容贡献率图;(d) NiCo2S4在10 A·g−1下的循环性能

    Figure  8.  (a) Position of peak current in NiCo2S4 CV curve; (b) Plot of NiCo2S4 peak current versus logarithm of scan rate; (c) Plot of pseudo capacitance contribution of NiCo2S4; (d) Cycling performance of NiCo2S4 at 10 A·g−1

    图  9  (a)混合型超级电容器的示意图;(b) NiCo2S4和AC在50 mV·s−1下的CV曲线;(c) NiCo2S4//AC在50 mV·s−1不同电压下的CV曲线;(d)不同的扫描速率下HSC装置的CV曲线

    Figure  9.  (a) Schematic of hybrid supercapacitor; (b) CV curves of NiCo2S4 and AC at 50 mV·s−1; (c) CV curves of NiCo2S4//AC at different voltages of 50 mV·s−1; and (d) CV curves of the HSC device at different scan rates

    图  10  (a) HSC装置的GCD曲线;(b) HSC装置的的倍率曲线;(c) HSC装置的能量密度与功率密度图;(d) HSC装置的长循环稳定性图

    Figure  10.  (a) GCD curve of HSC device; (b) multiplicity curve of HSC device; (c) energy density vs. power density plot of HSC device; (d) long cycle stability plot of HSC device

  • [1] CHANG L, SAYDALIEV H B, MEO M S, et al. How renewable energy matter for environmental sustainability: Evidence from top-10 wind energy consumer countries of European Union[J]. Sustainable Energy Grids & Networks, 2022, 31: 100716.
    [2] SHARMA P, KUMAR V. - Current Technology of Supercapacitors: A Review[J]. Journal of Electronic Materials, 2020, 49(6): 3520-3532. doi: 10.1007/s11664-020-07992-4
    [3] VOLFKOVICH Y M. - Electrochemical Supercapacitors (a Review)[J]. Russian Journal of Electrochemistry, 2021, 57(4): 311-347. doi: 10.1134/S1023193521040108
    [4] WANG W, YUAN B, SUN Q, et al. Application of energy storage in integrated energy systems - A solution to fluctuation and uncertainty of renewable energy[J]. Journal of Energy Storage, 2022, 52: 104812. doi: 10.1016/j.est.2022.104812
    [5] ZAKERI B, PAULAVETS K, BARRETO-GOMEZ L, et al. Pandemic, War, and Global Energy Transitions[J]. Energies, 2022, 15(17): 6114. doi: 10.3390/en15176114
    [6] GAO D, LUO Z, LIU C, et al. A survey of hybrid energy devices based on supercapacitors[J]. Green Energy & Environment, 2023, 8(4): 972-988.
    [7] HUANG J, XIE Y, YOU Y, et al. Rational Design of Electrode Materials for Advanced Supercapacitors: From Lab Research to Commercialization[J]. Advanced Functional Materials, 2023, 33(14): 2213095. doi: 10.1002/adfm.202213095
    [8] OLABI A G, ABBAS Q, AL MAKKY A, et al. Supercapacitors as next generation energy storage devices: Properties and applications[J]. Energy, 2022, 248: 123617. doi: 10.1016/j.energy.2022.123617
    [9] PENG Y, XU J, XU J, et al. Metal-organic framework (MOF) composites as promising materials for energy storage applications[J]. Advances in Colloid and Interface Science, 2022, 307: 102732. doi: 10.1016/j.cis.2022.102732
    [10] ZHAI Z, ZHANG L, DU T, et al. A review of carbon materials for supercapacitors[J]. Materials & Design, 2022, 221: 111017.
    [11] GAO Y P, HUANG K J. NiCo2S4 materials for supercapacitor applications[J]. Chemistry–An Asian Journal, 2017, 12(16): 1969-1984. doi: 10.1002/asia.201700461
    [12] ZHU Y, WU Z, JING M, et al. Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors[J]. Journal of Power Sources, 2015, 273: 584-590. doi: 10.1016/j.jpowsour.2014.09.144
    [13] SHEN L, YU L, WU H B, et al. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties[J]. Nature Communications, 2015, 6: 6694. doi: 10.1038/ncomms7694
    [14] THEERTHAGIRI J, SENTHIL R A, NITHYADHARSENI P, et al. Recent progress and emerging challenges of transition metal sulfides based composite electrodes for electrochemical supercapacitive energy storage[J]. Ceramics International, 2020, 46(10): 14317-14345. doi: 10.1016/j.ceramint.2020.02.270
    [15] IQBAL M Z, AZIZ U, AFTAB S, et al. Superior electrochemical performance of bimetallic sulfides as electrode materials for battery supercapacitor applications[J]. Materials Chemistry and Physics, 2023, 309: 128384. doi: 10.1016/j.matchemphys.2023.128384
    [16] AMAN S, ALAHMARI S D, KHAN S A, et al. Hydrothermal development of bimetallic sulfide nanostructures as an electrode material for supercapacitor application[J]. Energy & Fuels, 2023, 37(22): 17473-17483.
    [17] CHEN C, WU M-K, TAO K, et al. Formation of bimetallic metal–organic framework nanosheets and their derived porous nickel–cobalt sulfides for supercapacitors[J]. Dalton Transactions, 2018, 47(16): 5639-5645. doi: 10.1039/C8DT00464A
    [18] ANSARI A, BADHE R A, GARJE S S. One pot synthesis of bimetallic transition metal sulfide NiFeS2 nanocomposite and its use as a high performance supercapacitor material[J]. Materials Letters, 2020, 281: 128636. doi: 10.1016/j.matlet.2020.128636
    [19] GOU J, DU Y, XIE S, et al. Easily-prepared bimetallic metal phosphides as high-performance electrode materials for asymmetric supercapacitor and hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2019, 44(50): 27214-27223. doi: 10.1016/j.ijhydene.2019.08.221
    [20] ZHU M, LU C, MA Y, et al. NiCo-glycolate-derived porous spherical NiCo2S4 for high-performance asymmetric supercapacitors[J]. Applied Organometallic Chemistry, 2023, 37(12): e7301. doi: 10.1002/aoc.7301
    [21] LIU H, AN S, SUN X, et al. Multi-layer unbonded nickel foam/carbon nanotube array/Ni-Co bimetallic sulfide as high-performance electrode materials for supercapacitors[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629: 127426. doi: 10.1016/j.colsurfa.2021.127426
    [22] MA J, WANG L, YU P, et al. Ni–Co bimetallic sulfide coated with reduced graphene oxide and carbon for high-capacitance supercapacitor[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(6): 4091-4098. doi: 10.1166/jnn.2017.13428
    [23] WANG S, ZHANG P, LIU C. Synthesis of hierarchical bimetallic sulfide NiCo2S4 for high-performance supercapacitors[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616: 126334. doi: 10.1016/j.colsurfa.2021.126334
    [24] YANG S, XIONG W, WU Z, et al. Rational design and synthesis of multi-shelled NiCo2S4 hollow microspheres for high performance supercapacitors[J]. Journal of Energy Storage, 2021, 44: 103407. doi: 10.1016/j.est.2021.103407
    [25] WANG D-G, LIANG Z, GAO S, et al. Metal-organic framework-based materials for hybrid supercapacitor application[J]. Coordination Chemistry Reviews, 2020, 404: 213093. doi: 10.1016/j.ccr.2019.213093
    [26] LIU X, SHI C, ZHAI C, et al. Cobalt-based layered metal–organic framework as an ultrahigh capacity supercapacitor electrode material[J]. ACS applied materials & interfaces, 2016, 8(7): 4585-4591.
    [27] WANG Y, LIU Y, WANG H, et al. Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes[J]. ACS Applied Energy Materials, 2019, 2(3): 2063-2071. doi: 10.1021/acsaem.8b02128
    [28] CHENG S, DU K, WANG X, et al. Fabrication of Hierarchical MOF-Derived NiCo2S4@ Mo-Doped Co-LDH Arrays for High-Energy-Density Asymmetric Supercapacitors[J]. Nanomaterials, 2023, 13(19): 2663. doi: 10.3390/nano13192663
    [29] ZHUANG Z, WANG Y, CHEN Z, et al. MOF derived high-density atomic platinum heterogeneous catalyst for C–H bond activation[J]. Materials Chemistry Frontiers, 2020, 4(4): 1158-1163. doi: 10.1039/D0QM00040J
    [30] TANG Y, CHEN S, MU S, et al. Synthesis of capsule-like porous hollow nanonickel cobalt sulfides via cation exchange based on the Kirkendall effect for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2016, 8(15): 9721-9732.
    [31] DUAN X, PAN N, SUN C, et al. MOF-derived Co-MOF, O-doped carbon as trifunctional electrocatalysts to enable highly efficient Zn-air batteries and water-splitting[J]. Journal of Energy Chemistry, 2021, 56: 290-298. doi: 10.1016/j.jechem.2020.08.007
    [32] ZANG Y, LUO H, ZHANG H, et al. Polypyrrole nanotube-interconnected NiCo-LDH nanocages derived by ZIF-67 for supercapacitors[J]. ACS Applied Energy Materials, 2021, 4(2): 1189-1198. doi: 10.1021/acsaem.0c02465
    [33] DING M, WEI Z, HUANG S, et al. Electrochemical Properties of NiCo2S4/rGO Nanocomposites Synthesized by Hydrothermal Method[J]. Current Nanoscience, 2022, 18(3): 399-407. doi: 10.2174/1573413717666210826115543
  • 加载中
计量
  • 文章访问数:  57
  • HTML全文浏览量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-15
  • 修回日期:  2024-08-19
  • 录用日期:  2024-08-31
  • 网络出版日期:  2024-09-11

目录

    /

    返回文章
    返回