留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于聚丙烯酸的纳米复合材料的制备及其产后大出血的栓塞性能

陶诗 缪昭华 查正宝

陶诗, 缪昭华, 查正宝. 基于聚丙烯酸的纳米复合材料的制备及其产后大出血的栓塞性能[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 陶诗, 缪昭华, 查正宝. 基于聚丙烯酸的纳米复合材料的制备及其产后大出血的栓塞性能[J]. 复合材料学报, 2024, 42(0): 1-11.
TAO Shi, MIAO Zhaohua, ZHA Zhengbao. Preparation of nanocomposites based on polyacrylic acid and their embolic properties for postpartum hemorrhage[J]. Acta Materiae Compositae Sinica.
Citation: TAO Shi, MIAO Zhaohua, ZHA Zhengbao. Preparation of nanocomposites based on polyacrylic acid and their embolic properties for postpartum hemorrhage[J]. Acta Materiae Compositae Sinica.

基于聚丙烯酸的纳米复合材料的制备及其产后大出血的栓塞性能

基金项目: 国家自然科学基金(No.52272275)
详细信息
    通讯作者:

    查正宝,博士,教授,博士生导师,研究方向为生物医学工程材料 E-mail: zbzha@hfut.edu.cn

  • 中图分类号: R714.46; TQ317.3; TB332

Preparation of nanocomposites based on polyacrylic acid and their embolic properties for postpartum hemorrhage

Funds: National Natural Science Foundation of China (No. 52272275)
  • 摘要: 产后出血(Postpartum hemorrhag, PPH)是一种严重的产科并发症,死亡率占所有产科并发症的25%。经导管动脉栓塞术( Transcatheter Arterial Embolization, TAE)已被证明能快速有效地控制顽固性产后出血。明胶海绵颗粒栓塞剂(Gelatin)作为PPH常用的介入栓塞剂,但往往很难成功地完全阻塞受伤的血管,因此在控制活动性出血如假性动脉瘤的表现不尽人意。由聚丙烯酸(Polyacrylic acid, PAA)、二维层状双氢氧化物(Layered double hydroxide, LDH)和聚乙二醇(Polyethylene glycol, PEG200)为原料的液体栓塞剂(PAA-LDH@PEG200)遇水可迅速固化形成水凝胶实现血管完全地闭塞。在体外闭塞模型中,该纳米复合材料PAA-LDH@PEG200在不同直径的管道中移位压力最高达150 kPa,远高于Gelatin闭塞导致的移位压力。此外,PAA-LDH@PEG200表现出良好的生物相容性和体内外可生物降解性。结果表明,所制备的液体栓塞剂有望替代明胶海绵颗粒成为产后大出血治疗的新一代栓塞剂。

     

  • 图  1  (a) 聚丙烯酸-二维层状双氢氧化物@聚乙二醇(PAA-LDH@PEG200)的制备;(b) 产后大出血的栓塞性能研究

    Figure  1.  (a) Preparation of Polyacrylic acid- Layered double hydroxide@Polyethylene glycol (PAA-LDH@PEG200); (b) Embolization performance study of postpartum hemorrhage

    图  2  (a) LDH的SEM图;(b) 粒径和zeta电位分布图;(c) 元素Mapping图

    Figure  2.  (a) SEM image of LDH; (b) Particle size and Zeta potential distribution; (c) Mapping of elements

    图  3  (a)PAA和LDH不同质量比例的粘附强度;(b)应力应变

    Figure  3.  (a) Adhesion strength of PAA and LDH with different mass ratios; (b) Stress and strain

    图  4  水凝胶SEM图像:(a) PAA;(b) PAA-LDH;(c) PAA-LDH@PEG200

    Figure  4.  SEM images of hydrogels: (a) PAA; (b) PAA-LDH; (c) PAA-LDH@PEG200

    图  5  (a) 体外闭塞装置图;(b) PAA-LDH和PEG200不同质量比筛选

    Figure  5.  (a) External block device diagram; (b) Screening of different mass ratios of PAA-LDH and PEG200

    图  6  Gelatin和PAA-LDH@PEG200在体外闭塞模型中的压力曲线

    Figure  6.  Pressure profiles of Gelatin and PAA-LDH@PEG200 in an in vitro occlusion model

    图  7  Gelatin和PAA-LDH@PEG200粘附的SEM图:(a)红细胞;(b)血小板

    Figure  7.  SEM images of Gelatin and PAA-LDH@PEG200 adhesion: (a) Erythrocytes; (b) Platelets

    图  8  PAA-LDH@PEG200的HUVEC细胞毒性和血液相容性:(a) HUVEC细胞24 h的AM/PI染色图;(b) HUVEC细胞48 h的AM/PI染色图;(c) HUVEC细胞24 h和48 h的存活率;(d)溶血率

    Figure  8.  HUVEC cytotoxicity and hemocompatibility of PAA-LDH@PEG200: (a) AM/PI staining plots of HUVEC cells at 24 h; (b) AM/PI staining plots of HUVEC cells at 48 h; (c) HUVEC cell survival at 24 h and 48 h; (d) hemolysis rate

    图  9  PAA-LDH@PEG200的体内外降解情况:(a) PAA-LDH@PEG200在小鼠体内不同时间内的降解照片;(b) PAA-LDH@PEG200在体内不同时间的重量;(c) PAA-LDH@PEG200在体外的降解曲线

    Figure  9.  PAA-LDH@PEG200 degradation in vivo and in vitro: (a) Photos of PAA-LDH@PEG200 degradation at different time in mice; (b) the weight of PAA-LDH@PEG200 in the body at different times; (c) In vitro degradation curve of PAA-LDH@PEG200

  • [1] YEFET E, YOSSEF A, SULEIMAN A, et al. Hemoglobin drop following postpartum hemorrhage[J]. Scientific Reports, 2020, 10(1): 21546. doi: 10.1038/s41598-020-77799-0
    [2] ELISABETH K, THOMAS P, ROMANA B, et al. Success Rate and Long-Term Effects of Embolization of Pelvic Arteries for the Treatment of Postpartum Hemorrhage[J]. Transfusion Medicine and Hemotherapy, 2023, 50(3): 226-233. doi: 10.1159/000527614
    [3] HERRICK T, MVUNDURA M, BURKE T F, et al. A low-cost uterine balloon tamponade for management of postpartum hemorrhage: modeling the potential impact on maternal mortality and morbidity in sub-Saharan Africa[J]. BMC Pregnancy and Childbirth, 2017, 17(1): 374. doi: 10.1186/s12884-017-1564-5
    [4] ALVES Á L L, SENRA J C, GONçALVES C R, et al. Uterine tamponade in postpartum hemorrhage: A new handmade intrauterine balloon[J]. International Journal of Gynecology & Obstetrics, 2020, 149(2): 248-250.
    [5] SOYER P, DOHAN A, DAUTRY R, et al. Transcatheter Arterial Embolization for Postpartum Hemorrhage: Indications, Technique, Results, and Complications[J]. CardioVascular and Interventional Radiology, 2015, 38(5): 1068-1081. doi: 10.1007/s00270-015-1054-y
    [6] OCHIAI D, NAKATSUKA S, ABE Y, et al. The Efficacy of Transarterial Embolization for Postpartum Hemorrhage Complicated with Disseminated Intravascular Coagulation: A Single-Center Experience[J]. Journal of Clinical Medicine, 2021, 10(18): 4082. doi: 10.3390/jcm10184082
    [7] KAWASHITA S, KANEUCHI M, NAKAYAMA D, et al. Carbon dioxide angiography and arterial embolization could successfully control postpartum uterine hemorrhage for the patient with hypersensitivity to iodine compound[J]. Radiology Case Reports, 2017, 12(2): 261-264. doi: 10.1016/j.radcr.2017.01.017
    [8] KANEMATSU M, WATANABE H, KONDO H, et al. Postpartum Hemorrhage in Coagulopathic Patients: Preliminary Experience with Uterine Arterial Embolization with N-Butyl Cyanoacrylate[J]. Journal of Vascular and Interventional Radiology, 2011, 22(12): 1773-1776. doi: 10.1016/j.jvir.2011.08.016
    [9] PARK K J, SHIN J H, YOON H-K, et al. Postpartum Hemorrhage from Extravasation or Pseudoaneurysm: Efficacy of Transcatheter Arterial Embolization Using N-Butyl Cyanoacrylate and Comparison with Gelatin Sponge Particle[J]. Journal of Vascular and Interventional Radiology, 2015, 26(2): 154-161. doi: 10.1016/j.jvir.2014.10.001
    [10] 鲁程程, 于振坤, 杨园园, 等. 聚丙烯酸-Al3+/壳聚糖复合双网络水凝胶的制备与性能[J]. 复合材料学报, 2022, 39(12): 11.

    LU Chengcheng, YU Zhenkun, YANG Yuanyuan, et al. Preparation and performances of polyacrylic acid-Al3+/chitosan compo-sitedouble network hydrogel[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 11 (in Chinese).
    [11] YANG C-T, LIN Y-X, LI B, et al. The Bonding Nature and Adhesion of Polyacrylic Acid Coating on Li-Metal for Li Dendrite Prevention[J]. ACS Applied Materials & Interfaces, 2020, 12(45): 51007-51015.
    [12] WU M, MAO S, LIU X, et al. Strong tissue adhesive polyelectrolyte complex powders based on low molecular weight chitosan for acute hemorrhage control[J]. International Journal of Biological Macromolecules, 2023, 248: 125755. doi: 10.1016/j.ijbiomac.2023.125755
    [13] ZHANG X, WAN H, LAN W, et al. Fabrication of adhesive hydrogels based on poly (acrylic acid) and modified hyaluronic acid[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126: 105044. doi: 10.1016/j.jmbbm.2021.105044
    [14] DEHBARI N, TAVAKOLI J, SINGH KHATRAO S, et al. In situ polymerized hyperbranched polymer reinforced poly(acrylic acid) hydrogels[J]. Materials Chemistry Frontiers, 2017, 1(10): 1995-2004. doi: 10.1039/C7QM00028F
    [15] NARASIMHAN B N, DIXON A W, MANSEL B, et al. Hydrogen bonding dissipating hydrogels: The influence of network structure design on structure–property relationships[J]. Journal of Colloid and Interface Science, 2023, 630: 638-653. doi: 10.1016/j.jcis.2022.10.029
    [16] ZHAO Z, LI Y, WANG H, et al. Ultra-Tough Self-Healing Hydrogel via Hierarchical Energy Associative Dissipation[J]. Advanced Science, 2023, 10(27): 2303315. doi: 10.1002/advs.202303315
    [17] QIU Y, WU L, LIU S, et al. An impact resistant hydrogel enabled by bicontinuous phase structure and hierarchical energy dissipation[J]. Journal of Materials Chemistry B, 2023, 11(4): 905-913. doi: 10.1039/D2TB01693A
    [18] SU X, MAHALINGAM S, EDIRISINGHE M, et al. Highly Stretchable and Highly Resilient Polymer–Clay Nanocomposite Hydrogels with Low Hysteresis[J]. ACS Applied Materials & Interfaces, 2017, 9(27): 22223-22234.
    [19] ZHANG L-X, XIE X-X, LIU D-Q, et al. Efficient co-delivery of neo-epitopes using dispersion-stable layered double hydroxide nanoparticles for enhanced melanoma immunotherapy[J]. Biomaterials, 2018, 174: 54-66. doi: 10.1016/j.biomaterials.2018.05.015
    [20] ZHANG M, YANG Q, LIANG K, et al. Collagen/poly(acrylic acid)/MXene hydrogels with tissue-adhesive, biosensing, and photothermal antibacterial properties[J]. Polymer Engineering & Science, 2023, 63(11): 3672-3683.
    [21] PENG X, XIA X, XU X, et al. Ultrafast self-gelling powder mediates robust wet adhesion to promote healing of gastrointestinal perforations[J]. Science Advances, 2021, 7(23): eabe8739. doi: 10.1126/sciadv.abe8739
    [22] AVERY R K, ALBADAWI H, AKBARI M, et al. An injectable shear-thinning biomaterial for endovascular embolization[J]. Science Translational Medicine, 2016, 8(365): 365ra156-365ra156.
    [23] YAN X, SUN T, SONG Y, et al. In situ Thermal-Responsive Magnetic Hydrogel for Multidisciplinary Therapy of Hepatocellular Carcinoma[J]. Nano Letters, 2022, 22(6): 2251-2260. doi: 10.1021/acs.nanolett.1c04413
    [24] CHENG H, PAN X, SHI Z, et al. Chitin/corn stalk pith sponge stimulated hemostasis with erythrocyte absorption, platelet activation, and Ca2+-binding capabilities[J]. Carbohydrate Polymers, 2022, 284: 118953. doi: 10.1016/j.carbpol.2021.118953
    [25] HAN T, CHEN L, GAO F, et al. Preparation of thrombin-loaded calcium alginate microspheres with dual-mode imaging and study on their embolic properties in vivo[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2023, 189: 98-108. doi: 10.1016/j.ejpb.2023.06.008
  • 加载中
计量
  • 文章访问数:  34
  • HTML全文浏览量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-06
  • 修回日期:  2024-03-24
  • 录用日期:  2024-04-07
  • 网络出版日期:  2024-05-08

目录

    /

    返回文章
    返回