留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于外力诱导取向的高导热聚合物基复合材料研究进展

陈海斌 陈瑞 刘美琪 胡艳 黄昭雯 陈大柱

陈海斌, 陈瑞, 刘美琪, 等. 基于外力诱导取向的高导热聚合物基复合材料研究进展[J]. 复合材料学报, 2022, 39(4): 1486-1497. doi: 10.13801/j.cnki.fhclxb.20210925.001
引用本文: 陈海斌, 陈瑞, 刘美琪, 等. 基于外力诱导取向的高导热聚合物基复合材料研究进展[J]. 复合材料学报, 2022, 39(4): 1486-1497. doi: 10.13801/j.cnki.fhclxb.20210925.001
CHEN Haibin, CHEN Rui, LIU Meiqi, et al. Research progress of force-induced oriented highly thermally conductive polymer composites[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1486-1497. doi: 10.13801/j.cnki.fhclxb.20210925.001
Citation: CHEN Haibin, CHEN Rui, LIU Meiqi, et al. Research progress of force-induced oriented highly thermally conductive polymer composites[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1486-1497. doi: 10.13801/j.cnki.fhclxb.20210925.001

基于外力诱导取向的高导热聚合物基复合材料研究进展

doi: 10.13801/j.cnki.fhclxb.20210925.001
基金项目: 国家自然科学基金(51873108;21908091);深圳市基础研究计划(JCYJ20180305124237416)
详细信息
    通讯作者:

    陈大柱,博士,教授,博士生导师,研究方向为高分子复合材料  E-mail:dzchen@szu.edu.cn

  • 中图分类号: TB332

Research progress of force-induced oriented highly thermally conductive polymer composites

  • 摘要: 随着半导体制备技术的快速发展,小型化和集成化是电子设备发展的趋势,散热能力成了制约电子元器件发展的关键因素,对热界面和封装材料的导热性能提出了更高的要求。导热填料与聚合物基体之间简单的共混难以实现低填充量下的高导热性。填料的取向有助于实现各向异性的热导率和降低导热逾渗阈值,因此如何在聚合物基体中构筑导热填料的取向结构从而在低填充量下形成高效导热网络正成为导热材料研究和关注的热点。在促使导热填料特别是非球形特征(片状、棒状或纤维状等)的填料定向排列过程中,外力起着至关重要的作用。本文按照诱发导热填料取向的主要驱动力进行分类,综述了近5年运用磁场诱导、电场诱导和机械力诱导等方法制备各向异性高导热聚合物基复合材料的最新技术和研究进展,重点介绍了外力作用下导热填料取向的形成条件、机制和构效关系,分析了不同方法的特色及优缺点,指出了目前在制备取向结构上存在的瓶颈,并对导热聚合物基复合材料的未来发展方向进行了展望,为低填充、高导热和各向异性复合材料的开发和应用提供参考。

     

  • 图  1  垂直取向氮化硼(BN)-Fe3O4/SiC-Fe3O4/环氧树脂(EP)复合材料制备示意图[9]

    Figure  1.  Fabrication procedure of vertically aligned filler boron nitride (BN)-Fe3O4/SiC-Fe3O4/epoxy (EP) composite[9]

    图  2  垂直取向FeCo-氮化硼纳米片(BNNS)/聚二甲基硅氧烷(PDMS)复合材料断面SEM图像[11]

    Figure  2.  SEM image of FeCo-boron nitride nanosheets (BNNS)/polydimethylsiloxane (PDMS) composite film with vertically aligned hBN structure[11]

    图  3  取向 (a) 和随机分布 (b) 的石墨烯纳米片(GNPs)/聚苯乙烯(PS)复合材料制备示意图[18]

    Figure  3.  Preparation diagram for oriented (a) and random (b) graphene nanosheets (GNPs)/polystyrene (PS) composites[18]

    图  4  垂直于纤维方向 (a) 和平行于纤维方向 ((b)~(c)) 聚乙烯醇(PVA)/BNNS/PDMS复合材料的SEM图像[19]

    Figure  4.  SEM images of polyvinyl alcohol (PVA)/BNNS/PDMS composites with section perpendicular to fiber direction (a) and parallel to fiber direction ((b)-(c))[19]

    图  5  垂直取向的碳纤维(VACF)支架制备示意图及其宏观和显微图像[20]

    Figure  5.  Preparation of the vertically aligned carbon fiber (VACF) scaffold and macro-micrograph[20]

    图  6  实验装置及应用电场制备聚苯胺(PANI)纳米纤维/PVDF薄膜示意图[21]

    Figure  6.  Experimental setup of electric field device and schematic of the application of electric field on polyaniline (PANI)-nanofiber/PVDF membranes[21]

    图  7  电场诱导前后BN/聚氨酯丙烯酸酯(PUA)和BN-TiO2/PUA复合材料的XRD图谱[22]

    Figure  7.  XRD patterns of BN/polyurethane acrylate (PUA) composite and BN-TiO2/PUA composite before and after electric field alignment[22]

    图  8  BNNS/聚偏二氟乙烯(PVDF)薄膜制备示意图[28]

    Figure  8.  Preparation process of BNNS/polyvinylidene fluoride (PVDF) film[28]

    图  9  六方结构的氮化硼(hBN)/热塑性聚氨酯(TPU)复合材料薄膜制备过程示意图[35]

    Figure  9.  Schematic illustration of the fabrication process for the hexagonal boron nitride (hBN)/thermoplastic polyurethane (TPU) composite films[35]

    图  10  石墨烯网络(VAIGNs)结构制备示意图[42]

    Figure  10.  Schematic illustration of forming the graphene network (VAIGNs)[42]

    图  11  不同填料含量碳纤维(CF)泡沫的微观结构:(a) 6.0vol%;(b) 8.0vol%;(c) 10.8vol%;(d) 12.8vol%;((e)~(h)) 对应复合材料断面[44]

    Figure  11.  Microstructures of carbon fiber (CF) foam with different filler loadings: (a) 6.0vol%; (b) 8.0vol%; (c) 10.8vol%; (d) 12.8vol%; ((e)-(h)) Corresponding cross section of composites[44]

    图  12  BN/EP复合材料制备示意图[47]

    Figure  12.  Schematic diagram of the preparation of BN/EP composites[47]

    图  13  自然珍珠母 ((a)~(c)) 和NF-BNNSs/PVA复合纸张((d)~(f)) 的断面及表面SEM图像[48]

    Figure  13.  SEM cross-sectional and surface images of natural nacre ((a)-(c)) and NF-BNNSs/PVA paper ((d)-(f))[48]

  • [1] HAN Z D, FINA A. Thermal conductivity of carbon nano-tubes and their polymer nanocomposites: A review[J]. Progress in Polymer Science,2011,36(7):914-944. doi: 10.1016/j.progpolymsci.2010.11.004
    [2] CHEN H Y, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science,2016,59:41-85.
    [3] SHAHIL K M, BALANDIN A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J]. Nano Letters,2012,12(2):861-867. doi: 10.1021/nl203906r
    [4] WU Y M, CAO Y, XIAO X S, et al. Enhanced thermal transport performance for poly(vinylidene fluoride) composites with superfullerene[J]. Fibers and Polymers,2017,18(6):1180-1186. doi: 10.1007/s12221-017-7001-6
    [5] ALAM F E, DAI W, YANG M H, et al. In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity[J]. Journal of Materials Chemistry A,2017,5(13):6164-6169. doi: 10.1039/C7TA00750G
    [6] RUAN K P, ZHONG X, SHI X T, et al. Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: A mini-review[J]. Materials Today Physics,2021,20:100456. doi: 10.1016/j.mtphys.2021.100456
    [7] 吴宇明, 虞锦洪, 曹勇, 等. 高导热低填量聚合物基复合材料研究进展[J]. 复合材料学报, 2018, 35(04):760-766.

    WU Y M, YU J H, CAO Y, et al. Review of polymer-based composites with high thermal conductivity and low filler loading[J]. Acta Materiae Compositae Sinica,2018,35(04):760-766(in Chinese).
    [8] KIM K, KIM M, KIM J, et al. Magnetic filler alignment of paramagnetic Fe3O4 coated SiC/epoxy composite for thermal conductivity improvement[J]. Ceramics International,2015,41(9):12280-12287. doi: 10.1016/j.ceramint.2015.06.053
    [9] KIM K, JU H, KIM J. Vertical particle alignment of boron nitride and silicon carbide binary filler system for thermal conductivity enhancement[J]. Composites Science and Technology,2016,123:99-105. doi: 10.1016/j.compscitech.2015.12.004
    [10] YUAN C, DUAN B, LI L, et al. Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets[J]. ACS Applied Materials & Interfaces,2015,7(23):13000-13006.
    [11] YUAN J, QIAN X T, MENG Z C, et al. Highly thermally conducting polymer-based films with magnetic field-assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation[J]. ACS Applied Materials & Interfaces,2019,11(19):17915-17924.
    [12] YUAN F, JIAO W C, YANG F, et al. Surface modification and magnetic alignment of hexagonal boron nitride nanosheets for highly thermally conductive composites[J]. RSC Advances,2017,7(69):43380-43389. doi: 10.1039/C7RA08516H
    [13] RALPHS M, SCHEITLIN C, WANG R Y, et al. Buckling of magnetically formed filler fiber columns under compression increases thermal resistance of soft polymer compo-sites[J]. Journal of Heat Transfer,2019,141(1):012001.
    [14] GUO Y Q, RUAN K P, GU J W. Controllable thermal conductivity in composites by constructing thermal conduction networks[J]. Materials Today Physics,2021,20:100449. doi: 10.1016/j.mtphys.2021.100449
    [15] GUO Y Q, RUAN K P, SHI X T, et al. Factors affecting thermal conductivities of the polymers and polymer composites: A review[J]. Composites Science and Technology,2020,193:108134. doi: 10.1016/j.compscitech.2020.108134
    [16] GU J W, LV Z Y, WU Y L, et al. Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method[J]. Composites Part A:Applied Science and Manufacturing,2017,94:209-216. doi: 10.1016/j.compositesa.2016.12.014
    [17] FENG C P, WAN S S, WU W C, et al. Electrically insulating, layer structured SiR/GNPs/BN thermal management materials with enhanced thermal conductivity and breakdown voltage[J]. Composites Science and Technology,2018,167:456-462. doi: 10.1016/j.compscitech.2018.08.039
    [18] GUO Y Q, PAN L L, YANG X T, et al. Simultaneous improvement of thermal conductivities and electromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology[J]. Composites Part A: Applied Science and Manufacturing,2019,124:105484. doi: 10.1016/j.compositesa.2019.105484
    [19] CHEN J, HUANG X Y, SUN B, et al. Vertically aligned and interconnected boron nitride nanosheets for advanced flexible nanocomposite thermal interface materials[J]. ACS Applied Materials & Interfaces,2017,9(36):30909-30917.
    [20] UETANI K, ATA S, TOMONOH S, et al. Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking[J]. Advanced Materials,2014,26(33):5857-5862. doi: 10.1002/adma.201401736
    [21] GUO H, LI X, WANG Z Y, et al. Thermal conductivity of PVDF/PANI-nanofiber composite membrane aligned in an electric field[J]. Chinese Journal of Chemical Engineering,2018,26(5):1213-1218. doi: 10.1016/j.cjche.2017.12.015
    [22] KIM K, JU H, KIM J. Filler orientation of boron nitride composite via external electric field for thermal conductivity enhancement[J]. Ceramics International,2016,42(7):8657-8663. doi: 10.1016/j.ceramint.2016.02.098
    [23] ZHI C Y, BANDO Y S, TAN C C, et al. Effective precursor for high yield synthesis of pure BN nanotubes[J]. Solid State Communications,2005,135(1-2):67-70. doi: 10.1016/j.ssc.2005.03.062
    [24] GU J W, RUAN K P. Breaking through bottlenecks for thermally conductive polymer composites: A perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics[J]. Nano-Micro Letters,2021,13(1):118-126. doi: 10.1007/s40820-021-00640-4
    [25] SHEN H, GUO J, WANG H, et al. Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure[J]. ACS Applied Materials & Interfaces,2015,7(10):5701-5708.
    [26] WANG D Z, WEI H, LIN Y, et al. Achieving ultrahigh thermal conductivity in Ag/MXene/epoxy nanocompo-sites via filler-filler interface engineering[J]. Composites Science and Technology,2021,213:108953. doi: 10.1016/j.compscitech.2021.108953
    [27] WANG F F, ZENG X L, YAO Y M, et al. Silver nanoparticle-deposited boron nitride nanosheets as fillers for polymeric composites with high thermal conductivity[J]. Scientific Reports,2016,6(1):19394. doi: 10.1038/srep19394
    [28] TENG C, SU L Y, CHEN J X, et al. Flexible, thermally conductive layered composite films from massively exfoliated boron nitride nanosheets[J]. Composites Part A: Applied Science and Manufacturing,2019,124:105498. doi: 10.1016/j.compositesa.2019.105498
    [29] HAN X, WU L J, ZHANG H B, et al. Inorganic-organic hybrid janus fillers for improving the thermal conductivity of polymer composites[J]. ACS Applied Materials & Interfaces,2019,11(13):12190-12194.
    [30] MORISHITA T, OKAMOTO H. Facile exfoliation and noncovalent superacid functionalization of boron nitride nanosheets and their use for highly thermally conductive and electrically insulating polymer nanocomposites[J]. ACS Applied Materials & Interfaces,2016,8(40):27064-27073.
    [31] HE X H, YU X, WANG Y C. Significantly enhanced thermal conductivity in polyimide composites with the matching of graphene flakes and aluminum nitride by in situ polymerization[J]. Polymer Composites,2019,41(2):740-747.
    [32] LIU Y C, LU M P, WU K, et al. Enhanced thermal conduction of functionalized graphene nanoflake/polydimethylsiloxane composites via thermoluminescence strategy[J]. Composites Science and Technology,2021,213:108940. doi: 10.1016/j.compscitech.2021.108940
    [33] LIN G L, XIE B H, HU J, et al. Aligned graphene oxide nanofillers: an approach to prepare highly thermally conductive and electrically insulative transparent polymer compo-sites[J]. Journal of Nanomaterials,2015,2015:957068.
    [34] GU J W, GUO Y Q, YANG X T, et al. Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers[J]. Composites Part A: Applied Science and Manufacturing,2017,95:267-273. doi: 10.1016/j.compositesa.2017.01.019
    [35] YU C P, GONG W B, TIAN W, et al. Hot-pressing induced alignment of boron nitride in polyurethane for composite films with thermal conductivity over 50 W(m·K)−1[J]. Composites Science and Technology,2018,160:199-207. doi: 10.1016/j.compscitech.2018.03.028
    [36] YIN Z H, GUO J H, JIANG X H. Significantly improved thermal conductivity of silicone rubber and aligned boron nitride composites by a novel roll-cutting processing method[J]. Composites Science and Technology,2021,209:108794. doi: 10.1016/j.compscitech.2021.108794
    [37] JUNG H J, YU S G, BAE N S, et al. High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube[J]. ACS Applied Materials & Interfaces,2015,7(28):15256-15262.
    [38] YUAN H, WANG Y, LI T, et al. Fabrication of thermally conductive and electrically insulating polymer composites with isotropic thermal conductivity by constructing a three-dimensional interconnected network[J]. Nanoscale,2019,11(23):11360-11368. doi: 10.1039/C9NR02491C
    [39] QIN T F, WANG H, HE J, et al. Amino multi-walled carbon nanotubes further improve the thermal conductivity of boron nitride/liquid crystal epoxy resin composites[J]. Express Polymer Letters,2020,14(12):1169-1179. doi: 10.3144/expresspolymlett.2020.95
    [40] WANG Z G, GONG F, YU W C, et al. Synergetic enhancement of thermal conductivity by constructing hybrid conductive network in the segregated polymer composites[J]. Composites Science and Technology,2018,162:7-13. doi: 10.1016/j.compscitech.2018.03.016
    [41] ZHOU H J, DENG H, ZHANG L, et al. Significant enhancement of thermal conductivity in polymer composite via constructing macroscopic segregated filler networks[J]. ACS Applied Materials& Interfaces,2017,9(34):29071-29081.
    [42] LIAN G, TUAN C C, LI L Y, et al. Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading[J]. Che-mistry of Materials,2016,28(17):6096-6104. doi: 10.1021/acs.chemmater.6b01595
    [43] YANG J, ZHANG E W, LI X F, et al. Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage[J]. Carbon,2016,98:50-57. doi: 10.1016/j.carbon.2015.10.082
    [44] HOU X, CHEN Y P, DAI W, et al. Highly thermal conductive polymer composites via constructing micro-phragmites communis structured carbon fibers[J]. Chemical Engineering Journal,2019,375:121921. doi: 10.1016/j.cej.2019.121921
    [45] ZENG X L, YAO Y M, GONG Z Y, et al. Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement[J]. Small,2015,11(46):6205-6213. doi: 10.1002/smll.201502173
    [46] GUO L C, ZHANG Z Y, LI M H, et al. Extremely high thermal conductivity of carbon fiber/epoxy with synergistic effect of MXenes by freeze-drying[J]. Composites Communications,2020,19:134-141. doi: 10.1016/j.coco.2020.03.009
    [47] YU C P, ZHANG J, LI Z, et al. Enhanced through-plane thermal conductivity of boron nitride/epoxy composites[J]. Composites Part A: Applied Science and Manufacturing,2017,98:25-31. doi: 10.1016/j.compositesa.2017.03.012
    [48] ZENG X L, YE L, YU S H, et al. Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties[J]. Nanoscale,2015,7(15):6774-6781. doi: 10.1039/C5NR00228A
    [49] LIANG C B, GU Z J, ZHANG Y L, et al. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review[J]. Nano-Micro Letters,2021,13(11):322-350. doi: 10.1007/s40820-021-00707-2
  • 加载中
图(13)
计量
  • 文章访问数:  1369
  • HTML全文浏览量:  518
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 修回日期:  2021-09-13
  • 录用日期:  2021-09-13
  • 网络出版日期:  2021-09-26
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回