留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维编织管件复合材料压缩与弯曲性能

何红梅 高兴忠 项赫 苏智鹏 韩天聪 杨雨琪 姚湘江

何红梅, 高兴忠, 项赫, 等. 三维编织管件复合材料压缩与弯曲性能[J]. 复合材料学报, 2024, 43(0): 1-8.
引用本文: 何红梅, 高兴忠, 项赫, 等. 三维编织管件复合材料压缩与弯曲性能[J]. 复合材料学报, 2024, 43(0): 1-8.
HE Hongmei, GAO Xingzhong, XIANG He, et al. Compression and bending properties of 3D braided tubular composites[J]. Acta Materiae Compositae Sinica.
Citation: HE Hongmei, GAO Xingzhong, XIANG He, et al. Compression and bending properties of 3D braided tubular composites[J]. Acta Materiae Compositae Sinica.

三维编织管件复合材料压缩与弯曲性能

基金项目: 国家自然科学基金委员会青年项目(12302483);高性能纤维及制品教育部重点实验室(B类)(201990406);先进纺织复合材料教育部重点实验室开放基金(MATC-2021-004);陕西省留学人员科技活动择优资助项目(2023013);西安市科学技术协会青年人才托举计划(959202413058)
详细信息
    通讯作者:

    高兴忠,博士,副教授,研究方向为纺织复合材料 E-mail:gaoxz@xpu.edu.cn

  • 中图分类号: TB332

Compression and bending properties of 3D braided tubular composites

Funds: National Natural Science Foundation of China Youth Project (12302483); Key Laboratory of High Performance Fiber & Products (201990406); Open Project Program of Ministry of Education Key Laboratory for Advanced Textile Composite Materials (Tiangong University) (MATC-2021-004); Shaanxi Province Scholarship Program for Science and Technology Activities of Overseas Students (2023013); Youth Talent Support Program of Xi'an Association for Science and Technology (959202413058)
  • 摘要: 三维编织复合材料管件在承力结构件中有广泛应用。纤维性能对其承载时变形和失效演化的影响机制是亟需解决的问题。本文探究了高模高强和高韧性两种纤维增强管件复合材料的失效行为,通过轴向压缩和三点弯曲试验,借助DIC技术,研究了不同纤维管件编织复合材料的力学性能。结果发现:高强高模管件更早发生变形分布变化,变形主要集中在发生剪切滑移的区域。高韧性管件较晚出现变形分布变化,变形逐渐集中到中间“鼓包”区域;高强高模管件的压缩和弯曲强度比高韧性管件分别高56%和50%;压缩和弯曲能量吸收比高韧性管件分别高20.9%和68%。这说明纤维的高强高模可以弥补其韧性差而导致吸能较少的弱点。本研究可为三维编织管件复合材料的设计提供理论指导。

     

  • 图  1  圆管复合材料制备过程:(a)预成型体编织示意图;(b)四步法圆形编织;(c)固化工艺示意图

    Figure  1.  Preparation process of tubular composites: (a) Schematic diagram of preform braiding; (b) Four-step circular braiding; (c) Diagram of curing process

    图  2  压缩测试样品:(a) CF圆管侧面图;(b) CF圆管正面图;(c) UHMWPE圆管侧面图;(d) UHMWPE圆管正面图

    Figure  2.  Diagrams of compression test samples: (a) Side view of CF tubular composite; (b) Front view of CF tubular composite; (c) Side view of UHMWPE tubular composite; (d) Front view of UHMWPE tubular composite

    图  3  管件复合材料弯曲测试试样:(a) CF;(b) UHMWPE

    Figure  3.  Flexural test specimens of tubular composite: (a) CF; (b) UHMWPE

    图  4  圆管复合材料压缩应力-应变曲线:(a)碳纤维;(b) UHMWPE纤维

    Figure  4.  Compressive stress-strain curves of tubular composite: (a) CF; (b) UHMWPE

    图  5  管件复合材料压缩后形貌破坏图:(a) CF;(b) UHMWPE

    Figure  5.  Morphological damage diagrams of tubular composites after compression: (a) CF; (b) UHMWPE

    图  6  复合材料管件压缩变形演化过程图:(a) CF;(b) UHMWPE

    Figure  6.  Plot of the compression deformation evolution process of tubular composite: (a) CF; (b) UHMWPE

    图  7  复合材料管件压缩应力-应变曲线演化过程图:(a) CF;(b) UHMWPE

    Figure  7.  Plot of the evolution of compressive stress-strain curves of composite pipe fittings: (a) CF; (b) UHMWPE

    图  8  复合材料管件压缩过程主要力学性质对比:(a)强度和模量;(b)能量吸收

    Figure  8.  Comparison of the main mechanical properties of tubular composite during compression: (a) Strength and modulus; (b) Energy absorption

    图  9  管件复合材料弯曲载荷-位移曲线

    Figure  9.  Bending load-displacement curves of tubular composite

    图  10  圆管复合材料弯曲测试过程高速摄影图:(a) CF;(b) UHMWPE

    Figure  10.  High-speed photograms of the bending test process of tubular composites: (a) CF; (b) UHMWPE

    图  11  三维编织管件复合材料弯曲试验表面形貌图:(a) CF;(b) UHMWPE

    Figure  11.  Surface topography of 3 D braided tubing composites in bending test: (a) CF; (b) UHMWPE

    图  12  管件复合材料能量吸收和弯曲对比

    Figure  12.  Comparison of energy absorption and bending of tubular composite

    表  1  碳纤维力学性能参数

    Table  1.   Mechanical property parameters of carbon fiber

    Name Norm
    Density /(g·cm−3) 1.8
    Tensile strength /GPa
    Elongation at break /%
    5.31
    2.18
    Tensile modulus of elasticity /GPa 240
    下载: 导出CSV

    表  2  UHMWPE纤维力学性能参数

    Table  2.   Mechanical property parameters of UHMWPE fiber

    NameNorm
    Density /(g·cm-3)0.97
    Breaking strength /GPa
    Elongation at break /%
    3.0
    3.83
    Modulus of rupture /GPa130
    下载: 导出CSV

    表  3  圆管复合材料试样参数

    Table  3.   Parameters of tubular composite specimen

    Sample nameBraiding angle /(°)Fiber volume fraction /%
    Carbon fiber35.836.5
    UHMWPE35.734.8
    下载: 导出CSV
  • [1] 熊信发, 王校培, 王坤, 等. 三维编织复合材料圆管轴向压缩性能及破坏机理[J]. 南京航空航天大学学报, 2023, 55(4): 702-10.

    XIONG Qifa, WANG Xiaopei, WANG Kun, et al. Axial compression properties and damage mechanism of three-dimensional braided composite circular tubes[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2023, 55(4): 702-10(in Chinese).
    [2] XU K, QIAN X M. Analytical prediction of the elastic properties of 3D braided composites based on a new multiunit cell model with consideration of yarn distortion[J]. Mech Mater, 2016, 92: 139-54. doi: 10.1016/j.mechmat.2015.09.007
    [3] ZHENG Y Y, SUN Y, LI J L, et al. Tensile response of carbon-aramid hybrid 3D braided composites[J]. Mater Des, 2017, 116: 246-52. doi: 10.1016/j.matdes.2016.11.082
    [4] ZENG T, FANG D N, LU T J. Dynamic crashing and impact energy absorption of 3D braided composite tubes[J]. Mater Lett, 2005, 59(12): 1491-6. doi: 10.1016/j.matlet.2005.01.007
    [5] ROY S S, POTLURI P, SOUTIS C. Tensile Response of Hoop Reinforced Multiaxially Braided Thin Wall Composite Tubes[J]. Appl Compos Mater, 2017, 24(2): 397-416. doi: 10.1007/s10443-016-9570-8
    [6] MCGREGOR C, VAZIRI R, POURSARTIP A, et al. Axial crushing of triaxially braided composite tubes at quasi-static and dynamic rates[J]. Compos Struct, 2016, 157: 197-206. doi: 10.1016/j.compstruct.2016.08.035
    [7] 遇家运, 刘佳. 复合材料圆管成型工艺及性能研究现状[J]. 纤维复合材料, 2022, 39(1): 82-6. doi: 10.3969/j.issn.1003-6423.2022.01.015

    YU Jiayun, LIU Jia. Current status of research on composite round tube molding process and properties[J]. Fiber Composite Materials, 2022, 39(1): 82-6(in Chinese). doi: 10.3969/j.issn.1003-6423.2022.01.015
    [8] ZHANG W, GU B H, SUN B Z. Thermal-mechanical coupling modeling of 3D braided composite under impact compression loading and high temperature field[J]. Compos Sci Technol, 2017, 140: 73-88. doi: 10.1016/j.compscitech.2016.12.019
    [9] 李金超, 陈利, 邢静忠. 三维五向编织复合材料强度的有限元分析[J]. 宇航材料工艺, 2010, 40(5): 37-9+46. doi: 10.3969/j.issn.1007-2330.2010.05.009

    LI Jinchao, CHEN Li, XING Jingzhong. Finite element analysis of the strength of three-dimensional five-way braided composites[J]. Aerospace Materials Processing, 2010, 40(5): 37-9+46(in Chinese). doi: 10.3969/j.issn.1007-2330.2010.05.009
    [10] 同黎娜. 国产碳纤维大有可为 [N]. 中国纺织报2021-10-13.

    TONG Lina. Domestic carbon fiber has great promise [N]. China Textile Newspaper 2021-10-13. (in Chinese)
    [11] LAPENA M H, MARINUCCI G. Mechanical Characterization of Basalt and Glass Fiber Epoxy Composite Tube[J]. Mater Res-Ibero-am J Mater, 2018, 21(1): 7.
    [12] LEHTINIEMI P, DUFVA K, BERG T, et al. Natural fiber-based reinforcements in epoxy composites processed by filament winding[J]. J Reinf Plast Compos, 2011, 30(23): 1947-55. doi: 10.1177/0731684411431019
    [13] THIRUMAVALAVAN K, SARUKASAN D. Experimental investigation on multi-layered filament wound basalt/E-glass hybrid fiber composite tubes[J]. Mater Res Express, 2022, 9(4): 29.
    [14] 杜刚, 曾竟成, 肖加余, 等. 复合材料圆管端部加强对其轴压性能影响的实验分析[J]. 材料科学与工程学报, 2007, (3): 457-9. doi: 10.3969/j.issn.1673-2812.2007.03.033

    DU Gang, ZENG Jingcheng, XIAO Jiayu, et al. Experimental analysis of the effect of end reinforcement on the axial compressive properties of composite circular tubes[J]. Journal of Materials Science and Engineering, 2007, (3): 457-9(in Chinese). doi: 10.3969/j.issn.1673-2812.2007.03.033
    [15] 马其华, 查一斌, 周天俊. Al-CFRP复合管的径向压缩性能[J]. 工程塑料应用, 2019, 47(11): 99-104. doi: 10.3969/j.issn.1001-3539.2019.11.018

    MA Qihua, CHA Yibin, ZHOU Tianjun. Radial compression properties of Al-CFRP composite pipes[J]. Engineering Plastics Applications, 2019, 47(11): 99-104(in Chinese). doi: 10.3969/j.issn.1001-3539.2019.11.018
    [16] 周伟旭. 碳纤维增强树脂基复合材料在轨道交通车辆车体中的应用与思考[J]. 城市轨道交通研究, 2018, 21(12): 10-3.

    ZHOU Weixu. Application and Reflection of Carbon Fiber Reinforced Resin Matrix Composites in Railway Vehicle Body[J]. Urban Rail Transportation Research, 2018, 21(12): 10-3(in Chinese).
    [17] 孙政, 付艳恕, 詹博文, 等. 复合材料吸能圆管轴向准静态压缩失效机理研究[J]. 塑料科技, 2017, 45(4): 36-40.

    SUN Zheng, FU Yashu, ZHAN Bowen, et al. Study on the failure mechanism of axial quasi-static compression of composite energy-absorbing circular pipe[J]. Plastics Technology, 2017, 45(4): 36-40(in Chinese).
    [18] CROUCH I G. Body armour - New materials, new systems[J]. Def Technol, 2019, 15(3): 241-53. doi: 10.1016/j.dt.2019.02.002
    [19] QIN F Y, LEI Z K, MA Y, et al. Stress transfer of single yarn drawing in soft fabric studied by micro Raman spectroscopy[J]. Compos Pt A-Appl Sci Manuf, 2018, 112: 134-41. doi: 10.1016/j.compositesa.2018.06.002
    [20] LIU Y, HAN Y, YUAN L, et al. Synergistic Enhancement of the Friction and Wear Performance for UHMWPE Composites under Different Aging Times[J]. Polymers, 2024, 16(14): 2059-. doi: 10.3390/polym16142059
    [21] 陈利, 李学明. 三维四步法圆型编织结构分析[J]. 复合材料学报, 2003, (2): 76-80. doi: 10.3321/j.issn:1000-3851.2003.02.014

    CHEN Li, LI Xueming. Structural analysis of three-dimensional four-step circular braided structures[J]. Journal of Composite Materials, 2003, (2): 76-80(in Chinese). doi: 10.3321/j.issn:1000-3851.2003.02.014
    [22] 张徐梁. 三维五向碳纤/玻纤混杂编织复合材料圆管的制备及能量吸收性能 [D], 2021.

    ZHANG Xuliang. Preparation and Energy Absorption Properties of Three-Dimensional Five-Way Carbon Fiber/Glass Fiber Hybrid Braided Composite Round Tubes [D], 2021. (in Chinese)
    [23] 户迎灿, 张联合, 崔健, 等. 基于VARTM的碳纤维单向与三维编织混杂织物树脂灌注工艺[J]. 工程塑料应用, 2024, 52(2): 57-65. doi: 10.3969/j.issn.1001-3539.2024.02.010

    HU Yingcan, ZHANG Lianhe, CUI Jian, et al. Resin infusion process for unidirectional and three-dimensional woven hybrid fabrics of carbon fibers based on VARTM[J]. Engineering Plastics Applications, 2024, 52(2): 57-65(in Chinese). doi: 10.3969/j.issn.1001-3539.2024.02.010
    [24] 中华人民共和国国家质量监督检验检疫总局. 纤维增强塑料 压缩性能试验方法: GB/T 1446−2005[S]. 北京: 中国标准出 版社, 2005.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Fiberreinforced plastic composites-Determination of compress properties: GB/T 1446−2005[S]. Beijing: China Standards Press, 2005 (in Chinese).
    [25] 中华人民共和国国家质量监督检验检疫总局. 纤维增强塑料 弯曲性能试验方法: GB/T 1449−2005[S]. 北京: 中国标准出 版社, 2005.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Fiberreinforced plastic composites-Determination of flexural properties: GB/T 1449−2005[S]. Beijing: China Standards Press, 2005 (in Chinese).
    [26] 陈静, 莫莉花, 房怡, 等. 分层缺陷对CFRP层合板力学性能的影响[J]. 工程塑料应用, 2024, 52(4): 122-7. doi: 10.3969/j.issn.1001-3539.2024.04.019

    CHEN Jing, MO Lihua, FANG Yi, et al. Effect of delamination defects on mechanical properties of CFRP laminates[J]. Engineering Plastics Applications, 2024, 52(4): 122-7(in Chinese). doi: 10.3969/j.issn.1001-3539.2024.04.019
    [27] 余海燕, 贺宏伟, 邢萍. 考虑不同刚度退化模式的碳纤维增强复合材料失效模型开发[J]. 机械工程学报, 2024, 60(2): 197-208.

    YU Haiyan, HE Hongwei, XING Ping. Development of failure models for carbon fiber reinforced composites considering different stiffness degradation modes[J]. Journal of Mechanical Engineering, 2024, 60(2): 197-208(in Chinese).
  • 加载中
计量
  • 文章访问数:  47
  • HTML全文浏览量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-21
  • 修回日期:  2024-09-24
  • 录用日期:  2024-10-02
  • 网络出版日期:  2024-10-24

目录

    /

    返回文章
    返回