Loading [MathJax]/jax/output/SVG/jax.js

负载纳米银/石墨烯复合物的海藻酸钠水凝胶薄膜的制备及应用

王婷婷, 王金清, 岳铭强, 范增杰, 杨生荣

王婷婷, 王金清, 岳铭强, 等. 负载纳米银/石墨烯复合物的海藻酸钠水凝胶薄膜的制备及应用[J]. 复合材料学报, 2021, 38(9): 3016-3025. DOI: 10.13801/j.cnki.fhclxb.20201214.002
引用本文: 王婷婷, 王金清, 岳铭强, 等. 负载纳米银/石墨烯复合物的海藻酸钠水凝胶薄膜的制备及应用[J]. 复合材料学报, 2021, 38(9): 3016-3025. DOI: 10.13801/j.cnki.fhclxb.20201214.002
WANG Tingting, WANG Jinqing, YUE Mingqiang, et al. Preparation and application of sodium alginate hydrogel film loaded with nano-silver/graphene composite[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3016-3025. DOI: 10.13801/j.cnki.fhclxb.20201214.002
Citation: WANG Tingting, WANG Jinqing, YUE Mingqiang, et al. Preparation and application of sodium alginate hydrogel film loaded with nano-silver/graphene composite[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3016-3025. DOI: 10.13801/j.cnki.fhclxb.20201214.002

负载纳米银/石墨烯复合物的海藻酸钠水凝胶薄膜的制备及应用

基金项目: 国家自然科学基金(51975562)
详细信息
    通讯作者:

    杨生荣,硕士,研究员,博士生导师,研究方向为聚合物复合材料 E-mail:sryang@licp.cas.cn

  • 中图分类号: TB383.2;R318.08

Preparation and application of sodium alginate hydrogel film loaded with nano-silver/graphene composite

  • 摘要: 海藻酸钠(SA)是一种天然高分子聚合物,而纳米银(Ag)具有良好的抗菌性,因此利用二者制备的水凝胶敷料在生物医学领域具有广阔的应用前景。本文首先将Ag纳米颗粒负载于氧化石墨烯(GO)片表面得到Ag/石墨烯复合物(Ag-GO),然后再将其添加到SA中,通过溶胶-凝胶法获得负载Ag-GO的双层海藻酸钠水凝胶薄膜(Ag-GO/SA)。利用FTIR、XRD和SEM等技术对Ag-GO/SA的组成结构和微观形貌进行了表征,并评价了其溶胀性、抗菌性、力学、体外细胞毒性和体内伤口愈合能力等性能。结果表明Ag-GO/SA具有良好的溶胀性、力学强度和抗菌性等性能,与医用纱布相比,Ag-GO/SA可促进SD大鼠的伤口愈合,伤口愈合率高达98%,作为新型伤口敷料具有很大的应用潜力。
    Abstract: Sodium alginate (SA) is a natural polymer material that has been widely studied and used in the biomedical field. Nano-silver (Ag) has been proven to present good antibacterial properties, but its application is limited due to its easy agglomeration. In this paper, a series of Ag-graphene composites (Ag-GO) were prepared and characterized by loading Ag nanoparticles on the surface of graphene oxide (GO) sheets. Ag-GO was then added into SA, and a double-layered SA hydrogel film (Ag-GO/SA) carrying Ag-GO was prepared by sol-gel process. FTIR, XRD and SEM characterizations were used to determine the chemical structure and micromorphology of Ag-GO/SA. In addition, swelling ability, mechanical and antibacterial properties, as well as in-vitro cytotoxicity and in-vivo wound healing ability of Ag-GO/SA samples were also evaluated. The results show that the prepared Ag-GO/SA has good swelling property, sufficient mechanical strength, excellent wound healing and antibacterial properties. Specially, the optimum hydrogel of Ag-GO/SA can promote wound healing in SD rats, with a wound healing rate of up to 98%, presenting great application potential as a new type of wound dressing.
  • 复合管多用于海洋油气输送,其中非粘接的钢带缠绕增强复合管多用于浅海油气运输[1-3]。钢带缠绕增强复合管不仅克服了一般热塑性复合管质量密度低的缺点,且具有顺应性高、生产安装费用低及可再回收利用等特点[4]。但长期恶劣的服役环境极易造成管道失效,进而引发油气泄露事故[5],因此开展海底复合管力学行为研究对钢带缠绕增强复合管结构设计、安全评价、操作维修等具有重要意义。

    许多学者对钢带缠绕增强复合管进行了探索研究,如Bai等[6-7]利用压溃试验和数值模拟研究发现,初始椭圆度、径厚比越大,钢带缠绕增强复合管极限抗外压能力越低。Bai等[8]、Jiang等[9]和Bai等[10]利用轴向拉伸试验和数值模拟对钢带缠绕增强复合管进行研究发现,在纯拉伸载荷作用下,钢带缠绕增强复合管的拉伸刚度随着伸长量的增大而减小;同时建立了相应的解析模型并进行求解。Liu等[11]基于蒙特卡洛(Monte-Carlo)及一次二阶矩(FOSM)相组合的方法矫正了钢带缠绕增强复合管的设计安全系数。学者们对复杂载荷下其他类型复合管进行了研究,如姜豪等[12]建立了深海非粘结柔性管力学模型,分析了其在组合载荷工况下的力学性能。Gong等[13]、Sertã等[14]和Fe´ret等[15]预测了深海柔性管的铠装层在轴向压缩、弯曲及外压下的屈曲失效。Bathtui[16]给出用于模拟非粘结柔性立管在轴向拉伸、弯矩、内外压作用下结构响应的简化本构模型。Ramos等[17]建立了深海柔性管在弯曲、扭转等组合载荷条件下的全滑动力学模型并得到相应解。Ramos等[18]考虑管道层间间隙,提出了组合载荷下深海柔性管力学响应的计算模型,并进行了相应试验。Merino等[19]采用试验和有限元方法研究发现,深海柔性管在内外压及拉伸条件下为线性响应,扭转载荷下为非线性响应。Gong等[20]研究了深水夹芯管屈曲传播特性,提出了非粘接下深水夹芯管系统的传播压力经验表达式。Xue等[21-23]对海底腐蚀管道在外部静水压力作用下的稳态屈曲拓展现象进行了非线性有限元分析。同时,提出一种夹芯管屈曲传播的三维分析方法,从壳的塑性稳定性理论角度描述了一种屈曲传播现象的综合机制,并提出了夹芯管的一阶剪切变形理论,推导了非浅水区夹芯层圆柱壳的平衡微分方程。

    综上所述,目前针对钢带缠绕增强复合管的力学响应研究大多限于单一载荷下的试验或数值模拟,而对复杂载荷条件下的力学响应问题研究较少。由于海洋环境复杂多变,海底管道服役环境恶劣,钢带缠绕增强复合管承受复杂载荷,包括轴向拉力、弯曲载荷及内外压等,会加速管道失效。因此,本文开展多种复杂载荷下钢带缠绕增强复合管的力学特性研究。

    钢带缠绕增强复合管包含防漏和耐腐蚀的内层聚乙烯(PE)管、抵抗内外压的两层螺旋方向相反的钢质增强带、减小摩擦的保护层及抵抗外腐蚀的外层聚乙烯(PE)管[24],如图1所示。以长度为1 100 mm的钢带缠绕增强复合管为研究对象,建立如图1所示的数值计算模型。其中:1为内层PE管;2为内层缠绕钢带;3为外层缠绕钢带;4为保护层;5为外层PE管。

    图  1  钢带缠绕增强复合管结构及数值计算模型
    Figure  1.  Structure and numerical calculation model of reinforced composite pipe wound with steel strip
    PE—Polyethylene

    由于钢带缠绕增强复合管各层之间存在非线性接触,因此对较厚的内、外PE管采用C3D8R实体单元,对较薄的钢带及保护层采用S4R壳单元。接触关系采用法向硬接触和切向罚接触[24],钢带之间的摩擦系数为0.18,钢带与PE管之间的摩擦系数为0.22。管道一端完全固定,另一端施加轴向拉伸位移。根据文献[8]的试件,设置如表1所示的几何参数及材料属性。

    表  1  钢带缠绕增强复合管的几何模型及材料参数
    Table  1.  Geometric and material parameters of reinforced composite pipe wound with steel strip
    ModelInner ring radius/mmThickness/mmHelix angle/(°)Width/mmE/GPaμYield strength/MPa
    Inner PE pipe 25.0 6.0 1.04 0.40 20
    Inner steel strip 31.0 0.5 54.7 52 199.00 0.26 850
    Outer steel strip 31.5 0.5 −54.7 52 199.00 0.26 850
    Protective layer 32.0 1.0 1.04 0.40 20
    Outer PE pipe 33.0 4.0 1.04 0.40 20
    Notes: E—Elastic modulus; μ—Poisson’s ratio.
    下载: 导出CSV 
    | 显示表格

    文献[24]提出了计算钢带缠绕增强复合管轴向拉伸刚度的简化解析模型,可知钢带轴向拉力为

    {Fsteel,i=nbtEcosθ(ΔLLcos2θ+uRiRmisin2θ){i=1,2}uRi=Λ1Λ5+Λ61+Λ2Λ5Λ1=βEsin2θtΔLcos2θL(1Rm1+1Rm2)Λ2=βEsin4θt(1R2m1+1R2m2)Λ5=(1+ν)R6[(12ν)R26+R27]ES(R26R27)Λ6=2(1ν2)PoutR26R27ES(R26R27)+νR6ΔLL (1)

    式中:uRi为径向位移量;β为考虑间隙时的折减系数;E为钢带弹性模量;θ为钢带缠绕螺旋角度;L为管道长度;∆L为拉伸长度;n为同一层增强层中钢带的条数;b为带宽;Rmi为第i层钢带增强层的平均缠绕半径;t为钢带厚度;R6为内层PE管外半径;R7为外层PE管内半径;ES为PE材料在当前加载步下的割线模量。

    PE管的轴向拉力FPEi

    FPEi=ESA0iΔLΔL+L (2)

    式中,A0i为PE管截面初始面积。

    钢带缠绕增强复合管总轴向拉力FT可看作管道各层贡献值的累加,即

    FT=ΣFPE+ΣFsteel (3)

    图2为钢带缠绕增强复合管数值模型与实验及解析解对比。可知,将数值计算模型与文献[8]的试验结果及文献[24]的解析模型进行对比,三者变化趋势一致。同时,本文数值计算模型比解析模型更接近试验值,这是由于解析模型未考虑层与层之间的摩擦作用及螺旋钢带自身弯曲变化,即仅考虑钢带沿带长度方向的轴向变形。因此,该数值计算模型较为可靠。

    图  2  钢带缠绕增强复合管数值模型与试验及解析解对比
    Figure  2.  Comparison of numerical model, experimental and analytical model results of reinforced composite pipe wound with steel strip

    为研究由拉伸、内外压和弯曲载荷组合的复杂载荷下带缠绕增强复合管的力学性能,其组合类型为:内外压加拉伸、内外压加弯曲、内外压加弯曲及拉伸,同时与纯拉伸和纯弯曲载荷条件进行对比。由于海底工况复杂,带缠绕增强复合管受载具有不确定性,因此本文选取的加载路径为在同一分析步中同时施加内外压、拉伸或弯曲载荷。承载能力可通过管道屈曲时的载荷大小判定,载荷越大,承载性能越好。钢带缠绕增强复合管的拉伸刚度为

    k=Fx (4)

    式中:k为拉伸刚度;F为轴向拉力;x为轴向位移。

    钢带缠绕增强复合管的弯曲刚度为

    m=Mα (5)

    式中:m为弯曲刚度;M为弯矩;α为弯曲角度。

    图3为钢带缠绕增强复合管轴向拉力和拉伸量的关系曲线。可知,在弹性阶段(ABACAD段),钢带缠绕增强复合管的拉伸刚度不变。在BEDFCG段,钢带缠绕增强复合管的拉伸刚度随伸长量增大而减小,非线性特征明显,将该阶段定义为过渡阶段。而EHFIGJ段则为整体的屈服阶段。曲线Ⅰ(内压为1 MPa、外压为3 MPa)和曲线Ⅱ(内压为2 MPa、外压为3 MPa)的拉伸刚度明显小于纯拉伸情况,这是由外压大于内压,压差引起泊松效应(一端固定条件下,钢带缠绕增强复合管因挤压而径向收缩,又因整体体积不变,钢带缠绕增强复合管将沿自由端方向伸长)造成的。在曲线Ⅰ基础上,对自由端施加0.2 rad的转角位移,钢带缠绕增强复合管被拉伸约至77 mm时其拉力急剧下降,此时钢带缠绕增强复合管失效。可以看出,弯曲载荷对钢带缠绕增强复合管拉伸刚度影响较小,但会降低钢带缠绕增强复合管屈曲时的临界拉力,即抗拉承载能力降低。

    图  3  不同拉伸载荷作用下钢带缠绕增强复合管的力学性能
    Figure  3.  Mechanical properties of reinforced composite pipe wound with steel strip under different tensile loads

    图4为钢带缠绕增强复合管的弯矩和弯曲角度关系曲线。可知,曲线Ⅰ(内压为1 MPa、外压为3 MPa)和曲线Ⅱ(内压为2 MPa、外压为3 MPa)的钢带缠绕增强复合管弯曲刚度明显小于纯弯曲情况。这是由于钢带缠绕增强复合管不受内外压作用时,层间挤压较小,最大静摩擦力小;在弯曲过程中各层易产生相对滑移,滑动摩擦力在一定程度上阻碍钢带缠绕增强复合管变形,使钢带缠绕增强复合管产生更大弯矩,即迟滞效应。同理,钢带缠绕增强复合管承受内外压时,层间摩擦力增强,无滑移现象,钢带缠绕增强复合管整体性提高。在曲线Ⅰ基础上,钢带缠绕增强复合管被拉伸至60 mm,轴向拉力所形成的弯矩与初始弯矩叠加,使在相同弯曲形变下钢带缠绕增强复合管弯曲刚度大幅提高,柔性降低。

    图  4  不同弯曲载荷作用下钢带缠绕增强复合管的力学性能
    Figure  4.  Mechanical properties of reinforced composite pipe wound with steel strip under different bending loads

    当钢带缠绕增强复合管承受较大内外压时,虽然钢带缠绕增强复合管整体性增强,但由于钢带缠绕增强复合管各层力学性能不同,形变过程中外层PE管易提前进入屈服阶段,使钢带缠绕增强复合管整体弯曲刚度下降,管端弯矩出现极大值,如曲线Ⅰ和Ⅱ所示。

    图5为内层和外层PE管在纯拉伸和组合拉伸(包含内外压和弯曲,且以拉伸载荷为主)载荷作用下的应力云图。可见,纯拉伸作用下应力沿管道分布较均匀,两端应力小于中间段。内层PE管出现螺旋状高应力区,这是由于拉伸过程中钢带边缘对其径向挤压。而在组合拉伸作用下,相同拉伸长度的内层和外层PE管在自由端附近产生严重的屈曲破坏,进入失效状态。

    图  5  内层和外层聚乙烯(PE)管在纯拉伸和组合拉伸下的应力分布
    Figure  5.  Stress distributions of inner and outer polyethylene (PE) pipes under pure tensile and combined tensile loads

    图6为内层和外层PE管在纯拉伸和组合拉伸作用下应力及应变随拉伸量的变化。由图6(a)可知,纯拉伸载荷作用时,轴向位移为0~90 mm范围内的应变呈线性变化,复合管处于弹性状态,且内层和外层PE管应变基本一致。在组合拉伸下,内层和外层PE管在拉伸至77 mm时应变急剧增大,达到屈服极限,开始产生塑性变形,且外层PE管应变大于内层PE管。由图6(b)可知,当拉伸至76.5 mm时,外层PE管的最大Mises应力达到22.60 MPa,内层PE管为21.51 MPa,进一步说明在组合拉伸的条件下,外层PE管力学响应较内层PE管更为敏感。

    图  6  内层和外层PE管在纯拉伸和组合拉伸作用下的应力和应变
    Figure  6.  Stress and strain of inner and outer PE pipes under pure tensile and combined tensile loads

    外层PE管应力分布如图6(a)内图所示。可知,在拉伸过程中管道自由端上部出现高应力区,外层PE管螺旋状高应力区的应力值逐渐增大,最终在拉伸约至77 mm时,外层PE管在自由端附近发生屈曲失效。

    图7为内层和外层PE管在纯弯曲和组合弯曲(包含内外压和拉伸,且以弯曲载荷为主)作用下的应力云图。可见,在纯弯曲作用下,高应力区出现在管道固定端附近上部。而在组合弯曲作用下的高应力区出现在管道自由端附近,并发生屈曲破坏。同时外层PE管应力分布较内层PE管更具规律性。

    图  7  内层和外层PE管在纯弯曲和组合弯曲下的应力分布
    Figure  7.  Stress distribution of inner and outer PE pipes under pure bending loads and combined bending loads

    图8为内层和外层PE管在纯弯曲和组合弯曲作用下的应力和应变随弯曲角度的变化。由图8(a)可知,在纯弯曲作用下,内层和外层PE管均处于弹性阶段;在组合弯曲载荷作用下,内层和外层PE管的应变在弯曲角度分别为0.24 rad和0.25 rad时急剧增加,外层PE管提前失效。由图8(b)可知,无论是在纯弯曲载荷作用下还是组合弯曲载荷作用下,外层PE管的Mises应力始终大于内层PE管。

    图  8  内层和外层PE管在纯弯曲和组合弯曲作用下应力和应变
    Figure  8.  Stress and strain of inner and outer PE pipes under pure bending and combined bending loads

    外层PE管应力分布如图8(a)内图所示。可知,钢带缠绕增强复合管变形过程中外层PE管的高应力区不断向自由端集中,并在其附近发生屈曲破坏。管道整体曲率半径非常大,说明在组合弯曲载荷作用下钢带缠绕增强复合管弯曲刚度大幅度提高,柔性降低。

    图9为组合拉伸载荷和组合弯曲载荷作用下内层缠绕钢带的应力云图。可见,钢带在组合拉伸载荷和组合弯曲载荷作用下应力分布几乎一致。应力沿轴向方向呈非均匀分布,这是由于边界条件的非线性即端部效应,钢带在边缘部分出现应力集中造成的。同时,应力集中区域沿某一路径具有对称性。创建相应路径及节点编号1~7,提取一组单元在同一时刻对应节点的Mises应力,如图9所示。由文献[8]可知,纯拉伸下内层钢带对称应力的路径平行于带宽分布,而组合拉伸载荷和组合弯曲载荷作用下的路径发生偏移,说明复杂载荷会改变内层钢带对称应力分布路径。

    图  9  内层缠绕钢带应力云图及节点Mises应力
    Figure  9.  Stress cloud diagram of inner wound steel strip and Mises stress of nodes

    选取钢带缠绕增强复合管中钢带增强层的三种螺旋角度(±54.7°、±60.5°、±67.7°)进行分析。图10为组合拉伸载荷作用下螺旋角对钢带缠绕增强复合管拉伸性能的影响。可见,随着螺旋角度增大,由于未发生层间相对滑动,钢带缠绕增强复合管在弹性阶段的拉伸刚度几乎不发生变化;在过渡及屈服阶段,钢带缠绕增强复合管的拉伸刚度增大,柔性降低,这是由于螺旋角度的增大,增加了单位轴向长度内钢带缠绕圈数,导致钢带覆盖率提高,总摩擦力增大,钢带缠绕增强复合管各层之间不易产生滑移。随着螺旋角增大,钢带缠绕增强复合管屈曲时的临界拉力增大,抗拉承载能力提高。

    图  10  组合拉伸载荷作用下螺旋角对钢带缠绕增强复合管拉伸性能影响
    Figure  10.  Effect of helix angles on tensile properties of reinforced composite pipe wound with steel strip under combined tensile load

    图11为组合弯曲载荷作用下螺旋角对钢带缠绕增强复合管弯曲性能影响。可见,随着螺旋角度增大,钢带缠绕增强复合管在弹性阶段的弯曲刚度基本不变;在屈服阶段,钢带缠绕增强复合管弯曲刚度随螺旋角增大而增大,柔性降低,这是由于螺旋角度越大,在保持钢带宽度不变条件下,单位轴向长度内钢带缠绕圈数增大,即钢带覆盖率越高,钢带缠绕增强复合管整体刚度越大;钢带缠绕增强复合管屈曲时的临界弯矩呈非单调变化,存在极大值,当弯曲角度为0.215 rad时,螺旋角为60.5°的钢带缠绕增强复合管弯矩为697 kN·m,载荷达到屈曲临界值,而螺旋角为54.7°的钢带缠绕增强复合管仍处于屈服阶段,螺旋角为67.7°的钢带缠绕增强复合管早已失效。

    图  11  组合弯曲载荷作用下螺旋角对钢带缠绕增强复合管弯曲性能影响
    Figure  11.  Effect of helix angles on bending properties of reinforced composite pipe wound with steel strip under combined bending load

    图12为组合拉伸载荷作用下摩擦系数对钢带缠绕增强复合管拉伸性能的影响。可知,在组合拉伸载荷作用下,随着摩擦系数增大,钢带缠绕增强复合管在弹性阶段轴向拉伸刚度基本不变,体现了较强整体性;在过渡阶段,钢带缠绕增强复合管拉伸刚度提高,柔性降低,这是由于摩擦系数的增大提高了层间滑动摩擦力,迟滞效应更加明显;钢带缠绕增强复合管屈曲时的临界拉力增大,抗拉承载能力提高,即当摩擦系数为0.2时,钢带缠绕增强复合管在拉伸至77 mm时失效,而对于其他情况,其失效时的拉伸量均小于77 mm。

    图  12  组合拉伸载荷作用下摩擦系数对钢带缠绕增强复合管拉伸性能的影响
    Figure  12.  Effect of friction coefficients on tensile properties of reinforced composite pipe wound with steel strip under combined tensile load

    图13为组合弯曲下摩擦系数对钢带缠绕增强复合管弯曲性能影响。可见,随着摩擦系数增大,弹性阶段的钢带缠绕增强复合管与组合拉伸载荷作用下刚度的变化规律类似。钢带缠绕增强复合管屈曲时的临界弯矩逐渐增大,抗弯承载能力提高。

    图  13  组合弯曲下摩擦系数对钢带缠绕增强复合管弯曲性能影响
    Figure  13.  Effect of friction coefficients on bending properties of reinforced composite pipe wound with steel strip under combined bending load

    (1)压差(外压大于内压,且≤2 MPa)越大,钢带缠绕增强复合管柔性越高;钢带缠绕增强复合管弯矩存在极大值。与纯拉伸作用相比,组合拉伸载荷作用时钢带缠绕增强复合管屈服时的临界拉力降低,抗拉承载能力降低;与纯弯曲作用相比,组合弯曲载荷作用时钢带缠绕增强复合管柔性大幅降低。

    (2)复杂载荷作用的高应力区出现在钢带缠绕增强复合管自由端附近,并在此处发生屈曲失效,且外层聚乙烯(PE)管的应变大于内层PE管;而在纯弯曲载荷作用下,高应力区出现在钢带缠绕增强复合管的固定端,纯拉伸载荷作用下应力分布较均匀;复杂载荷会改变内层钢带对称应力的分布路径。

    (3)复杂载荷作用下,钢带螺旋角度及摩擦系数越大,钢带缠绕增强复合管柔性越低。在组合拉伸载荷作用下,增大钢带螺旋角及层间摩擦系数,钢带缠绕增强复合管屈曲时的临界拉力增大,承载能力提高。在组合弯曲载荷作用下,螺旋角增大使钢带缠绕增强复合管屈曲时的临界弯矩呈非单调变化,存在极大值;层间摩擦系数越大,临界弯矩越大,钢带缠绕增强复合管的抗弯承载能力提高。

  • 图  1   Ag-GO1/海藻酸钠(SA) (a)、Ag-GO2/SA (b)、Ag-GO3/SA (c)、Ag-GO4/SA (d) 的外观照片和Ag-GO/SA (e) 的微观结构示意图

    Figure  1.   Appearances of Ag-GO1/sodium alginate (SA) (a), Ag-GO2/SA (b), Ag-GO3/SA (c), Ag-GO4/SA (d) and microstructure (e) of Ag-GO/SA

    图  2   Ag-GO水分散液的光学照片及UV曲线 (a) 以及GO和系列Ag-GO样品的XRD图谱 (b)

    Figure  2.   Optical images and UV absorption spectra of various aqueous dispersions of GO and Ag-GO (a) , and XRD patterns of GO and series of Ag-GO samples (b)

    图  3   Ag-GO1 (a)、Ag-GO2 (b)、Ag-GO3 (c) 、Ag-GO4 (d) 的TEM图像和对应的EDS图谱

    Figure  3.   TEM images and EDS spectra of Ag-GO 1 (a), Ag-GO2 (b), Ag-GO3 (c) and Ag-GO4 (d)

    图  4   Ag-GO/SA的SEM图像:表面 (a)、断面 (b)、放大断面 (c) 及放大断面所对应的Ag元素的Mapping图 (d)

    Figure  4.   SEM images of Ag-GO/SA: Surface (a), cross-section (b), enlarged cross-section (c) and the Ag element mapping (d) of the corresponding enlarged cross-section

    图  5   Ag-GO/SA的FTIR图谱 (a)、XRD图谱 (b) 和TGA曲线 (c)

    Figure  5.   FTIR spectra (a), XRD patterns (b) and TGA curves (c) of Ag-GO/SA samples

    图  6   Ag-GO/SA系列样品的溶胀性能 (a)、凝胶分数 (b) 和MTT测试结果(c)

    Figure  6.   Swelling property (a), gel fraction (b) and MTT results (c) of Ag-GO/SA samples

    图  7   Ag-GO/SA分别对抗E.coli (a) 和S.aureas (b) 的抑菌环实验结果

    Figure  7.   Antibacterial loop experiments of Ag-GO/SA samples against E.coli (a) and S.aureas (b)

    图  8   Ag-GO/SA的拉伸应力-应变曲线 (a),杨氏模量和断裂伸长率 (b)

    Figure  8.   Tensile stress-strain curves (a), Young’s modulus and elongation at break (b) of Ag-GO/SA

    图  9   Ag-GO/SA3的体内伤口愈合实验结果

    Figure  9.   In-vivo wound healing results of Ag-GO/SA3 sample

    图  10   H&E染色的皮肤组织切片的显微照片

    Figure  10.   Micrographs of H & E-stained skin tissue section

    表  1   不同质量比的Ag-氧化石墨烯(GO)复合物所加AgNO3和GO的质量

    Table  1   Amounts of AgNO3 and graphene (GO) needed for preparation of Ag-GO composites with different mass ratios

    SampleAgNO3/gGO/g
    Ag-GO1 0.1 0.025
    Ag-GO2 0.1 0.05
    Ag-GO3 0.1 0.1
    Ag-GO4 0.1 0.2
    下载: 导出CSV
  • [1]

    PEREIRA R, TOJEIRA A, VAZ D C, et al. Preparation and characterization of films based on alginate and aloe vera[J]. International Journal of Polymer Analysis and Characterization,2011,16(7):449-464.

    [2]

    DODERO A, SCARFI S, POZZOLINI M, et al. Alginate-based electrospun membranes containing ZnO nanoparticles as potential wound healing patches: Biological, mechanical, and physicochemical characterization[J]. ACS Applied Materials & Interfaces,2020,12:3371-3381.

    [3]

    CHEN K, WANG F Y, LIU S Y, et al. In situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property[J]. International Journal of Biological Macromolecules,2020,148:501-509.

    [4]

    CIOBANU B C, CADINOIU A N, POPA M, et al. Modulated release from liposomes entrapped in chitosan/gelatin hydrogels[J]. Materials Science & Engineering C-Materials for Biological Applications,2014,43:383-391.

    [5]

    CHI J J, ZHANG X X, CHEN C, et al. Antibacterial and angiogenic chitosan microneedle array patch for promoting wound healing[J]. Bioactive Materials,2020,5(2):253-259.

    [6]

    QUADRADO R F N, FAJARDO A R. Microparticles based on carboxymethyl starch/chitosan polyelectrolyte complex as vehicles for drug delivery systems[J]. Arabian Journal of Chemistry,2020,13(1):2183-2194.

    [7]

    RAKHSHAEI R, NAMAZI H. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel[J]. Materials Science & Engineering C-Materials for Biological Applications,2017,73:456-464.

    [8]

    WANG F, ZHANG Q, HUANG K X, et al. Preparation and characterization of carboxymethyl cellulose containing quaternized chitosan for potential drug carrier[J]. International Journal of Biological Macromolecules,2020,154:1392-1399.

    [9]

    KONERU A, DHARMALINGAM K, ANANDALAKSHMI R. Cellulose based nanocomposite hydrogel films consisting of sodium carboxymethylcellulose-grapefruit seed extract nanoparticles for potential wound healing applications[J]. International Journal of Biological Macromolecules,2020,148:833-842.

    [10]

    SUN J Y, ZHAO X H, IIIEPERUMA W K, et al. Highly stretchable and tough hydrogels[J]. Nature,2012,489(7414):133-136.

    [11]

    LEE K Y, Mooney D J. Alginate: properties and biomedical applications[J]. Progress in Polymer Science,2012,37(1):106-126.

    [12]

    LIU H, WANG Y Q, YU Y, et al. Simple fabrication of inner chitosan-coated alginate hollow microfiber with higher stability[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials,2019,107(8):2527-2536.

    [13]

    WANG T T, WANG J Q, WANG R, et al. Preparation and properties of ZnO/sodium alginate bi-layered hydrogel films as novel wound dressings[J]. New Journal of Chemistry,2019,43:8684-8693.

    [14] 宋文山, 王园园, 杜芬, 等. 鱼皮胶原蛋白-壳聚糖复合海藻酸盐水凝胶敷料对烧烫伤创面的促愈合作用[J]. 中国海洋药物, 2019, 6, 38(3):1-6.

    SONG W S, WANG Y Y, DU F, et al. Effect of fish skin collagen-chitosan compound alginate gel dressing on promoting hearing of burn and scald wound[J]. Chinese Journal of Marine Drugs,2019,6, 38(3):1-6(in Chinese).

    [15]

    YANG J S, ZHENG H C, HAN S Y, et al. The synthesis of nano-silver/sodium alginate composites and their antibacterial properties[J]. RSC Advances,2015,5(4):2378-2382.

    [16]

    GAO S P, GE W, ZHAO C Q, et al. Novel conjugated Ag@PNIPAM nanocomposites for an effective antibacterial wound dressing[J]. RSC Advances,2015,5(33):25870-25876.

    [17]

    CHEN Y Q, CHEN L B, BAI H, et al. Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification[J]. Journal of Materials Chemistry A,2013,1(6):1992-2001.

    [18]

    CONG H P, WANG P, YU S H, et al. Stretchable and self-healing graphene oxide-polymer composite hydrogels: A dual-network design[J]. Chemistry of Materials,2013,25(16):3357-3362.

    [19]

    XU C, WANG X. Fabrication of flexible metal nanoparticle films using graphene oxide sheets as substrates[J]. Small,2009,5(19):2212-2217.

    [20]

    DE FARIA A F, MARTINEZ D S T, MEIRA S M M, et al. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets[J]. Colloids and Surfaces B: Biointerfaces,2014,113:115-124.

    [21]

    FAN Z J, LIU B, WANG J Q, et al. A novel wound dressing based on Ag/graphene polymer hydrogel: Effectively kill bacteria and accelerate wound healing[J]. Advanced Function Material,2014,24(25):3933-3943.

    [22]

    YAN X, LI F, HU K D, et al. Nacre-mimic reinforced Ag@ reduced graphene oxide-sodium alginate composite film for wound healing[J]. Scientific Reports,2017,7(13851):1-10.

    [23]

    LI P J, OHTSUKI C, KOKUBO T, et al. Apatite formation induced by silica gel in a simulated body fluid[J]. Journal of the American Ceramic Society,1992,75(8):2094-2097.

    [24] 黄剑锋. 溶胶-凝胶原理与技术[M]. 北京: 化学工业出版社, 2005: 38.

    HUANG J F. Sol-gel principle and technology[M]. Beijing: Chemical Industry Press, 2005: 38(in Chinese).

    [25] 中国国家标准化管理委员会. 医疗器械生物学评价第5部分: 体外细胞毒性试验: GB/T 16886.5—2017[S]. 北京: 中国标准出版社, 2017.

    Standardization Administration of the People’s Republic of China. Biological evaluation of medical devices-Part 5: Test for in vitro cytotoxicity: GB/T 16886.5—2017[S], Beijing: China Standards Press, 2017(in Chinese).

图(10)  /  表(1)
计量
  • 文章访问数:  1761
  • HTML全文浏览量:  765
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-13
  • 录用日期:  2020-12-02
  • 网络出版日期:  2020-12-13
  • 刊出日期:  2021-08-31

目录

/

返回文章
返回