留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

撒砂层尼龙-氧化铝混杂纤维质量比对硅溶胶型壳性能的影响

陈义斯 芦刚 廖倚 毛蒲 陈晓 黄嘉俊 严青松

陈义斯, 芦刚, 廖倚, 等. 撒砂层尼龙-氧化铝混杂纤维质量比对硅溶胶型壳性能的影响[J]. 复合材料学报, 2023, 40(6): 3449-3458. doi: 10.13801/j.cnki.fhclxb.20220728.001
引用本文: 陈义斯, 芦刚, 廖倚, 等. 撒砂层尼龙-氧化铝混杂纤维质量比对硅溶胶型壳性能的影响[J]. 复合材料学报, 2023, 40(6): 3449-3458. doi: 10.13801/j.cnki.fhclxb.20220728.001
CHEN Yisi, LU Gang, LIAO Yi, et al. Effects of stuccoing layer nylon-alumina hybrid fibers mass ratios on the properties for silica sol ceramic shell[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3449-3458. doi: 10.13801/j.cnki.fhclxb.20220728.001
Citation: CHEN Yisi, LU Gang, LIAO Yi, et al. Effects of stuccoing layer nylon-alumina hybrid fibers mass ratios on the properties for silica sol ceramic shell[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3449-3458. doi: 10.13801/j.cnki.fhclxb.20220728.001

撒砂层尼龙-氧化铝混杂纤维质量比对硅溶胶型壳性能的影响

doi: 10.13801/j.cnki.fhclxb.20220728.001
基金项目: 国家自然科学基金(51861027);江西省研究生创新专项资金项目(YC2021-S672);南昌航空大学博士启动基金项目(EA202203058 );轻合金加工科学与技术国防重点学科实验室开放基金(EG202103418)Natural Science Foundation of China (51861027); Jiangxi Province Graduate Innovation Special Fund Project (YC2021-S672); The Scientifical Research Foundation for Doctors of Nanchang Hangkong University (EA202103180); The National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology (EG202103418)
详细信息
    通讯作者:

    芦刚,博士,副教授,硕士生导师,研究方向为液态金属精密成形理论及工艺 E-mail: aimulalg@163.com

  • 中图分类号: V25;TG242;TB332

Effects of stuccoing layer nylon-alumina hybrid fibers mass ratios on the properties for silica sol ceramic shell

  • 摘要: 为优化高温合金精密铸造陶瓷型壳性能,采用“溶剂法”在刚玉砂中均匀掺入0.75wt%混杂纤维,制备不同质量比的短切尼龙纤维(Nsf)和氧化铝纤维(Asf)改性硅溶胶型壳。基于SEM观察型壳断口组织形貌,分析纤维分布及裂纹生长特征,揭示纤维和基体烧结演变及强化机制。结果表明,撒砂层引入纤维进一步提升了纤维在型壳内体积占比,型壳性能显著改善。柔性Nsf缠绕于刚玉砂粒表面,通过纤维拔出摩擦耗散载荷能量,同时Nsf烧失后形成原位孔隙增加透气性,故Nsf∶Asf为4∶1时型壳最佳湿强度、透气性、开气孔率分别为5.08 MPa、4.4、20.82%。此外,煅烧型壳基体易因脱水干燥萌生微裂纹,但裂纹扩展至Asf表面时发生分叉、偏转、增殖,证实立体互锁Asf网络结构减少连续裂纹产生,并抑制陶瓷颗粒剥离的沿晶断裂倾向。因此,Asf有效补偿Nsf烧失引起的强度损失,Nsf∶Asf为2∶3的样品烧结强度高达10.51 MPa,高温自重变形率仅0.82%。

     

  • 图  1  不同质量比短切尼龙纤维(Nsf)-氧化铝纤维(Asf)混杂纤维刚玉砂实物图

    Figure  1.  Real images of corundum sands with hort nylon fiber (Nsf)- short alumina fiber (Asf) hybrid fibers in different fiber mass ratios

    图  2  溶剂法获得Nsf-Asf混杂纤维刚玉砂并制备改性硅溶胶型壳示意图

    Figure  2.  Preparation details of solvent method for Nsf-Asf hybrid fibers corundum sands and the modified silica sol ceramic shell

    HPMC—Hydroxypropyl methyl cellulose

    图  3  撒砂层Nsf-Asf混杂纤维改性硅溶胶型壳烧成温度制度

    Figure  3.  Sintering temperature system of stuccoing layer Nsf-Asf hybrid fibers modified silica sol ceramic shell

    图  4  不同质量比撒砂层Nsf-Asf混杂纤维改性型壳生坯断口SEM图像:(a) 4∶1;(b) 3∶2;(c) 2∶3;(d) 1∶4

    Figure  4.  SEM images of green body for stuccoing layer Nsf-Asf hybrid fibers modified silica sol ceramic shell with different fiber mass ratios: (a) 4∶1; (b) 3∶2; (c) 2∶3; (d) 1∶4

    图  5  不同质量比撒砂层Nsf-Asf混杂纤维改性型壳煅烧样品断口SEM图像:(a) 4∶1;(b) 3∶2;(c) 2∶3;(d) 1∶4

    Figure  5.  SEM images of sintering body for stuccoing layer Nsf-Asf hybrid fibers modified ceramic shell with different fiber mass ratios: (a) 4∶1; (b) 3∶2; (c) 2∶3; (d) 1∶4

    d—Distance

    图  6  撒砂层Nsf-Asf混杂纤维质量比对型壳透气性及开气孔率的影响

    Figure  6.  Effects of fiber mass ratios on the permeability and open porosity for stuccoing layer Nsf-Asf hybrid fibers modified ceramic shell

    图  7  撒砂层Nsf-Asf混杂纤维质量比对型壳高温自重变形率的影响

    Figure  7.  Effects of fiber mass ratios on the high temperature self-loaded deflection rate for stuccoing layer Nsf-Asf hybrid fibers modified ceramic shell

    图  8  撒砂层Nsf-Asf混杂纤维质量比对型壳湿强度及烧结强度的影响

    Figure  8.  Effects of fiber mass ratios on the green and sintering strength for stuccoing layer Nsf-Asf​​​​​​​ hybrid fibers modified ceramic shell

    图  9  浆料层、撒砂层纤维改性及典型硅溶胶型壳湿强度及烧结强度性能对比图

    Figure  9.  Comparison charts of green and sintering strength between stuccoing layer fiber modified silica sol ceramic shell in the current study and typical shell as well as slurry layer fiber modified shell

    图  10  不同质量比撒砂层Nsf-Asf混杂纤维改性型壳生坯三点抗弯断裂实物图:(a) 4∶1;(b) 3∶2;(c) 1∶1;(d) 2∶3;(e) 1∶4

    Figure  10.  Real fracture images of green body for stuccoing layer Nsf-Asf hybrid fibers modified ceramic shell with different fiber mass ratios after three-point bending test: (a) 4∶1; (b) 3∶2; (c) 1∶1; (d) 2∶3; (e) 1∶4

    图  11  含典型断裂特征的撒砂层Nsf-Asf混杂纤维改性型壳煅烧样品高倍SEM图像

    Figure  11.  High magnification SEM images of sintering body for stuccoing layer Nsf-Asf hybrid fibers modified ceramic shell with type fracture characteristics

    表  1  混杂纤维刚玉砂制备参数

    Table  1.   Preparation details of hybrid fibers modified corundum sands

    Stuccoing layersCorundum size/μmMass ratios (Nsf∶Asf)Hybrid fiber contentString time/h
    Primary layer1804∶1, 3∶2, 1∶1, 2∶3, 1∶40.75wt% of sands 6
    Translation layer300 9
    Back layer70012
    下载: 导出CSV

    表  2  混杂纤维改性硅溶胶型壳浆料制备参数

    Table  2.   Preparation details of slurry for modified silica sol ceramic shell

    Smearing layersFiller/μmBinderFiller∶binder/
    (g·mL−1)
    Fiber typeHybrid fiber contentAdditive
    Primary layerZirconium (45)Silica sol3.03∶1None fiberNone fiberJFC wetting agent (0.2wt%-0.3wt%) and antifoaming
    agent (0.3wt%-0.5wt%)
    Translation layerCorundum (50)1.5∶14 mm Nsf and
    Asf at a mass
    ratio of 3∶2
    0.6wt% of
    fillers
    Back layer
    Seal layer2.26∶1
    Note: JFC—fatty alcohol-polyoxyethylene ether.
    下载: 导出CSV
  • [1] KANYO J E, SCHAFF NER S, UWANYUZE R S, et al. An overview of ceramic molds for investment casting of nickel superalloys[J]. Journal of the European Ceramic Society,2020,40(15):4955-4973. doi: 10.1016/j.jeurceramsoc.2020.07.013
    [2] DEL VECCHIO C, FENU G, PELLEGRINO F A, et al. Support vector representation machine for superalloy investment casting optimization[J]. Applied Mathematical Modelling,2019,72:324-336.
    [3] LU G, CHEN Y, YAN Q, et al. Carbon-nylon hybrid fibers modified silica sol shell with enhanced flexural strength and heat transfer for investment casting[J]. Journal of the European Ceramic Society,2022,42(8):3624-3633. doi: 10.1016/j.jeurceramsoc.2022.03.010
    [4] PATTNAIK S, KARUNAKAR D B, JHA P K. Developments in investment casting process—A review[J]. Journal of Materials Processing Technology,2012,212(11):2332-2348. doi: 10.1016/j.jmatprotec.2012.06.003
    [5] 谭科杰, 张炫, 李文, 等. 两种高岭土的相组成及其对型壳抗弯强度的影响[J]. 铸造, 2016, 65(3):267-270. doi: 10.3969/j.issn.1001-4977.2016.03.013

    TAN Kejie, ZHANG Xuan, LI Wen, et al. Phase composition of two kinds of kaolin and their influence on the flexural strength of the shell[J]. Fundry,2016,65(3):267-270(in Chinese). doi: 10.3969/j.issn.1001-4977.2016.03.013
    [6] 朱丽娟, 张玉海, 李润华, 等. 粉料粒度优化级配降低精铸件表面粗糙度的机制及应用[J]. 铸造, 1996(5):6-9.

    ZHU Lijuan, ZHANG Yuhai, LI Runhua, et al. Mechanism and application on optimization match of powder particle reducing the roughness of casting surface in precision casting[J]. Fundry,1996(5):6-9(in Chinese).
    [7] VENKAT Y, CHOUDARY K R, DAS D K, et al. Ceramic shell moulds with zircon filler and colloidal silica binder for investment casting of shrouded low-pressure turbine blades[J]. Ceramics International,2020,46(17):26572-26580. doi: 10.1016/j.ceramint.2020.07.125
    [8] 赵泽宇, 吕凯, 刘向东, 等. 焙烧温度及保温时间对硅酸铝纤维复合硅溶胶型壳强度的影响[J]. 铸造技术, 2016, 37(6):1176-1178.

    ZHAO Zeyu, LV Kai, LIU Xiangdong, et al. Effects of fired temperature and heat preservation time on fired strength of fiber reinforced shell for investment casting[J]. Foundry Technology,2016,37(6):1176-1178(in Chinese).
    [9] 郭振, 赵玉涛, 马德新, 等. Y2O3和Al-Si-Mg系矿化剂复合改性陶瓷型壳的高温抗变形性研究[J]. 材料工程, 2018, 46(11):96-101. doi: 10.11868/j.issn.1001-4381.2017.001085

    GUO Zheng, ZHAO Yutao, MA Dexing, et al. High tempera-ture anti-deformability of composite modified ceramic shell with Y2O3 and Al-Si-Mg series mineralizer[J]. Jour-nal of Materials Engineering,2018,46(11):96-101(in Chinese). doi: 10.11868/j.issn.1001-4381.2017.001085
    [10] JONES S, YUAN C, LEWIS K. Organic fibre modified ceramic shell moulding for investment casting[J]. Materials Science and Technology,2013,18(12):1565-1573.
    [11] YUAN C, JONES S. Investigation of fibre modified ceramic moulds for investment casting[J]. Journal of the European Ceramic Society,2003,23:399-407. doi: 10.1016/S0955-2219(02)00153-X
    [12] PATTNAIK S. An investigation on enhancing ceramic shell properties using naturally available additives[J]. The International Journal of Advanced Manufacturing Technology,2017,91(9-12):3061-3078. doi: 10.1007/s00170-016-9975-4
    [13] LV K, LIU X D, DU Z X, et al. Bending strength and fracture surface topography of natural fiber-reinforced shell for investment casting process[J]. China Foundry,2016,13(3):211-216. doi: 10.1007/s41230-016-5100-4
    [14] HUANG P, LU G, YAN Q, et al. Effect of ceramic and nylon fiber content on composite silica sol slurry properties and bending strength of investment casting shell[J]. Materials (Basel), 2019, 12(17): 2788-2797.
    [15] 吕凯, 刘向东, 王浩, 等. 玻璃纤维增强硅溶胶型壳的强度及高温自重变形[J]. 特种铸造及有色合金, 2014, 34(9):958-962.

    LV Kai, LIU Xiangdong, WANG Hao, et al. Sterngth and high-temperature self-loaded deformation of glass fiber-reinforced shell for investment casting[J]. Special Casting and Nonferrous Alloy,2014,34(9):958-962(in Chinese).
    [16] LU K, LIU X, DU Z, et al. Properties of hybrid fibre reinforced shell for investment casting[J]. Ceramics International,2016,42(14):15397-15404. doi: 10.1016/j.ceramint.2016.06.188
    [17] 吕凯, 刘向东, 李艳芬, 等. 纤维增强熔模铸造复合型壳的性能及断口形貌[J]. 北京航空航天大学学报, 2014, 40(10):1361-1365. doi: 10.13700/j.bh.1001-5965.2014.0171

    LV Kai, LIU Xiangdong, LI Yanfang, et al. Properties and fracture surface morphology of fiber-reinforced shell for investment casting[J]. Journal of Bejing University of Aeronntics and Astronatics,2014,40(10):1361-1365(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0171
    [18] 芦刚, 毛蒲, 严青松, 等. 复合纤维含量对精铸硅溶胶型壳强度及透气性的影响[J]. 中国有色金属学报, 2015, 25(11):3164-3170.

    LU Gang, MAO Pu, YAN Qingsong, et al. Effect of compo-site fiber content on strength and breathability of silica sol shell for investment casting[J]. The Chinese Journal of Nonferrous Metals,2015,25(11):3164-3170(in Chinese).
    [19] LIN S D, LI L. Surface modification on dispersion and enhancement of PVA fibers in fiber-reinforced cementitious composites[J]. Science and Engineering of Composite Materials,2017,24(6):901-907. doi: 10.1515/secm-2014-0310
    [20] 芦刚, 毛蒲, 严青松, 等. 超声振荡和羟丙基甲基纤维素对短切纤维在精铸硅溶胶浆料中分散性能的影响[J]. 材料工程, 2016, 44(1):71-76. doi: 10.11868/j.issn.1001-4381.2016.01.011

    LU Gang, MAO Pu, YAN Qingsong, et al. Effect of ultrasonic vibration and hydrixypropyl methyl cellulose on deispersion of short fiber in silica sol slurry fot investment casting[J]. Journal of Materials Engineering,2016,44(1):71-76(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.01.011
    [21] LU K, DUAN Z, LIU X, et al. Effect of dispersant on fiber-reinforced shell for investment casting[J]. International Jour-nal of Metalcasting,2020,14(4):1005-1012. doi: 10.1007/s40962-020-00409-2
    [22] LV K, DUAN Z, LIU X, et al. Effects of fibre length and mixing routes on fibre reinforced shell for investment casting[J]. Ceramics International,2019,45(6):6925-6930. doi: 10.1016/j.ceramint.2018.12.189
    [23] WANG X, ZHOU Y, ZHOU L, et al. Microstructure and properties evolution of silicon-based ceramic cores fabricated by 3 D printing with stair-stepping effect control[J]. Jour-nal of the European Ceramic Society,2021,41(8):4650-4657. doi: 10.1016/j.jeurceramsoc.2021.03.036
    [24] 刘洋, 梁军. 陶瓷材料高温蠕变行为研究[J]. 哈尔滨理工大学学报, 2012, 17(2):105-109. doi: 10.3969/j.issn.1007-2683.2012.02.024

    LIU Yang, LIANG Jun. Investigation on high temperature creep behavior of ceramics[J]. Journal of Harbin University of Science and Technology,2012,17(2):105-109(in Chinese). doi: 10.3969/j.issn.1007-2683.2012.02.024
    [25] JONES S. Improved sol based ceramic moulds for use in investment casting[D]. Birmingham: University of Birmingham, 1993.
    [26] WERESZCZAK A A, BREDER K, FERBER M K, et al. Dimensional changes and creep of silica core ceramics used in investment casting of superalloys[J]. Journal of Materials Science,2002(37):4235-4245.
    [27] 陈义斯, 芦刚, 严青松, 等. 气氛煅烧短切碳纤维增强硅基陶瓷型芯的致密化行为[J]. 复合材料学报, 2022, 39(5):2412-2420.

    CHEN Yisi, LU Gang, YAN Qingsong, et al. Densification behavior in short carbon fiber reinforced silica-based ceramic cores via atmosphere sintering[J]. Acta Materiae Compositae Sinica,2022,39(5):2412-2420(in Chinese).
    [28] YUAN C, JONES S, BLACKBURN S. The influence of autoclave steam on polymer and organic fibre modified ceramic shells[J]. Journal of the European Ceramic Society,2005,25(7):1081-1087. doi: 10.1016/j.jeurceramsoc.2004.04.011
    [29] 芦刚, 纪超众, 严青松, 等. 陶瓷纤维长度对复合精铸型壳抗弯强度与透气性的影响及增强行为[J]. 复合材料学报, 2017, 34(4):637-644.

    LU Gang, JI Chaozhong, YAN Qingsong, et al. Effects and enhanced behavior of cermiac fiber length on bending strength and breathability of composite shell for investment casting[J]. Acta Materiae Compositae Sinica,2017,34(4):637-644(in Chinese).
    [30] 吕凯, 刘向东, 王浩, 等. 短切硅酸铝纤维增强硅溶胶型壳的抗弯强度及高温自重变形[J]. 材料工程, 2015, 43(7):56-61. doi: 10.11868/j.issn.1001-4381.2015.07.010

    LV Kai, LIU Xiangdong, WANG Hao, et al. Bending strength and high-temperature self-loaded deformation of short aluminum silicate fiber-reinforced silicon sol shell[J]. Journal of Materials Engineering,2015,43(7):56-61(in Chinese). doi: 10.11868/j.issn.1001-4381.2015.07.010
    [31] 芦刚, 郭振华, 严青松, 等. 复合纤维配比对精铸硅溶胶型壳性能的影响[J]. 复合材料学报, 2018, 35(6):1535-1541. doi: 10.13801/j.cnki.fhclxb.20170904.002

    LU Gang, GUO Zhenghua, YAN Qingsong, et al. Effects of composite fiber ration on the propertoes of silica sol shell for investment casting[J]. Acta Materiae Compositae Sinica,2018,35(6):1535-1541(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170904.002
    [32] PATTNAIK S, SUTAR M K. Investigation on the influence of polyethylene wax powder on the characteristics of ceramic shells used for investment casting[J]. Silicon, 2021, 14(11): 6089-6096.
    [33] O’SULLIVAN N, MOONEY J, TANNER D. Enhancing permeability and porosity of ceramic shells for investment casting through pre-wetting[J]. Journal of the European Ceramic Society,2021,41(16):411-422. doi: 10.1016/j.jeurceramsoc.2021.09.022
    [34] 胡蓉. 聚丙烯纤维的加入量对精铸型壳性能的影响[J]. 当代化工研究, 2021(19):27-28. doi: 10.3969/j.issn.1672-8114.2021.19.012

    HU Rong. Effect of polypropylene fiber addition on properties of precision casting shell[J]. Modern Chemical Research,2021(19):27-28(in Chinese). doi: 10.3969/j.issn.1672-8114.2021.19.012
    [35] LI Y, LIU X, LU K, et al. Exploration on preparation process of high-strength fiber-reinforced shell for investment casting[J]. International Journal of Metalcasting,2020,15(2):692-699.
    [36] 芦刚, 宋方睿, 严青松, 等. 尼龙66纤维混杂刚玉砂对复合纤维型壳性能的影响[J]. 复合材料学报, 2020, 37(4):927-934.

    LU Gang, SONG Fangrui, YAN Qingsong, et al. Effects of polyamide fibers added to corundum sands on properties of composite shell[J]. Acta Materiae Compositae Sinica,2020,37(4):927-934(in Chinese).
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  683
  • HTML全文浏览量:  275
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 修回日期:  2022-06-23
  • 录用日期:  2022-07-11
  • 网络出版日期:  2022-07-28
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回