留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可膨胀石墨与甲基膦酸二甲酯协效阻燃聚甲基丙烯酸甲酯

徐文总 周耀成 边子唯 宣子怡 余世源

徐文总, 周耀成, 边子唯, 等. 可膨胀石墨与甲基膦酸二甲酯协效阻燃聚甲基丙烯酸甲酯[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 徐文总, 周耀成, 边子唯, 等. 可膨胀石墨与甲基膦酸二甲酯协效阻燃聚甲基丙烯酸甲酯[J]. 复合材料学报, 2024, 42(0): 1-12.
XU Wenzong, ZHOU Yaocheng, BIAN Ziwei, et al. Expandable graphite and dimethyl methylphosphonate synergistic flame retardant polymethyl methacrylate[J]. Acta Materiae Compositae Sinica.
Citation: XU Wenzong, ZHOU Yaocheng, BIAN Ziwei, et al. Expandable graphite and dimethyl methylphosphonate synergistic flame retardant polymethyl methacrylate[J]. Acta Materiae Compositae Sinica.

可膨胀石墨与甲基膦酸二甲酯协效阻燃聚甲基丙烯酸甲酯

基金项目: 安徽省自然科学联合基金(2208085 UM03,2308085 UM01);安徽省重点研发计划项目(202304 a05020023)
详细信息
    通讯作者:

    徐文总,博士,教授,硕士生导师,研究方向为阻燃高分子 E-mail: wenzongxu@ahjzu.edu.cn

  • 中图分类号: TB332

Expandable graphite and dimethyl methylphosphonate synergistic flame retardant polymethyl methacrylate

Funds: Natural Science Foundation of Anhui Province (Joint Foundation)(No.2208085 UM03,No.2308085 UM01); Anhui Province key research and development program(No.202304 a05020023)
  • 摘要: 聚甲基丙烯酸甲酯(PMMA)是一种用途广泛的高分子材料,为了改变其易燃烧的缺点,本文采用原位聚合法制备了一系列含甲基膦酸二甲酯(DMMP)和可膨胀石墨(EG)的聚甲基丙烯酸甲酯复合材料。通过极限氧指数、锥形量热仪和垂直燃烧测试研究了其阻燃性能,结果表明在添加10%复配阻燃剂,且DMMP与EG的比例为1∶1时, 复合材料5%DMMP-EG/PMMA的阻燃效果最好。样品通过UL-94 V-0评级,与未加阻燃剂的PMMA相比,其极限氧指数(LOI)从18%增加到27.4%。热释放速率峰值(pHRR)显著降低87%,总热释放量率(THR)降低33%。动态力学性能测试表明,5%DMMP-EG/PMMA的玻璃化转变温度和储能模量远远高于10%DMMP/PMMA,复配可膨胀石墨可以改善因磷酸酯加入导致的材料变软现象。最后, 通过TG-IR、不同温度下的红外光谱分析和残炭的拉曼光谱分析了复合材料的阻燃机制,良好的阻燃效果是由于DMMP与EG在气相与凝聚相两相中的协同阻燃作用。

     

  • 图  1  PMMA复合材料的极限氧指数测试(LOI)

    Figure  1.  limiting oxygen index (LOI) of PMMA composite materials

    图  2  PMMA复合材料:(a) HRR;(b) THR; (c) SPR; (d) TSP; (e) COP; (f) CO2P

    Figure  2.  Cone calorimetric analysis of PMMA samples:(a)HRR, (b)THR, (c)SPR, (d) TSP, (e)COP, (f)CO2P

    图  3  PMMA复合材料在垂直燃烧测试中的视频截图

    Figure  3.  Video screenshots of PMMA composites during the vertical combustion test

    图  4  PMMA复合材料的导热率

    Figure  4.  Thermal conductivity of PMMA composite

    图  5  PMMA复合材料的拉伸强度和断裂伸长率

    Figure  5.  The tensile strength、elongation at break of PMMA composites

    图  6  PMMA复合材料的冲击强度

    Figure  6.  The impact strength of PMMA composites

    图  7  PMMA复合材料:(a)储能模量曲线;(b)损耗模量曲线;(d)玻璃化转变温度曲线

    Figure  7.  PMMA composite material: (a)curve of storage with temperature; (b)curve of loss modulus with temperature; (c)curve of tan with temperature

    图  8  PMMA复合材料的:(a)TGA曲线和(b)DTG曲线

    Figure  8.  (a) TGA curves of PMMA composites: (b) DTG curves of PMMA composite

    图  9  PMMA复合材料的维卡软化温度

    Figure  9.  The vicat softening temperature of PMMA

    图  10  锥形量热测试后的残炭数码照片:(a)PMMA;(b) 10%DMMP/PMMA;(c) 5%DMMP-EG/PMMA;(d) 10%EG/PMMA

    Figure  10.  Digital pictures of residues after the cone calorimeter test:(a)PMMA; (b) 10%DMMP/PMMA; (c) 5%DMMP-EG/PMMA; (d) 10%EG/PMMA

    图  11  锥形量热测试后的残炭SEM图片:(a) 5%DMMP-EG/PMMA;(b) 10%EG/PMMA

    Figure  11.  SEM micrographs of char residue after calorimeter:(a) 5%DMMP-EG/PMMA; (b) 10%EG/PMMA

    图  12  锥形量热测试后焦渣的拉曼曲线:(a)5%DMMP-EG/PMMA;(b)10%EG/PMMA

    Figure  12.  Raman curves of char residue after cone calorimeter test: (a) 5%DMMP-EG/PMMA; (b)10%EG/PMMA

    图  13  PMMA复合材料的变温红外测试:(a)纯PMMA;(b) 5%DMMP-EG/PMMA

    Figure  13.  Infrared curves at different temperatures of PMMA composite: (a) PMMA; (b) 5%DMMP-EG/PMMA

    图  14  (a) 纯PMMA的3 D光谱图;(b) 5%DMMP-EG/PMMA的3 D光谱图;(c)最大分解速率下的热解产物光谱曲线;(d)PMMA4在820 cm−1和1020 cm−1处的吸收曲线

    Figure  14.  3 D images of thermal degradation products of PMMA (a) and 5%DMMP-EG/PMMA (b); (c) FTIR spectrum of gaseous pyrolysis products for PMMA and PMMA4 at the maximum evolution rate; (d) changes in absorbance of PMMA4 at 820 cm−1 and 1020 cm−1.

    图  15  EG/DMMP阻燃体系的阻燃机制

    Figure  15.  Flame retardant mechanism of EG/DMMP flame retardant system

    表  1  PMMA中阻燃剂的配方

    Table  1.   The formulation of all PMMA samples

    SamplePMMA10%DMMP/PMMA2%DMMP-EG/PMMA5%DMMP-EG/PMMA8%DMMP-EG/PMMA10%EG/PMMA
    MMA/wt%1009090909090
    DMMP/wt%0108520
    EG/wt%0025810
    Notes: PMMA- Polymethyl methacrylate; DMMP- Dimethyl methylphosphonate; EG- Expandable graphite
    下载: 导出CSV

    表  2  PMMA复合材料的阻燃性能具体数据

    Table  2.   Results of the Cone Calorimeter Test

    PMMA10%DMMP/PMMA5%DMMP-EG/PMMA10%EG/PMMA
    pHRR/(kW·m−2)103911441361561
    THR/(MJ·m−2)110867582
    pSPR/(m2·s−1)0.0360.0750.0100.002
    TSP/m22.665.911.450.22
    pCOPR/(g·s−1)0.00430.05540.00020.0002
    TTI/s20242820
    Av-EHC/(MJ·kg−1)31.823.426.627.8
    FPI/(m2·s·kW−1)0.0190.0210.2060.128
    FGI/(kW·m−2·s−1)9.6211.320.490.77
    Notes: pHRR-Peak value of heat release rate; THR-Total heat release; pSPR- Peak value of Smoke release rate; TSP- Total Smoke release rate; TTI-Time to ignition; Av-EHC-Average effective heat of combustion; FPI-Fire performance Index; FGI-Fire growth Index
    下载: 导出CSV

    表  3  PMMA复合材料的UL-94测试等级

    Table  3.   UL-94 test grade of PMMA composites

    SampleDrippingRating
    PMMANoNR
    10% DMMP/PMMANoNR
    5%DMMP-EG/PMMANoV-0
    10% EG/PMMANoNR
    下载: 导出CSV

    表  4  PMMA复合材料力学测试的具体数据

    Table  4.   Results of PMMA composite material mechanics test


    Impact Strength/
    (kJ·m−2)
    TensileStrength/
    MPa
    Elongationat break/% Hardness/
    HD
    Tg(DMA)/
    PMMA 14.43 51.24 2.71 90 136.3
    10%DMMP/PMMA 15.93 43.04 8.42 80 78.6
    2%DMMP-EG/PMMA 13.75 38.26 2.91 84
    5%DMMP-EG/PMMA 12.52 30.17 0.63 87 136.0
    8%DMMP-EG/PMMA 10.55 24.07 0.27 87
    10%EG/PMMA 9.78 14.48 0.18 88 136.0
    Notes: Tg-Glass transition temperature
    下载: 导出CSV

    表  5  PMMA复合材料的热重数据

    Table  5.   TGA data of the PMMA composites

    T5%/℃Tmax/℃Char Residue/%
    PMMA2723730.5%
    10%DMMP/PMMA2193910.7%
    5%DMMP-EG/PMMA2483826.3%
    10%EG/PMMA1613799.1%
    Notes: T5%-5% mass loss temperature ; Tmax-Maximum mass loss temperature.
    下载: 导出CSV
  • [1] KAUSAR A. Poly(methyl methacrylate) nanocomposite reinforced with graphene, graphene oxide, and graphite[J]. Polymer-Plastics Technology and Materials, 2019, 58: 821-842. doi: 10.1080/25740881.2018.1563112
    [2] HARB SV, TRENTIN A, UVIDA MC, et al. A comparative study on PMMA-TiO2 and PMMA-ZrO2 protective coatings[J]. Progress in Organic Coatings, 2020, 140: 105477. doi: 10.1016/j.porgcoat.2019.105477
    [3] LI X, ZHITOMIRSKY I. Deposition of poly(methyl methacrylate) and composites containing bioceramics and bioglass by dip coating using isopropanol-water co-solvent[J]. Progress in Organic Coatings, 2020, 148: 105883. doi: 10.1016/j.porgcoat.2020.105883
    [4] AGUILERA-CAMACHO LD, HERNANDEZ-NAVARRO C, MORENO KJ, et al. Improvement effects of CaO nanoparticles on tribological and microhardness properties of PMMA coating[J]. Journal of Coatings Technology and Research, 2015, 12(2): 347-55. doi: 10.1007/s11998-014-9639-y
    [5] ALI U, KARIM KJBA, BUANG NA. A review of the properties and applications of poly (methyl methacrylate) (PMMA)[J]. Polymer Reviews, 2015, 55(4): 678-705. doi: 10.1080/15583724.2015.1031377
    [6] MENG D, MA Z, LENG Q, ZHANG Z, et al. A flame-retardant DOPO-MgAl-LDH was prepared and applied in poly (methyl methacrylate) resin[J]. Polymers for Advanced Technologies, 2019, 31(1): 73-85.
    [7] XU L, JIANG J, JIA X, et al. Preparation and Study on the Flame-Retardant Properties of CNTs/PMMA Microspheres[J]. ACS OMEGA, 2022, 7: 1347-1356. doi: 10.1021/acsomega.1c05606
    [8] XIE W, GUO S, LIU Y, et al. Organic-inorganic hybrid strategy based on ternary copolymerization to prepare flame retardant poly(methyl methacrylate) with high performance[J]. Composites Part B, 2020, 203: 108437. doi: 10.1016/j.compositesb.2020.108437
    [9] YANG B, WANG L, GUO Y, et al. Synthesis of a novel phosphate-containing highly transparent PMMA copolymer with enhanced thermal and flame retardant properties[J]. Polymers for Advanced Technologies, 2020, 31(3): 472-481. doi: 10.1002/pat.4784
    [10] JIANG S, CHEN G, HU Y, et al. A New Strategy for Simultaneously Improved Flame Retardancy, Thermal Properties, and Scratch Resistance of Transparent Poly(methyl methacrylate)[J]. Industrial & Engineering Chemistry Research, 2015, 54(17): 4737-4747.
    [11] CHEN S, WU D, XU C, et al. The preparation and mechanism of permanently flame retardancy, antistatic, good toughness and high transparent poly(methyl methacrylate)[J]. Polymers for Advanced Technologies, 2020;1-9.
    [12] LI L, CHEN Y, WU X, et al. Bi. phase flame-retardant effect of dimethyl methylphosphonate and modified ammonium polyphosphate on rigid polyurethane foam[J]. Polymers for Advanced Technologies, 2019: 1-8.
    [13] WANG Z, LI X. Mechanical Properties and Flame Retardancy of Rigid Polyurethane Foams Containing SiO2 Nanospheres/Graphene Oxide Hybrid and Dimethyl Methylphosphonate[J]. Polymer-Plastics Technology and Engineering, 2018, 57(9): 884-892. doi: 10.1080/03602559.2017.1354251
    [14] FLORIAN F, RATHBERGER A. Expandable Graphite for Flame Retardant PA6 Applications[J]. Polymers, 2021, 13(16): 2733. doi: 10.3390/polym13162733
    [15] WANG Y, ZHAO J, MENG X. Effect of expandable graphite on polyester resin-based intumescent flame retardant coating[J]. Progress in Organic Coatings, 2019, 132: 178-183. doi: 10.1016/j.porgcoat.2019.03.050
    [16] BARTLOMIEJ B, BATISTA A, GRZESKOWIAK W. Expandable Graphite as a Fire Retardant for Cellulosic Materials—A Review[J]. Forests, 2020, 11(755): 755.
    [17] VAHABI H, LIN Q, VAGNER C, et al. Investigation of thermal stability and flammability of poly(methyl methacrylate) composites by combination of APP with ZrO2, sepiolite or MMT[J]. Polymer Degradation and Stability, 2016, 124: 60-67. doi: 10.1016/j.polymdegradstab.2015.12.004
    [18] FRIEDERICH B, LAACHACHI A, SONNIER R, et al. Comparison of aluminaand boehmite in (APP/MPP/metal oxide) ternary systems on the thermal and fire behavior of PMMA[J]. Polymers for Advanced Technologies, 2012, 23: 1369-1380. doi: 10.1002/pat.2056
    [19] KIRSTEN L, WILKE A, GREISER S, et al. Halogen-free fire retardant styrene–ethylene–butylene–styrene-based thermoplastic elastomers using synergistic aluminum diethylphosphinate–based combinations[J]. Journal of Fire Sciences, 2015, 33(2): 157-177. doi: 10.1177/0734904114565581
    [20] FENG F, QIAN L. The flame retardant behaviors and synergistic effect of expandable graphite and dimethyl methylphosphonate in rigid polyurethane foams[J]. Polymer Composites, 2014, 35(2): 301-309. doi: 10.1002/pc.22662
    [21] HUANG Y, JIANG S, LIANG P, et al. Thermal-triggered insulating fireproof layers: A novel fire-extinguishing MXene composites coating[J]. Chemical Engineering Journal, 2020, 391: 123621. doi: 10.1016/j.cej.2019.123621
    [22] HOSSEIN V, LOONGUET C, FERRU G, et al. Effect of aminobisphosphonated copolymer on the thermal stability and flammability of poly(methylmethacrylate)[J]. Polymer International, 2012, 61(1): 129-134. doi: 10.1002/pi.3158
    [23] JIANG S, ZHU Y, HUB Y, et al. In situ synthesis of a novel transparent poly (methyl methacrylate) resin with markedly enhanced flame retardancy[J]. Polymers for Advanced Technologies, 2016, 27(2): 266-272. doi: 10.1002/pat.3631
    [24] LIAN Y, GONG K, ZHOU K, et al. Flame-retardant activity of ternary integrated modified boron nitride nanosheets to epoxy resin[J]. Journal of colloid and interface science, 2022, 608: 853-863. doi: 10.1016/j.jcis.2021.10.056
    [25] CHEN Y, XU C, SUN N, et al. Flame-Retardant and Transparent Poly(methyl methacrylate) Composites Based on Phosphorus–Nitrogen Flame Retardants[J]. ACS Applied Polymer Materials, 2023, 5(1): 846-855. doi: 10.1021/acsapm.2c01786
    [26] ZENG W, LI S, CHOW W et al. Review on Chemical Reactions of Burning Poly(methyl methacrylate) PMMA[J]. Journal of Fire Sciences, 2002, 20(5): 401-433. doi: 10.1177/0734904102020005482
    [27] COCHEZ, M, FERRIOL M, WEBER J, et al. Thermal degradation of methyl methacrylate polymers functionalized by phosphorus-containing molecules I. TGA/FT-IR experiments on polymers with the monomeric formula CH2C(CH3)C(O)OCHRP(O)(OC2H5)2 (R&unknown;H, (CH2)4CH3, C6H5Br, C10H7)[J]. Polymer Degradation and Stability, 2000, 7(30): 455-462.
    [28] ZHANG J, KONG Q, WANG D. Simultaneously improving the fire safety and mechanical properties of epoxy resin with Fe-CNTs via large-scale preparation[J]. Journal of Materials Chemistry A, 2018, 6: 6376-6386. doi: 10.1039/C7TA10961J
    [29] 杨建国, 吴承佩. 膨胀石墨的Raman光谱研究[J]. 光散射学报, 2006, 17(4): 341-346.

    YANG J, WU C. Raman Spectra Study on Expanded Graphite[J]. Chinese Journal of lightscattering, 2006, 17(4): 341-346. (in Chinese)
    [30] ZHOU Y, CHU F, QIU S, et al. Construction of graphite oxide modified black phosphorus through covalent linkage: An efficient strategy for smoke toxicity and fire hazard suppression of epoxy resin[J]. Journal of Hazardous Materials, 2020, 399: 123015. doi: 10.1016/j.jhazmat.2020.123015
    [31] XIE W, WANG B, LIU Y, et al. Flame retardancy of a novel high transparent poly(methyl methacrylate) modified with phosphorus-containing compound[J]. Reactive & Functional Polymers, 2020, 153: 104631.
    [32] XIE W, LIU Y, YU M, et al. Ternary structure design based on hydrogen bonding for transparent and flame retardant PMMA with good mechanical properties[J]. Polymers for Advanced Technologies, 2023, 34(2): 549-558.
    [33] YANG Q, YU S, ZHONG H, et al. Gas products generation mechanism during co-pyrolysis of styrene-butadiene rubber and natural rubber[J]. Journal of Hazardous Materials, 2021, 401: 123302. doi: 10.1016/j.jhazmat.2020.123302
    [34] YANG F, ZHAO H, WANG Y, et al. Flame-retardant AlOOH/graphene oxide composite coating with temperature-responsive resistance for efficient early-warning fire sensors[J]. Colloids and Surfaces A, 2022, 648: 129326. doi: 10.1016/j.colsurfa.2022.129326
  • 加载中
计量
  • 文章访问数:  166
  • HTML全文浏览量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-24
  • 修回日期:  2024-03-11
  • 录用日期:  2024-03-18
  • 网络出版日期:  2024-04-20

目录

    /

    返回文章
    返回