留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁铁矿骨料混凝土的微波除冰特性及耐久性

王志航 白二雷 严平 黄河 刘俊良 王谕贤

王志航, 白二雷, 严平, 等. 磁铁矿骨料混凝土的微波除冰特性及耐久性[J]. 复合材料学报, 2023, 40(7): 4095-4106. doi: 10.13801/j.cnki.fhclxb.20220915.008
引用本文: 王志航, 白二雷, 严平, 等. 磁铁矿骨料混凝土的微波除冰特性及耐久性[J]. 复合材料学报, 2023, 40(7): 4095-4106. doi: 10.13801/j.cnki.fhclxb.20220915.008
WANG Zhihang, BAI Erlei, YAN Ping, et al. Microwave deicing characteristics and durability of magnetite aggregate concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4095-4106. doi: 10.13801/j.cnki.fhclxb.20220915.008
Citation: WANG Zhihang, BAI Erlei, YAN Ping, et al. Microwave deicing characteristics and durability of magnetite aggregate concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4095-4106. doi: 10.13801/j.cnki.fhclxb.20220915.008

磁铁矿骨料混凝土的微波除冰特性及耐久性

doi: 10.13801/j.cnki.fhclxb.20220915.008
基金项目: 国家自然科学基金(51908548);国家人民防空办公室立项课题(RF20 SC01 J-S0);陕西省高校科协青年人才托举计划项目(20200415)
详细信息
    通讯作者:

    白二雷,博士,副教授,博士生导师,研究方向为防护工程 E-mail: bwxkgy@163.com

  • 中图分类号: TU528;TB333

Microwave deicing characteristics and durability of magnetite aggregate concrete

Funds: National Natural Science Foundation of China (51908548); National Civil Air Defense Office Project of China (RF20 SC01 J-S0); Shaanxi University Association for Science and Technology Young Talent Support Program Project (20200415)
  • 摘要: 为了提高水泥混凝土微波除冰效率的同时不降低其使用寿命,以磁铁矿碎石为微波吸收骨料,制备了6种不同磁铁矿骨料掺量的混凝土,研究了磁铁矿骨料对混凝土微波除冰效率及耐久性的影响。结果表明:磁铁矿骨料通过提高混凝土对微波的介电损耗和磁损耗进而增强其微波除冰特性。随着磁铁矿骨料掺量的增大,混凝土的复介电常数和复磁导率不断增大,介电损耗和磁损耗不断增强,混凝土试件表面达到0℃所需时间不断减小,温升速率不断增大,除冰效果逐渐增强。磁铁矿骨料通过提高混凝土的密实度进而增强其耐磨性和抗压强度,通过提高混凝土抵抗裂缝开展的能力进而增强其抗冻性。随着磁铁矿骨料掺量的增大,混凝土的磨耗质量和单位面积磨损量不断减小,冻融循环后混凝土的质量损失率和抗压强度损失率不断减小,相对动弹性模量不断增大。磁铁矿骨料混凝土兼具良好的微波除冰特性及耐久性。

     

  • 图  1  磁铁矿碎石

    Figure  1.  Magnetite gravel

    图  2  磁铁矿骨料混凝土试件

    Figure  2.  Magnetite aggregate concrete specimens

    图  3  开放式微波发射装置

    Figure  3.  Open microwave transmitter

    图  4  不同微波源高度下20%MA/C试件表面的时间-温度曲线

    Figure  4.  Time-temperature curves of 20%MA/C specimen surface at different microwave source heights

    图  5  不同微波源高度下20%MA/C试件表面的温升速率

    Figure  5.  Surface temperature rise rates of 20%MA/C specimen at different microwave source heights

    图  6  不同冰层厚度下0%MA/C试件表面达到0℃所需时间和温升速率

    Figure  6.  Time for the surface of 0%MA/C specimen to reach 0℃ and surface temperature rise rates under different ice thicknesses

    图  7  不同初始温度下0%MA/C试件表面达到0℃所需时间和温升速率

    Figure  7.  Time for the surface of 0%MA/C specimen to reach 0℃ and surface temperature rise rates at different initial temperatures

    图  8  电磁参数测试系统

    Figure  8.  Electromagnetic parameter test system

    图  9  混凝土耐磨试验机

    Figure  9.  Concrete abrasion testing machine

    图  10  全自动冻融循环试验箱

    Figure  10.  Automatic freeze-thaw cycle test chamber

    图  11  动弹性模量测定仪

    Figure  11.  Dynamic elastic modulus tester

    图  12  磁铁矿骨料混凝土试件表面达到0℃所需时间和温升速率

    Figure  12.  Time required for the surface of magnetite aggregate concrete specimen to reach 0℃ and surface temperature rise rate

    图  13  0%MA/C试件的除冰效果

    Figure  13.  Deicing effect of 0%MA/C specimen

    图  14  20%MA/C试件的除冰效果

    Figure  14.  Deicing effect of 20%MA/C specimen

    图  15  60%MA/C试件的除冰效果

    Figure  15.  Deicing effect of 60%MA/C specimen

    图  16  100%MA/C试件的除冰效果

    Figure  16.  Deicing effect of 100%MA/C specimen

    图  17  磁铁矿骨料混凝土的复介电常数ε

    Figure  17.  Complex dielectric constant ε of magnetite aggregate concrete

    图  18  磁铁矿骨料混凝土的复磁导率µ

    Figure  18.  Complex magnetic permeability µ of magnetite aggregate concrete

    图  19  磁铁矿骨料混凝土的介电损耗tanδε和磁损耗tanδμ

    Figure  19.  Dielectric loss tanδε and magnetic loss tanδμ of magnetite aggregate concrete

    图  20  磁铁矿骨料混凝土的磨耗质量

    Figure  20.  Abrasion mass of magnetite aggregate concrete

    图  21  磁铁矿骨料混凝土的单位面积磨损量

    Figure  21.  Abrasion loss per unit area of magnetite aggregate concrete

    图  22  磁铁矿骨料混凝土的相对动弹性模量

    Figure  22.  Relative dynamic elastic modulus of magnetite aggregate concrete

    图  24  磁铁矿骨料混凝土的抗压强度和抗压强度损失率

    Figure  24.  Compressive strength and loss rate of compressive strength of magnetite aggregate concrete

    图  23  磁铁矿骨料混凝土的质量损失率

    Figure  23.  Mass loss rate of magnetite aggregate concrete

    图  25  冻融循环前磁铁矿骨料混凝土的微观形貌

    Figure  25.  Microstructure of magnetite aggregate concrete before freeze-thaw cycles

    图  26  冻融循环后磁铁矿骨料混凝土的微观形貌

    Figure  26.  Microstructure of magnetite aggregate concrete after freeze-thaw cycles

    表  1  1 m3磁铁矿骨料混凝土的配合比

    Table  1.   Mix ratio of 1 m3 concrete with magnetite aggregate kg

    Specimen numberCementWaterLimestone gravelMagnetite gravelSandWater reducer
    0%MA/C 320 134 1445 0 566 3.2
    20%MA/C 1156 356
    40%MA/C 867 712
    60%MA/C 578 1068
    80%MA/C 289 1424
    100%MA/C 0 1780
    Notes: MA—Magnetite aggregate; C—Concrete; Numbers in specimen number—Volume content of MA.
    下载: 导出CSV
  • [1] 胡朋, 潘晓东. 不同状态下路面摩擦系数现场试验研究[J]. 公路, 2011(2):20-24.

    HU Peng, PAN Xiaodong. Field test study on friction coefficient of pavement under different conditions[J]. Highway,2011(2):20-24(in Chinese).
    [2] 康超鹏. 微波对道面水泥混凝土除冰效率及耐久性的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    KANG Chaopeng. Effect of microwave on de-icing efficiency and durability of surface cement concrete[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [3] GULISANO F, GALLEGO J, TRIGOS L, et al. Dielectric characterisation of asphalt mortars for microwave heating applications[J]. Construction and Building Materials,2021,308:125048. doi: 10.1016/j.conbuildmat.2021.125048
    [4] LIU J L, XU J Y, HUANG H, et al. Microwave deicing efficiency and dielectric property of road concrete modified using different wave absorbing material[J]. Cold Regions Science and Technology,2020,174:103064. doi: 10.1016/j.coldregions.2020.103064
    [5] 陆松, 孔令扬, 杜鹃. 道路微波除冰中微波辐射端口高度仿真与试验研究[J]. 科学技术与工程, 2021, 21(29):12695-12703. doi: 10.3969/j.issn.1671-1815.2021.29.045

    LU Song, KONG Lingyang, DU Juan. Simulation and experimental study on microwave radiation port height in road microwave de-icing[J]. Science Technology and Engineering,2021,21(29):12695-12703(in Chinese). doi: 10.3969/j.issn.1671-1815.2021.29.045
    [6] 陆松, 许金余, 白二雷, 等. 机场混凝土道面微波除冰仿真与试验研究[J]. 中南大学学报(自然科学版), 2017, 48(12):3366-3372.

    LU Song, XU Jinyu, BAI Erlei, et al. Simulation and experimental study on microwave de-icing of concrete decks at airport[J]. Journal of Central South University (Natural Science Edition),2017,48(12):3366-3372(in Chinese).
    [7] WANG C, YANG B, TAN G F, et al. Numerical analysis on thermal characteristics and ice melting efficiency for microwave deicing vehicle[J]. Modern Physics Letters B,2016,30(13):1650203. doi: 10.1142/S0217984916502031
    [8] LIU Z M, YANG X, WANG Y D, et al. Engineering properties and microwave heating induced ice-melting performance of asphalt mixture with activated carbon powder filler[J]. Construction and Building Materials,2019,197:50-62. doi: 10.1016/j.conbuildmat.2018.11.094
    [9] LIU J L, XU J Y, LU S, et al. Investigation on dielectric properties and microwave heating efficiencies of various concrete pavements during microwave deicing[J]. Construction and Building Materials,2019,225:55-66. doi: 10.1016/j.conbuildmat.2019.07.249
    [10] LU S, BAI E L, XU J Y, et al. Research on electromagnetic properties and microwave deicing performance of carbon fiber modified concrete[J]. Construction and Building Materials,2021,286:122868. doi: 10.1016/j.conbuildmat.2021.122868
    [11] 张振华, 孙明清, 刘成国, 等. 橡胶粉和钢渣粉对混凝土介电性能和微波除冰效率的影响研究[J]. 武汉理工大学学报, 2020, 42(11):8-14, 69.

    ZHANG Zhenhua, SUN Mingqing, LIU Chengguo, et al. Effects of rubber powder and steel slag powder on dielectric properties and microwave de-icing efficiency of concrete[J]. Journal of Wuhan University of Technology,2020,42(11):8-14, 69(in Chinese).
    [12] WANG Z Y, HE Z Y, WANG Z, et al. Microwave deicing of functional pavement using sintered magnetically separated fly ash as microwave-heating aggregate[J]. Journal of Materials in Civil Engineering,2019,31(7):04019127. doi: 10.1061/(ASCE)MT.1943-5533.0002771
    [13] WANG Z Y, HE Z Y, WANG Z, et al. Utilization of magnetite as microwave absorber to prepare microwave-heatable aggregate for deicing in cementitious composite[J]. Construction and Building Materials,2019,227:116664. doi: 10.1016/j.conbuildmat.2019.08.045
    [14] 赵华. 掺磁铁矿料沥青混合料微波特性与路用性能研究[D]. 西安: 长安大学, 2016.

    ZHAO Hua. Study on micro-baud properties and road performance of bitumen mixtures doped with magnetite[D]. Xi'an: Chang'an University, 2016(in Chinese).
    [15] 王子仪. 磁选粉煤灰制备电磁功能集料与砂浆性能研究[D]. 重庆: 重庆大学, 2018.

    WANG Ziyi. Study on electromagnetic function aggregate and mortar performance of magnetically separated fly ash[D]. Chongqing: Chongqing University, 2018(in Chinese).
    [16] 孟欣, 许金余, 吕晓聪, 等. 碳纤维混凝土微波吸热效率的研究[J]. 空军工程大学学报(自然科学版), 2021, 22(2):107-110.

    MENG Xin, XU Jinyu, LV Xiaocong, et al. Study on microwave heat absorption efficiency of carbon fiber concrete[J]. Journal of Air Force Engineering University (Natural Science Edition),2021,22(2):107-110(in Chinese).
    [17] DUDCHENKO N O. Synthetic analogues of biogenic magnetite: Synthesis and characterization of magnetite nanoparticles[J]. Materialwissenschaft und Werkstofftechnik,2011,42(2):89-91. doi: 10.1002/mawe.201100737
    [18] 韩建军, 廖党, 席壮民, 等. 磁铁矿防辐射超高性能混凝土制备及性能研究[J]. 硅酸盐通报, 2021, 40(9):2930-2938.

    HAN Jianjun, LIAO Dang, XI Zhuangmin, et al. Preparation and performance of magnetite radiation-proof ultra-high performance concrete[J]. Bulletin of the Ceramic Society,2021,40(9):2930-2938(in Chinese).
    [19] WANG Z J, WANG H F, AN D D, et al. Laboratory investigation on deicing characteristics of asphalt mixtures using magnetite aggregate as microwave-absorbing materials[J]. Construction and Building Materials,2016,124:589-597. doi: 10.1016/j.conbuildmat.2016.07.137
    [20] 刘佳, 罗阳明. 磁铁矿沥青混合料路用性能及微波除冰特性[J]. 公路交通科技, 2021, 38(3):7-13. doi: 10.3969/j.issn.1002-0268.2021.03.002

    LIU Jia, LUO Yangming. Performance and microwave de-icing characteristics of magnetite asphalt mixture[J]. Journal of Highway and Transportation Science and Technology,2021,38(3):7-13(in Chinese). doi: 10.3969/j.issn.1002-0268.2021.03.002
    [21] 郭德栋. 基于微波与磁铁耦合效应的融雪除冰路面技术研究[D]. 西安: 长安大学, 2011.

    GUO Dedong. Research on snow melting and de-icing pavement technology based on coupling effect between microwave and magnet[D]. Xi'an: Chang'an University, 2011(in Chinese).
    [22] 陈昊雯, 许金余, 刘俊良. 不同吸波掺料对混凝土路面微波加热效率的影响[J]. 武汉大学学报(工学版), 2020, 53(9):773-778.

    CHEN Haowen, XU Jinyu, LIU Junliang. Effects of different absorbing admixtures on microwave heating efficiency of concrete pavement[J]. Geomatics and Engineering Science of Wuhan University,2020,53(9):773-778(in Chinese).
    [23] 中华人民共和国交通部. 公路工程水泥及水泥混凝土试验规程: JTG E30—2005[S]. 北京: 人民交通出版社, 2005.

    Ministry of Transport of the People's Republic of China. Test procedures for highway engineering cement and cement concrete: JTG E30—2005[S]. Beijing: China Communications Press, 2005(in Chinese).
    [24] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods for long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [25] 彭立勇, 岳铭. 磁铁矿-铜炉渣导电混凝土路面力学性能及导电性能试验研究[J]. 公路工程, 2021, 46(3):301-307.

    PENG Liyong, YUE Ming. Experimental study on mechanical properties and conductive properties of magnetite-copper slag conductive concrete pavement[J]. Highway Engineering,2021,46(3):301-307(in Chinese).
    [26] 王志航, 许金余, 吴云泉, 等. 纳米碳纤维增强混凝土的介电特性[J]. 土木与环境工程学报, 2022, 44(1):134-141.

    WANG Zhihang, XU Jinyu, WU Yunquan, et al. Dielectric characteristics of nano-carbon fiber reinforced concrete[J]. Chinese Journal of Civil and Environmental Engineering,2022,44(1):134-141(in Chinese).
    [27] WANG Z H, XU J Y, BAI E L, et al. Dielectric model of carbon nanofiber reinforced concrete[J]. Materials,2020,13(21):4869. doi: 10.3390/ma13214869
    [28] 何柳, 平兵, 吕林女, 等. 复掺纳米TiO2吸波剂和吸波功能集料的电磁吸波混凝土[J]. 功能材料, 2018, 49(1):1173-1177, 1182.

    HE Liu, PING Bing, LYU Linnyu, et al. Electromagnetic absorbing concrete with compound-doped nano-TiO2 absorber and wave-absorbing function aggregate[J]. Functional Materials,2018,49(1):1173-1177, 1182(in Chinese).
    [29] 康伟花. 磁铁矿在混凝土中的化学稳定性研究[D]. 西安: 华北理工大学, 2021.

    KANG Weihua. Study on the chemical stability of magnetite in concrete[D]. Xi'an: North China University of Science and Technology, 2021(in Chinese).
    [30] 黄濛, 袁宇鹏, 刘伟, 等. 攀西钒钛磁铁矿采选废石集料混凝土性能试验研究[J]. 四川建材, 2021, 47(10):1-2, 10. doi: 10.3969/j.issn.1672-4011.2021.10.001

    HUANG Meng, YUAN Yupeng, LIU Wei, et al. Experimental study on the performance of vanadium titanium magnetite mining waste stone aggregate concrete in Panxi[J]. Sichuan Building Materials,2021,47(10):1-2, 10(in Chinese). doi: 10.3969/j.issn.1672-4011.2021.10.001
  • 加载中
图(26) / 表(1)
计量
  • 文章访问数:  793
  • HTML全文浏览量:  340
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-18
  • 修回日期:  2022-08-26
  • 录用日期:  2022-09-04
  • 网络出版日期:  2022-09-16
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回