Expandable graphite and dimethyl methylphosphonate synergistic flame retardant polymethyl methacrylate
-
摘要: 聚甲基丙烯酸甲酯(PMMA)是一种用途广泛的高分子材料,为了改变其易燃烧的缺点,本文采用原位聚合法制备了一系列含甲基膦酸二甲酯(DMMP)和可膨胀石墨(EG)的聚甲基丙烯酸甲酯复合材料。通过极限氧指数、锥形量热仪和垂直燃烧测试研究了其阻燃性能,结果表明在添加10%复配阻燃剂,且DMMP与EG的比例为1∶1时, 复合材料5%DMMP-EG/PMMA的阻燃效果最好。样品通过UL-94 V-0评级,与未加阻燃剂的PMMA相比,其极限氧指数(LOI)从18%增加到27.4%。热释放速率峰值(pHRR)显著降低87%,总热释放量率(THR)降低33%。动态力学性能测试表明,5%DMMP-EG/PMMA的玻璃化转变温度和储能模量远远高于10%DMMP/PMMA,复配可膨胀石墨可以改善因磷酸酯加入导致的材料变软现象。最后, 通过TG-IR、不同温度下的红外光谱分析和残炭的拉曼光谱分析了复合材料的阻燃机制,良好的阻燃效果是由于DMMP与EG在气相与凝聚相两相中的协同阻燃作用。Abstract: Polymethyl methacrylate (PMMA) is a widely used polymer material. In order to change its flammability, a series of PMMA composites containing dimethyl methylphosphonate (DMMP) and expandable graphite (EG) were prepared by in-situ polymerization. The flame retardant properties of PMMA composites were studied by limiting oxygen index test (LOI), cone calorimeter test (CC) and vertical burning test (UL-94). The results showed that the flame retardant effect of 5%DMMP-EG/PMMA was the best when 10 % compound flame retardant was added and the ratio of DMMP to EG was 1∶1. The sample passed UL-94 V-0 rating, and its LOI value increased from 18 % to 27.4 % compared with PMMA. The peak heat release rate (pHRR) was significantly reduced by 87 %, and the total heat release rate (THR) was reduced by 33%. The dynamic mechanical properties test showed that the glass transition temperature and storage modulus of 5%DMMP-EG/PMMA were much higher than those of 10%DMMP/PMMA, and the composite expandable graphite could improve the softening of the material caused by the addition of phosphate ester. Finally, the flame retardant mechanism of the composites was analyzed by TG-IR, infrared spectroscopy at different temperatures and Raman spectroscopy of carbon residue. The good flame retardant effect was due to the synergistic flame retardant effect of DMMP and EG in the gas phase and condensed phase.
-
图 14 (a) 纯PMMA的3 D光谱图;(b) 5%DMMP-EG/PMMA的3 D光谱图;(c)最大分解速率下的热解产物光谱曲线;(d)PMMA4在820 cm−1和1020 cm−1处的吸收曲线
Figure 14. 3 D images of thermal degradation products of PMMA (a) and 5%DMMP-EG/PMMA (b); (c) FTIR spectrum of gaseous pyrolysis products for PMMA and PMMA4 at the maximum evolution rate; (d) changes in absorbance of PMMA4 at 820 cm−1 and 1020 cm−1.
表 1 PMMA中阻燃剂的配方
Table 1. The formulation of all PMMA samples
Sample PMMA 10%DMMP/PMMA 2%DMMP-EG/PMMA 5%DMMP-EG/PMMA 8%DMMP-EG/PMMA 10%EG/PMMA MMA/wt% 100 90 90 90 90 90 DMMP/wt% 0 10 8 5 2 0 EG/wt% 0 0 2 5 8 10 Notes: PMMA- Polymethyl methacrylate; DMMP- Dimethyl methylphosphonate; EG- Expandable graphite 表 2 PMMA复合材料的阻燃性能具体数据
Table 2. Results of the Cone Calorimeter Test
PMMA 10%DMMP/PMMA 5%DMMP-EG/PMMA 10%EG/PMMA pHRR/(kW·m−2) 1039 1144 136 1561 THR/(MJ·m−2) 110 86 75 82 pSPR/(m2·s−1) 0.036 0.075 0.010 0.002 TSP/m2 2.66 5.91 1.45 0.22 pCOPR/(g·s−1) 0.0043 0.0554 0.0002 0.0002 TTI/s 20 24 28 20 Av-EHC/(MJ·kg−1) 31.8 23.4 26.6 27.8 FPI/(m2·s·kW−1) 0.019 0.021 0.206 0.128 FGI/(kW·m−2·s−1) 9.62 11.32 0.49 0.77 Notes: pHRR-Peak value of heat release rate; THR-Total heat release; pSPR- Peak value of Smoke release rate; TSP- Total Smoke release rate; TTI-Time to ignition; Av-EHC-Average effective heat of combustion; FPI-Fire performance Index; FGI-Fire growth Index 表 3 PMMA复合材料的UL-94测试等级
Table 3. UL-94 test grade of PMMA composites
Sample Dripping Rating PMMA No NR 10% DMMP/PMMA No NR 5%DMMP-EG/PMMA No V-0 10% EG/PMMA No NR 表 4 PMMA复合材料力学测试的具体数据
Table 4. Results of PMMA composite material mechanics test
Impact Strength/
(kJ·m−2)TensileStrength/
MPaElongationat break/% Hardness/
HDTg(DMA)/
℃PMMA 14.43 51.24 2.71 90 136.3 10%DMMP/PMMA 15.93 43.04 8.42 80 78.6 2%DMMP-EG/PMMA 13.75 38.26 2.91 84 5%DMMP-EG/PMMA 12.52 30.17 0.63 87 136.0 8%DMMP-EG/PMMA 10.55 24.07 0.27 87 10%EG/PMMA 9.78 14.48 0.18 88 136.0 Notes: Tg-Glass transition temperature 表 5 PMMA复合材料的热重数据
Table 5. TGA data of the PMMA composites
T5%/℃ Tmax/℃ Char Residue/% PMMA 272 373 0.5% 10%DMMP/PMMA 219 391 0.7% 5%DMMP-EG/PMMA 248 382 6.3% 10%EG/PMMA 161 379 9.1% Notes: T5%-5% mass loss temperature ; Tmax-Maximum mass loss temperature. -
[1] KAUSAR A. Poly(methyl methacrylate) nanocomposite reinforced with graphene, graphene oxide, and graphite[J]. Polymer-Plastics Technology and Materials, 2019, 58: 821-842. doi: 10.1080/25740881.2018.1563112 [2] HARB SV, TRENTIN A, UVIDA MC, et al. A comparative study on PMMA-TiO2 and PMMA-ZrO2 protective coatings[J]. Progress in Organic Coatings, 2020, 140: 105477. doi: 10.1016/j.porgcoat.2019.105477 [3] LI X, ZHITOMIRSKY I. Deposition of poly(methyl methacrylate) and composites containing bioceramics and bioglass by dip coating using isopropanol-water co-solvent[J]. Progress in Organic Coatings, 2020, 148: 105883. doi: 10.1016/j.porgcoat.2020.105883 [4] AGUILERA-CAMACHO LD, HERNANDEZ-NAVARRO C, MORENO KJ, et al. Improvement effects of CaO nanoparticles on tribological and microhardness properties of PMMA coating[J]. Journal of Coatings Technology and Research, 2015, 12(2): 347-55. doi: 10.1007/s11998-014-9639-y [5] ALI U, KARIM KJBA, BUANG NA. A review of the properties and applications of poly (methyl methacrylate) (PMMA)[J]. Polymer Reviews, 2015, 55(4): 678-705. doi: 10.1080/15583724.2015.1031377 [6] MENG D, MA Z, LENG Q, ZHANG Z, et al. A flame-retardant DOPO-MgAl-LDH was prepared and applied in poly (methyl methacrylate) resin[J]. Polymers for Advanced Technologies, 2019, 31(1): 73-85. [7] XU L, JIANG J, JIA X, et al. Preparation and Study on the Flame-Retardant Properties of CNTs/PMMA Microspheres[J]. ACS OMEGA, 2022, 7: 1347-1356. doi: 10.1021/acsomega.1c05606 [8] XIE W, GUO S, LIU Y, et al. Organic-inorganic hybrid strategy based on ternary copolymerization to prepare flame retardant poly(methyl methacrylate) with high performance[J]. Composites Part B, 2020, 203: 108437. doi: 10.1016/j.compositesb.2020.108437 [9] YANG B, WANG L, GUO Y, et al. Synthesis of a novel phosphate-containing highly transparent PMMA copolymer with enhanced thermal and flame retardant properties[J]. Polymers for Advanced Technologies, 2020, 31(3): 472-481. doi: 10.1002/pat.4784 [10] JIANG S, CHEN G, HU Y, et al. A New Strategy for Simultaneously Improved Flame Retardancy, Thermal Properties, and Scratch Resistance of Transparent Poly(methyl methacrylate)[J]. Industrial & Engineering Chemistry Research, 2015, 54(17): 4737-4747. [11] CHEN S, WU D, XU C, et al. The preparation and mechanism of permanently flame retardancy, antistatic, good toughness and high transparent poly(methyl methacrylate)[J]. Polymers for Advanced Technologies, 2020;1-9. [12] LI L, CHEN Y, WU X, et al. Bi. phase flame-retardant effect of dimethyl methylphosphonate and modified ammonium polyphosphate on rigid polyurethane foam[J]. Polymers for Advanced Technologies, 2019: 1-8. [13] WANG Z, LI X. Mechanical Properties and Flame Retardancy of Rigid Polyurethane Foams Containing SiO2 Nanospheres/Graphene Oxide Hybrid and Dimethyl Methylphosphonate[J]. Polymer-Plastics Technology and Engineering, 2018, 57(9): 884-892. doi: 10.1080/03602559.2017.1354251 [14] FLORIAN F, RATHBERGER A. Expandable Graphite for Flame Retardant PA6 Applications[J]. Polymers, 2021, 13(16): 2733. doi: 10.3390/polym13162733 [15] WANG Y, ZHAO J, MENG X. Effect of expandable graphite on polyester resin-based intumescent flame retardant coating[J]. Progress in Organic Coatings, 2019, 132: 178-183. doi: 10.1016/j.porgcoat.2019.03.050 [16] BARTLOMIEJ B, BATISTA A, GRZESKOWIAK W. Expandable Graphite as a Fire Retardant for Cellulosic Materials—A Review[J]. Forests, 2020, 11(755): 755. [17] VAHABI H, LIN Q, VAGNER C, et al. Investigation of thermal stability and flammability of poly(methyl methacrylate) composites by combination of APP with ZrO2, sepiolite or MMT[J]. Polymer Degradation and Stability, 2016, 124: 60-67. doi: 10.1016/j.polymdegradstab.2015.12.004 [18] FRIEDERICH B, LAACHACHI A, SONNIER R, et al. Comparison of aluminaand boehmite in (APP/MPP/metal oxide) ternary systems on the thermal and fire behavior of PMMA[J]. Polymers for Advanced Technologies, 2012, 23: 1369-1380. doi: 10.1002/pat.2056 [19] KIRSTEN L, WILKE A, GREISER S, et al. Halogen-free fire retardant styrene–ethylene–butylene–styrene-based thermoplastic elastomers using synergistic aluminum diethylphosphinate–based combinations[J]. Journal of Fire Sciences, 2015, 33(2): 157-177. doi: 10.1177/0734904114565581 [20] FENG F, QIAN L. The flame retardant behaviors and synergistic effect of expandable graphite and dimethyl methylphosphonate in rigid polyurethane foams[J]. Polymer Composites, 2014, 35(2): 301-309. doi: 10.1002/pc.22662 [21] HUANG Y, JIANG S, LIANG P, et al. Thermal-triggered insulating fireproof layers: A novel fire-extinguishing MXene composites coating[J]. Chemical Engineering Journal, 2020, 391: 123621. doi: 10.1016/j.cej.2019.123621 [22] HOSSEIN V, LOONGUET C, FERRU G, et al. Effect of aminobisphosphonated copolymer on the thermal stability and flammability of poly(methylmethacrylate)[J]. Polymer International, 2012, 61(1): 129-134. doi: 10.1002/pi.3158 [23] JIANG S, ZHU Y, HUB Y, et al. In situ synthesis of a novel transparent poly (methyl methacrylate) resin with markedly enhanced flame retardancy[J]. Polymers for Advanced Technologies, 2016, 27(2): 266-272. doi: 10.1002/pat.3631 [24] LIAN Y, GONG K, ZHOU K, et al. Flame-retardant activity of ternary integrated modified boron nitride nanosheets to epoxy resin[J]. Journal of colloid and interface science, 2022, 608: 853-863. doi: 10.1016/j.jcis.2021.10.056 [25] CHEN Y, XU C, SUN N, et al. Flame-Retardant and Transparent Poly(methyl methacrylate) Composites Based on Phosphorus–Nitrogen Flame Retardants[J]. ACS Applied Polymer Materials, 2023, 5(1): 846-855. doi: 10.1021/acsapm.2c01786 [26] ZENG W, LI S, CHOW W et al. Review on Chemical Reactions of Burning Poly(methyl methacrylate) PMMA[J]. Journal of Fire Sciences, 2002, 20(5): 401-433. doi: 10.1177/0734904102020005482 [27] COCHEZ, M, FERRIOL M, WEBER J, et al. Thermal degradation of methyl methacrylate polymers functionalized by phosphorus-containing molecules I. TGA/FT-IR experiments on polymers with the monomeric formula CH2C(CH3)C(O)OCHRP(O)(OC2H5)2 (R&unknown;H, (CH2)4CH3, C6H5Br, C10H7)[J]. Polymer Degradation and Stability, 2000, 7(30): 455-462. [28] ZHANG J, KONG Q, WANG D. Simultaneously improving the fire safety and mechanical properties of epoxy resin with Fe-CNTs via large-scale preparation[J]. Journal of Materials Chemistry A, 2018, 6: 6376-6386. doi: 10.1039/C7TA10961J [29] 杨建国, 吴承佩. 膨胀石墨的Raman光谱研究[J]. 光散射学报, 2006, 17(4): 341-346.YANG J, WU C. Raman Spectra Study on Expanded Graphite[J]. Chinese Journal of lightscattering, 2006, 17(4): 341-346. (in Chinese) [30] ZHOU Y, CHU F, QIU S, et al. Construction of graphite oxide modified black phosphorus through covalent linkage: An efficient strategy for smoke toxicity and fire hazard suppression of epoxy resin[J]. Journal of Hazardous Materials, 2020, 399: 123015. doi: 10.1016/j.jhazmat.2020.123015 [31] XIE W, WANG B, LIU Y, et al. Flame retardancy of a novel high transparent poly(methyl methacrylate) modified with phosphorus-containing compound[J]. Reactive & Functional Polymers, 2020, 153: 104631. [32] XIE W, LIU Y, YU M, et al. Ternary structure design based on hydrogen bonding for transparent and flame retardant PMMA with good mechanical properties[J]. Polymers for Advanced Technologies, 2023, 34(2): 549-558. [33] YANG Q, YU S, ZHONG H, et al. Gas products generation mechanism during co-pyrolysis of styrene-butadiene rubber and natural rubber[J]. Journal of Hazardous Materials, 2021, 401: 123302. doi: 10.1016/j.jhazmat.2020.123302 [34] YANG F, ZHAO H, WANG Y, et al. Flame-retardant AlOOH/graphene oxide composite coating with temperature-responsive resistance for efficient early-warning fire sensors[J]. Colloids and Surfaces A, 2022, 648: 129326. doi: 10.1016/j.colsurfa.2022.129326
计量
- 文章访问数: 166
- HTML全文浏览量: 92
- 被引次数: 0