留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PDA/rGO水凝胶的制备及能量收集和自供电传感应用

王东 岳丽丽 唐淳 姜燕

王东, 岳丽丽, 唐淳, 等. PDA/rGO水凝胶的制备及能量收集和自供电传感应用[J]. 复合材料学报, 2024, 42(0): 1-10.
引用本文: 王东, 岳丽丽, 唐淳, 等. PDA/rGO水凝胶的制备及能量收集和自供电传感应用[J]. 复合材料学报, 2024, 42(0): 1-10.
WANG Dong, YUE Lili, TANG Chun, et al. Preparation,energy harvesting and self-powered sensing application of PDA/rGO hydrogel[J]. Acta Materiae Compositae Sinica.
Citation: WANG Dong, YUE Lili, TANG Chun, et al. Preparation,energy harvesting and self-powered sensing application of PDA/rGO hydrogel[J]. Acta Materiae Compositae Sinica.

PDA/rGO水凝胶的制备及能量收集和自供电传感应用

基金项目: 国家自然科学基金 (12072134)
详细信息
    通讯作者:

    姜燕,博士,副教授,硕士生导师,研究方向为刺激响应性水凝胶材料、材料表界面物理力学 E-mail: jiangy@ujs.edu.cn

  • 中图分类号: TB332;TB381

Preparation,energy harvesting and self-powered sensing application of PDA/rGO hydrogel

Funds: National Natural Science Foundation of China (12072134)
  • 摘要: 传统的供电方式限制了可穿戴电子设备的快速发展,直接从周围环境中收集能量被认为是最有潜力的能源供给方式。利用多巴胺(DA)还原氧化石墨烯(GO),通过水浴加热成功制备了聚多巴胺/还原氧化石墨烯(PDA/rGO)水凝胶。在流变性能分析中,观察到样品的储能模量G'明显大于其损耗模量G'',表明其具有凝胶态结构。对其溶胀性、粘附性和自愈性进行分析,发现制备的PDA/rGO水凝胶对水和NaCl溶液均有良好的溶胀性,其中对水的溶胀率高达900%,且PDA的存在赋予该水凝胶良好的自黏附性和自愈能力。进一步对其能量收集和自供电传感性能进行了研究,结果表明:NaCl溶液溶胀的PDA/rGO水凝胶在外加压力作用下,可以产生明显的电能输出,输出的电流和电压随着NaCl溶液浓度和外加压力的的增加而增大,在0.05 mol/L NaCl溶液环境下的10 g加压下,观察到平均输出电流和电压分别为0.40 μA和0.54 mV。此外,该水凝胶的电阻对外加压力的变化也显示出敏感的响应。这些结果证明了PDA/rGO水凝胶在能量收集和自供电传感领域中有着良好的应用潜力。

     

  • 图  1  原始氧化石墨烯纳米片(GO) (a,c)和多巴胺(DA)还原后的氧化石墨烯纳米片(b,d)的AFM图像以及对应的断面轮廓图

    Figure  1.  AFM images and the corresponding cross sectional profiles of the original graphene oxide (GO) (a,c) and GO nanosheets reduced by dopamine (DA) (b,d)

    图  2  原始氧化石墨烯(a),反应时间分别为8 h(b)、10 h (b)和12 h (d) 的PDA/rGO水凝胶的SEM图

    Figure  2.  SEM images of the original GO (a) and PDA/rGO hydrogels after heating in a water bath for 8 h (b), 10 h(c) and 12 h (d)

    图  3  氧化石墨烯和干燥PDA/rGO水凝胶的XRD(a)和拉曼光谱(b)

    Figure  3.  XRD (a) and Raman spectra (b) of GO and dried PDA/rGO hydrogels

    图  4  PDA/rGO水凝胶的储能模量G'和损耗模量G''与角频率的关系

    Figure  4.  Relationship of energy storage modulus G' and energy consumption modulus G'' of PDA / rGO hydrogels to angular frequency

    图  5  PDA/rGO水凝胶的溶胀比与溶胀时间的关系

    Figure  5.  Relationship of the swelling ratio of PDA/rGO hydrogels to immersion time

    图  6  PDA/rGO-10水凝胶在玻璃基板(a)、铜片(b)、塑料基底(c)、木板(d)上的自粘附行为

    Figure  6.  Self-adhesive behavior of PDA/rGO-10 hydrogel on glass substrate (a), Copper substrate (b), plastic substrate (c), and Wood substrate (d)

    图  7  自愈合前后的PDA/rGO-10水凝胶(a) 及切割前后的I-V曲线 (b)

    Figure  7.  PDA/rGO-10 h hydrogel before and after self-healing (a) and corresponding I-V curves before and after cutting (b)

    图  8  PDA/rGO-10水凝胶的电导率

    Figure  8.  Conductivity of PDA/rGO-10 hydrogel

    图  9  PDA/rGO-10水凝胶在外加载荷为5 g (a)和10 g (b)时产生的输出电流曲线

    Figure  9.  Output current curves of PDA/rGO-10 hydrogel under the load of 5 g (a) and 10 g (b)

    图  10  PDA/rGO-10水凝胶在外加载荷下的输出电流(a)和输出电压(b)随NaCl溶液浓度的变化关系

    Figure  10.  Relationship of the output current (a) and voltage (b) of PDA/rGO-10 hydrogel with the NaCl concentration

    图  11  含不同浓度NaCl溶液PDA/rGO-10水凝胶的I-V曲线(a)以及其生电机制示意图(b)

    Figure  11.  I-V curves of PDA/rGO-10 hydrogel with different concentrations of NaCl solution(a) and scheme for generating electricity mechanism(b)

    图  12  PDA/rGO-10水凝胶在不同加载下的电阻变化(a)和压力传感响应(b)

    Figure  12.  Resistance change (a) and Sensing response (b) of PDA/rGO-10 hydrogel under different loads

  • [1] ALI A E, JEOTI V, STOJANOVIĆ G M. Fabric based printed-distributed battery for wearable e-textiles: a review[J]. Science and Technology of Advanced Materials, 2021, 22(1): 772-793. doi: 10.1080/14686996.2021.1962203
    [2] WU C, WANG A C, DING W, et al. Triboelectric nanogenerator: a foundation of the energy for the new era[J]. Advanced Energy Materials, 2019, 9(1): 1802906. doi: 10.1002/aenm.201802906
    [3] ZHANG C, FAN W, WANG S, et al. Recent progress of wearable piezoelectric nanogenerators[J]. ACS Applied Electronic Materials, 2021, 3(6): 2449-2467. doi: 10.1021/acsaelm.1c00165
    [4] XUE H, LIU H, MISHUKOVA V, et al. Ocean wave energy generator based on graphene/TiO 2 nanoparticle composite films[J]. Nanoscale Advances, 2022, 4(6): 1533-1537. doi: 10.1039/D1NA00658D
    [5] KIM A, KUMAR P, ANNAMALAI P K, et al. Recent Advances in the Nanomaterials, Design, Fabrication Approaches of Thermoelectric Nanogenerators for Various Applications[J]. Advanced Materials Interfaces, 2022, 9(35): 2201659. doi: 10.1002/admi.202201659
    [6] DUAN B, WU K, CHEN X, et al. Bioinspired PVDF Piezoelectric Generator for Harvesting Multi-Frequency Sound Energy[J]. Advanced Electronic Materials, 2023, 9(8): 2300348. doi: 10.1002/aelm.202300348
    [7] ZHANG Y, JEONG C K, WANG J, et al. Hydrogel ionic diodes toward harvesting ultralow-frequency mechanical energy[J]. Advanced Materials, 2021, 33(36): 2103056. doi: 10.1002/adma.202103056
    [8] WANG Z, LI N, ZHANG Z, et al. Hydrogel-Based Energy Harvesters and Self-Powered Sensors for Wearable Applications[J]. Nanoenergy Advances, 2023, 3(4): 315-342. doi: 10.3390/nanoenergyadv3040017
    [9] PEI J, CHEN G, LI Z, et al. Electricity Generation with Sodium Alginate Hydrogel for Osmotic Energy Harvesting[J]. Industrial & Engineering Chemistry Research, 2023, 62(50): 21666-21672.
    [10] LIU L, ZHANG D, BAI P, et al. Strong tough thermogalvanic hydrogel thermocell with extraordinarily high thermoelectric performance[J]. Advanced Materials, 2023, 35(32): 2300696. doi: 10.1002/adma.202300696
    [11] TIAN C, BAI C, WANG T, et al. Thermogalvanic hydrogel electrolyte for harvesting biothermal energy enabled by a novel redox couple of SO4/32-ions[J]. Nano Energy, 2023, 106: 108077. doi: 10.1016/j.nanoen.2022.108077
    [12] YU W, SISI L, HAIYAN Y, et al. Progress in the functional modification of graphene/graphene oxide: A review[J]. RSC advances, 2020, 10(26): 15328-15345. doi: 10.1039/D0RA01068E
    [13] TARELHO J P G, DOS SANTOS M P S, FERREIRA J A F, et al. Graphene-based materials and structures for energy harvesting with fluids–A review[J]. Materials Today, 2018, 21(10): 1019-1041. doi: 10.1016/j.mattod.2018.06.004
    [14] YE M, ZHANG Z, ZHAO Y, et al. Graphene platforms for smart energy generation and storage[J]. Joule, 2018, 2(2): 245-268. doi: 10.1016/j.joule.2017.11.011
    [15] LI X, WANG Y, ZHAO Y, et al. Graphene materials for miniaturized energy harvest and storage devices[J]. Small Structures, 2022, 3(1): 2100124. doi: 10.1002/sstr.202100124
    [16] HAN Y, ZHANG Z, QU L. Power generation from graphene-water interactions[J]. FlatChem, 2019, 14: 100090. doi: 10.1016/j.flatc.2019.100090
    [17] YIN J, LI X, YU J, et al. Generating electricity by moving a droplet of ionic liquid along graphene[J]. Nature nanotechnology, 2014, 9(5): 378-383. doi: 10.1038/nnano.2014.56
    [18] FEI W, SHEN C, ZHANG S, et al. Waving potential at volt level by a pair of graphene sheets[J]. Nano Energy, 2019, 60: 656-660. doi: 10.1016/j.nanoen.2019.04.020
    [19] YIN J, ZHANG Z, LI X, et al. Waving potential in graphene[J]. Nature communications, 2014, 5(1): 3582. doi: 10.1038/ncomms4582
    [20] ZHANG Z, LI X, YIN J, et al. Emerging hydrovoltaic technology[J]. Nature nanotechnology, 2018, 13(12): 1109-1119. doi: 10.1038/s41565-018-0228-6
    [21] HOU B, KONG D, QIAN J, et al. Flexible and portable graphene on carbon cloth as a power generator for electricity generation[J]. Carbon, 2018, 140: 488-493. doi: 10.1016/j.carbon.2018.09.005
    [22] HUANG Y, CHENG H, YANG C, et al. All-region-applicable, continuous power supply of graphene oxide composite[J]. Energy & Environmental Science, 2019, 12(6): 1848-1856.
    [23] ZHAO F, LIANG Y, CHENG H, et al. Highly efficient moisture-enabled electricity generation from graphene oxide frameworks[J]. Energy & Environmental Science, 2016, 9(3): 912-916.
    [24] ZHU R, ZHU Y, CHEN F, et al. Boosting moisture induced electricity generation from graphene oxide through engineering oxygen-based functional groups[J]. Nano Energy, 2022, 94: 106942. doi: 10.1016/j.nanoen.2022.106942
    [25] GUO W, CHENG C, WU Y, et al. Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane[J]. Advanced Materials (Deerfield Beach, Fla. ), 2013, 25(42): 6064-6068. doi: 10.1002/adma.201302441
    [26] MARTÍN C, MARTÍN-PACHECO A, NARANJO A, et al. Graphene hybrid materials? The role of graphene materials in the final structure of hydrogels[J]. Nanoscale, 2019, 11(11): 4822-4830. doi: 10.1039/C8NR09728C
    [27] TANG S, LIU Z, **ANG X. Graphene oxide composite hydrogels for wearable devices[J]. Carbon Letters, 2022, 32(6): 1395-1410. doi: 10.1007/s42823-022-00402-1
    [28] WU L, FAN M, QU M, et al. Self-healing and anti-freezing graphene–hydrogel–graphene sandwich strain sensor with ultrahigh sensitivity[J]. Journal of Materials Chemistry B, 2021, 9(13): 3088-3096. doi: 10.1039/D1TB00082A
    [29] KAMINSKA I, DAS M R, COFFINIER Y, et al. Reduction and functionalization of graphene oxide sheets using biomimetic dopamine derivatives in one step[J]. ACS Applied Materials & Interfaces, 2012, 4(2): 1016-1020.
    [30] DOMANCICH N F, FUENTE S A, FERNÁNDEZ A C R, et al. Significance of different dopamine species as reducing agents of graphene oxide: Fundamental aspects[J]. Surface Science, 2023, 732: 122285. doi: 10.1016/j.susc.2023.122285
    [31] GAO H, SUN Y, ZHOU J, et al. Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification[J]. ACS applied materials & interfaces, 2013, 5(2): 425-432.
    [32] WANG X, LIU Z, YE X, et al. A facile one-pot method to two kinds of graphene oxide-based hydrogels with broad-spectrum antimicrobial properties[J]. Chemical Engineering Journal, 2015, 260: 331-337. doi: 10.1016/j.cej.2014.08.102
    [33] GAN C, SUN Z, LING L, et al. Construction of portable electrochemical immunosensors based on graphene hydrogel@ polydopamine for microcystin-LR detection using multi-mesoporous carbon sphere-enzyme labels[J]. RSC advances, 2016, 6(57): 51662-51669. doi: 10.1039/C6RA07881H
    [34] ZHAO R, XU X, HU L. Highly strong, stretchable, and conductive reduced graphene oxide composite hydrogel-based sensors for motoring strain and pressure[J]. ACS Applied Polymer Materials, 2021, 3(10): 5155-5161. doi: 10.1021/acsapm.1c00898
    [35] JIANG Y, WANG D, WANG J, et al. Adhesive, self-healing polydopamine/reduced graphene oxide composite hydrogel for self-powered application[J]. Soft Materials, 2024: 1-10.
    [36] RAJOBA S J, SARTALE S D, JADHAV L D. Investigating functional groups in GO and r-GO through spectroscopic tools and effect on optical properties[J]. Optik, 2018, 175: 312-318. doi: 10.1016/j.ijleo.2018.09.018
    [37] KONIOS D, STYLIANAKIS M M, STRATAKIS E, et al. Dispersion behaviour of graphene oxide and reduced graphene oxide[J]. Journal of colloid and interface science, 2014, 430: 108-112. doi: 10.1016/j.jcis.2014.05.033
    [38] STOJKOV G, NIYAZOV Z, PICCHIONI F, et al. Relationship between structure and rheology of hydrogels for various applications[J]. Gels, 2021, 7: 255. doi: 10.3390/gels7040255
    [39] LIU Y, AI K, LU L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields[J]. Chemical reviews, 2014, 114(9): 5057-5115. doi: 10.1021/cr400407a
    [40] LYU Q, HSUEH N, CHAI C L L. The chemistry of bioinspired catechol (amine)-based coatings[J]. ACS Biomaterials Science & Engineering, 2019, 5(6): 2708-2724.
  • 加载中
计量
  • 文章访问数:  38
  • HTML全文浏览量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-15
  • 修回日期:  2024-08-15
  • 录用日期:  2024-08-30
  • 网络出版日期:  2024-09-16

目录

    /

    返回文章
    返回