留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高性能铜基复合材料研究进展

王一同 邹存磊 李长鸣 张爽 赵亚军 董闯

王一同, 邹存磊, 李长鸣, 等. 高性能铜基复合材料研究进展[J]. 复合材料学报, 2023, 40(10): 5542-5553. doi: 10.13801/j.cnki.fhclxb.20230523.003
引用本文: 王一同, 邹存磊, 李长鸣, 等. 高性能铜基复合材料研究进展[J]. 复合材料学报, 2023, 40(10): 5542-5553. doi: 10.13801/j.cnki.fhclxb.20230523.003
WANG Yitong, ZOU Cunlei, LI Changming, et al. Research progress of high performance copper matrix composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5542-5553. doi: 10.13801/j.cnki.fhclxb.20230523.003
Citation: WANG Yitong, ZOU Cunlei, LI Changming, et al. Research progress of high performance copper matrix composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5542-5553. doi: 10.13801/j.cnki.fhclxb.20230523.003

高性能铜基复合材料研究进展

doi: 10.13801/j.cnki.fhclxb.20230523.003
基金项目: 国家自然科学基金(52171134;51901033);辽宁省自然科学基金(2020-BS-207);大连市科技创新基金应用基础研究(2022JJ12GX039);大连市优秀青年科技人才项目(2022RY14)
详细信息
    通讯作者:

    邹存磊,博士,副教授,硕士生导师,研究方向为高性能铜合金及其复合材料 E-mail: clzou@djtu.edu.cn

  • 中图分类号: TG146

Research progress of high performance copper matrix composites

Funds: National Natural Science Foundation of China (52171134; 51901033); Natural Science Foundation of Liaoning Province (2020-BS-207); Dalian Science and Technology Innovation Foundation of Applied Basic Research (2022JJ12GX039); Dalian Outstanding Young Scientific and Technological Talents Project (2022RY14)
  • 摘要: 铜和铜合金凭借其高导电性、导热性、易加工性和耐腐蚀等特性被广泛应用于电接触材料、电子封装材料、热交换材料等领域,然而铜合金强化过程中强度和电导率、热导率之间此消彼长的矛盾使其发展受限。铜基复合材料可通过强化相提升材料的强度,并且可避免对铜基体产生严重晶格畸变,最大化保证材料的电导率,从而获得优异强阻比的材料,因此铜基复合材料是高性能铜材的一个重要发展方向。本文概述了高性能铜基复合材料的主要制备方法,总结了复合材料增强相及其特点和发展方向。阐述了主要研究进展及其在轨道交通、电工电子、军工方面的应用现状,并对该材料未来的发展方向进行了展望,为高性能铜基复合材料的研究和应用提供参考。

     

  • 图  1  粉末冶金法制备复合材料工艺流程图

    Figure  1.  Process flow chart of composite materials prepared by powder metallurgy

    图  2  放电等离子烧结装置示意图

    Figure  2.  Schematic diagram of spark plasma sintering device

    DC—Direct current

    图  3  (a) 搅拌铸造示意图;(b) 挤压铸造示意图

    Figure  3.  (a) Schematic diagram of stirring casting; (b) Schematic diagram of squeeze casting

    图  4  Cu粉 (a) 和氧化石墨烯纳米片 (b) 的FESEM图像[34]

    Figure  4.  FESEM images of Cu powder (a) and graphene oxide nanoplatelets (b)[34]

    图  5  混杂增强机制示意图:(a) 微/纳米颗粒混杂;(b) 摩擦磨损行为

    Figure  5.  Schematic diagram of hybrid enhancement mechanism: (a) Micro/nano particle hybrid; (b) Friction and wear behavior

    表  1  碳材料增强铜基复合材料的性能对比

    Table  1.   Performance comparison of carbon reinforced copper matrix composites

    ReinforcementPretreatment and molding methodsΩ/(%IACS)Rm/MPaHVK1/(W·m−1·K−1)Ref.
    CarbonPowder metallurgy8.212771[14]
    CarbonHot-press sintering56789[15]
    CarbonPowder metallurgy354.8228[16]
    GrapheneCVD120130[17]
    GrapheneCVD + deformation98595[18]
    GrapheneBall mill and SPS9462.9[6]
    GrapheneMLM process and SPS88320178[19]
    Carbon nanotubesCopper facing and SPS73.0341.2110[20]
    Carbon nanotubesBall mill and SPS71.0225104.5[21]
    Carbon nanotubesMLM and SPS455[22]
    Single-walled carbon nanotubesElectrolytic codeposition141700385[23]
    DiamondComposite electroplating846[24]
    DiamondPulse plasma sintering690[25]
    Carbon fibreElectrodeposition and vacuum hot pressing58684[26]
    Carbon fibreElectroplating and vacuum sintering97.150.6[27]
    Carbon fibreCVD31.667[28]
    Notes: Ω—Electrical conductivity; Rm—Tensile strength; HV—Hardness; K1—Thermal conductivity; SPS—Spark plasma sintering; CVD—Chemical vapor deposition; MLM—Molecular level mixing; IACS—International annealed copper standard.
    下载: 导出CSV

    表  2  铜基复合材料颗粒增强相参数

    Table  2.   Particle reinforced phase parameters of copper matrix composites

    ReinforcementK2/(g·cm−3)ρ/(10−6 Ω·m)Melting point/KK1/(W·cm−1·K−1)CTE/(10−6 K)E/GPa
    Al2O3 3.67 >1012 2 323 1.59 7.92 380
    SiC 3.21 0.1 2 700 1 4.4 480
    WC 15.63 0.19 2 993 3.2 5.09 669
    TiB2 4.5 0.9 3 498 6.6 8.28 514
    TiN 5.21 0.217 2 950 29.1 9.35 350
    TiC 4.93 0.6 3 420 1.71 7.6 269
    TaC 14.3 0.3~0.4 4 150 0.21 6.46 366
    Notes: K2—Densification; ρ—Resistivity; CTE—Coefficient of thermal expansion; E—Elastic modulus.
    下载: 导出CSV
  • [1] 吴德振, 杨为良, 徐恒雷, 等. 高强高导铜合金的应用与制备方法[J]. 热加工工艺, 2019, 48(4):19-25.

    WU Dezhen, YANG Weiliang, XU Henglei, et al. Application and preparation methods of high strength and high conductivity Cu alloy[J]. Hot Working Technology,2019,48(4):19-25(in Chinese).
    [2] SAMAL P, NEWKIRK J. Powder metallurgy methods and applications, ASM handbook, volume 7, powder metallurgy[M]. Geauga: ASM International, 2015.
    [3] YANG Z, GE Y, ZHANG X, et al. Effect of carbon content on friction and wear properties of copper matrix composites at high speed current-carrying[J]. Materials,2019,12(18):2881.
    [4] YUE H, YAO L, GAO X, et al. Effect of ball-milling and graphene contents on the mechanical properties and fracture mechanisms of graphene nanosheets reinforced copper matrix composites[J]. Journal of Alloys and Compounds,2017,691:755-762. doi: 10.1016/j.jallcom.2016.08.303
    [5] LI X, YAN S, CHEN X, et al. Microstructure and mechanical properties of graphene-reinforced copper matrix composites prepared by in-situ CVD, ball-milling, and spark plasma sintering[J]. Journal of Alloys and Compounds,2020,834:155182. doi: 10.1016/j.jallcom.2020.155182
    [6] SALVO C, MANGALARAJA R, UDAYABASHKAR R, et al. Enhanced mechanical and electrical properties of novel graphene reinforced copper matrix composites[J]. Journal of Alloys and Compounds,2019,777:309-316. doi: 10.1016/j.jallcom.2018.10.357
    [7] ZHOU M Y, REN L B, FAN L L, et al. Progress in research on hybrid metal matrix composites[J]. Journal of Alloys and Compounds,2020,838:155274. doi: 10.1016/j.jallcom.2020.155274
    [8] TAO J M, ZHU X K, TIAN W W, et al. Properties and microstructure of Cu/diamond composites prepared by spark plasma sintering method[J]. Transactions of Nonferrous Metals Society of China,2014,24(10):3210-3214. doi: 10.1016/S1003-6326(14)63462-2
    [9] 李韶林, 宋克兴, 国秀花. 制备方法对Al2O3/Cu复合材料组织和性能的影响[J]. 特种铸造及有色合金, 2013, 33(3):272-275.

    LI Shaolin, SONG Kexing, GUO Xiuhua. Effect of preparation techniques on microstructures and properties of Al2O3/Cu composites[J]. Special Casting & Nonferrous Alloys,2013,33(3):272-275(in Chinese).
    [10] GHOSH S. Electroless copper deposition: A critical review[J]. Thin Solid Films,2019,669:641-658. doi: 10.1016/j.tsf.2018.11.016
    [11] 陈春姣, 包宏伟, 李燕, 等. 石墨烯增强铜基复合材料研究进展[J]. 复合材料学报, 2023, 40(3):1248-1262.

    CHEN Chunjiao, BAO Hongwei, LI Yan, et al. Research progress of graphene reinforced copper matrix composites[J]. Acta Materiae Compositae Sinica,2023,40(3):1248-1262(in Chinese).
    [12] 王军, 李林聪, 王天顺, 等. 石墨烯增强铜基复合材料强度及机理研究[J]. 河北科技大学学报, 2023, 44(1):58-66.

    WANG Jun, LI Lincong, WANG Tianshun, et al. Study on strength and mechanism of graphene-reinforced copper matrix composites[J]. Journal of Hebei University of Science and Technology,2023,44(1):58-66(in Chinese).
    [13] 冯孟奇, 贾淑果, 李韶林, 等. 铜/碳复合材料的研究进展[J]. 材料热处理学报, 2020, 41(12):25-36.

    FENG Mengqi, JIA Shuguo, LI Shaolin, et al. Research progress of Cu/C composites[J]. Transactions of Materials and Heat Treatment,2020,41(12):25-36(in Chinese).
    [14] XU E, HUANG J, LI Y, et al. Graphite cluster/copper-based powder metallurgy composite for pantograph slider with well-behaved mechanical and wear performance[J]. Powder Technology,2019,344:551-560. doi: 10.1016/j.powtec.2018.12.059
    [15] SADHUKHAN P, SUBBARAO R. Study of mechanical and tribological properties of hybrid copper metal matrix composite reinforced with graphite and SiC[J]. Materials Today: Proceedings,2021,39:1801-1806. doi: 10.1016/j.matpr.2020.08.677
    [16] PRADEEP P, RAO M A, SURESHA B, et al. Mechanical behaviour and tribological properties of cenosphere-copper composites using design of experiments[J]. Materials Today: Proceedings,2021,43:1798-1809. doi: 10.1016/j.matpr.2020.10.494
    [17] MEHTA R, CHUGH S, CHEN Z. Enhanced electrical and thermal conduction in graphene-encapsulated copper nanowires[J]. Nano Letters,2015,15(3):2024-2030. doi: 10.1021/nl504889t
    [18] LI T, WANG Y, YANG M, et al. High strength and conductivity copper matrix composites reinforced by in-situ graphene through severe plastic deformation processes[J]. Journal of Alloys and Compounds,2021,851:156703. doi: 10.1016/j.jallcom.2020.156703
    [19] CHEN F, YING J, WANG Y, et al. Effects of graphene content on the microstructure and properties of copper matrix composites[J]. Carbon,2016,96:836-842. doi: 10.1016/j.carbon.2015.10.023
    [20] DAOUSH W M, LIM B K, MO C B, et al. Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process[J]. Materials Science and Engineering: A,2009,513-514:247-253. doi: 10.1016/j.msea.2009.01.073
    [21] 聂俊辉, 贾成厂, 张亚丰, 等. 机械球磨与放电等离子体烧结制备碳纳米管/铜复合材料[J]. 粉末冶金工业, 2011, 21(5):44-50.

    NIE Junhui, JIA Chengchang, ZHANG Yafeng, et al. Fabrication of carbon nonotubes/copper composites using mechanical milling and spark plasma sintering[J]. Powder Metallurgy Industry,2011,21(5):44-50(in Chinese).
    [22] KIM K T, CHA S I, HONG S H. Hardness and wear resistance of carbon nanotube reinforced Cu matrix nanocomposites[J]. Materials Science and Engineering: A,2007,449:46-50.
    [23] CHEN Q. Carbon nanotube reinforced metal composites: US patent, 7651766[P]. 2010-01-26.
    [24] WU Y, LUO J, WANG Y, et al. Critical effect and enhanced thermal conductivity of Cu-diamond composites reinforced with various diamond prepared by composite electroplating[J]. Ceramics International,2019,45(10):13225-13234. doi: 10.1016/j.ceramint.2019.04.008
    [25] ABYZOV A M, KRUSZEWSKI M J, CIUPINSKI L, et al. Diamond-tungsten based coating-copper composites with high thermal conductivity produced by pulse plasma sintering[J]. Materials Design,2015,76:97-109. doi: 10.1016/j.matdes.2015.03.056
    [26] WAN Y Z, WANG Y L, LUO H L, et al. Effects of fiber volume fraction, hot pressing parameters and alloying elements on tensile strength of carbon fiber reinforced copper matrix composite prepared by continuous three-step electrodeposition[J]. Materials Science and Engineering: A,2000,288(1):26-33. doi: 10.1016/S0921-5093(00)00887-X
    [27] 陈文革, 王娇娇, 马佳, 等. 镀铬碳纤维增强铜基复合材料的组织与性能[J]. 兵器材料科学与工程, 2017, 40(2):42-47.

    CHEN Wen'ge, WANG Jiaojiao, MA Jia, et al. Microstructure and properties of Cr-coated carbon fiber-reinforced copper matrix composites[J]. Ordnance Material Science and Engineering,2017,40(2):42-47(in Chinese).
    [28] WANG P, WANG L, KANG K, et al. Microstructural, mechanical and tribological performances of carbon fiber reinforced copper/carbon composites[J]. Composites Part A: Applied Science and Manufacturing,2021,142:106247. doi: 10.1016/j.compositesa.2020.106247
    [29] HOU B Q, GUO H X, ZHANG N L, et al. Anisotropic friction behavior of aligned and oriented graphite flakes/copper composite[J]. Carbon,2022,186:64-74. doi: 10.1016/j.carbon.2021.09.074
    [30] KUMAR J, MONDAL S. Microstructure and properties of graphite-reinforced copper matrix composites[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2018,40:196. doi: 10.1007/s40430-018-1115-7
    [31] LI J F, ZHANG L, XIAO J K, et al. Sliding wear behavior of copper-based composites reinforced with graphene nanosheets and graphite[J]. Transactions of Nonferrous Metals Society of China,2015,25(10):3354-3362. doi: 10.1016/S1003-6326(15)63970-X
    [32] 徐祥, 宋玲玲, 官雨柔, 等. 石墨烯增强金属基复合材料制备方法的研究进展[J]. 材料热处理学报, 2019, 40(5):24-31.

    XU Xiang, SONG Lingling, GUAN Yurou, et al. Research progress in preparation of graphene reinforced metal matrix composites[J]. Transactions of Materials and Heat Treatment,2019,40(5):24-31(in Chinese).
    [33] GAO X, YUE H, GUO E, et al. Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites[J]. Powder Technology,2016,301:601-607. doi: 10.1016/j.powtec.2016.06.045
    [34] ASGHARZADEH H, ESLAMI S. Effect of reduced graphene oxide nanoplatelets content on the mechanical and electrical properties of copper matrix composite[J]. Journal of Alloys and Compounds,2019,806:553-565. doi: 10.1016/j.jallcom.2019.07.183
    [35] JIN B, XIONG D B, TAN Z, et al. Enhanced corrosion resistance in metal matrix composites assembled from graphene encapsulated copper nanoflakes[J]. Carbon,2019,142:482-490. doi: 10.1016/j.carbon.2018.10.088
    [36] ZHANG X, SHI C, LIU E, et al. High-strength graphene network reinforced copper matrix composites achieved by architecture design and grain structure regulation[J]. Materials Science and Engineering: A,2019,762:138063. doi: 10.1016/j.msea.2019.138063
    [37] 吕吉敏, 章潇慧, 熊定邦, 等. 超高导电铜基材料的研究现状与展望[J]. 中国材料进展, 2018, 37(6):453-462.

    LV Jimin, ZHANG Xiaohui, XIONG Dingbang, et al. Progress and prospect of ultra-conductive copper matrix materials[J]. Materials China,2018,37(6):453-462(in Chinese).
    [38] WU S, LIU Y, YU J, et al. A study of the structure, mechanical and corrosion properties of the copper matrix composites with CNTs/Cu foams as 3-dimensional skeleton reinforcements[J]. Journal of Materials Research and Technology,2023,23:5066-5081. doi: 10.1016/j.jmrt.2023.02.136
    [39] XIE Z, GUO H, ZHANG X, et al. Enhancing thermal conductivity of diamond/Cu composites by regulating distribution of bimodal diamond particles[J]. Diamond and Related Materials,2019,100:107564. doi: 10.1016/j.diamond.2019.107564
    [40] XIE Z, GUO H, ZHANG X, et al. Tailoring the thermal and mechanical properties of diamond/Cu composites by interface regulation of Cr alloying[J]. Diamond and Related Materials,2021,114:108309. doi: 10.1016/j.diamond.2021.108309
    [41] WU Y, TANG Z, WANG Y, et al. High thermal conductive Cu-diamond composites synthesized by electrodeposition and the critical effects of additives on void-free composites[J]. Ceramics International,2019,45(16):19658-19668. doi: 10.1016/j.ceramint.2019.06.215
    [42] WU Y, SUN Y, LUO J, et al. Microstructure of Cu-diamond composites with near-perfect interfaces prepared via electroplating and its thermal properties[J]. Materials Characterization,2019,150:199-206. doi: 10.1016/j.matchar.2019.02.018
    [43] WU Y, LAI L, WANG Y, et al. Optimization of external and internal conditions for high thermal conductive Cu-diamond composites produced by electroplating[J]. Diamond and Related Materials,2019,98:107478. doi: 10.1016/j.diamond.2019.107478
    [44] JAHANI A, JAMSHIDI AVAL H, RAJABI M, et al. Effects of Ti2SnC MAX phase reinforcement content on the properties of copper matrix composite produced by friction stir back extrusion process[J]. Materials Chemistry and Physics,2023,299:127497. doi: 10.1016/j.matchemphys.2023.127497
    [45] WU J, LI Z, WEN G, et al. Structure analysis of friction layer of copper matrix composites reinforced by composite ceramic (TiC-B4C) powder[J]. Ceramics International,2023,49(14):23140-23152. doi: 10.1016/j.ceramint.2023.04.142
    [46] DINAHARAN I, ALBERT T. Effect of reinforcement type on microstructural evolution and wear performance of copper matrix composites via powder metallurgy[J]. Materials Today Communications,2023,34:105250. doi: 10.1016/j.mtcomm.2022.105250
    [47] 湛永钟. 铜基复合材料及其制备技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2015.

    ZHAN Yongzhong. Copper matrix composite and its preparation technology[M]. Harbin: Harbin Institute of Technology Press, 2015(in Chinese).
    [48] 胡翠欣, 张修庆, 吕玉廷, 等. 放电等离子法制备SiC/Cu复合材料及其性能研究[J]. 热加工工艺, 2013, 42(6):117-121, 124.

    HU Cuixin, ZHANG Xiuqing, LV Yuting, et al. Study on properties of SiC/Cu composite prepared by spark plasma sintering[J]. Hot Working Technology,2013,42(6):117-121, 124(in Chinese).
    [49] GAN K K, GU M Y. Mechanical alloying process and mechanical properties of Cu-SiCp composite[J]. Materials Science and Technology,2006,22(8):960-964. doi: 10.1179/174328406X102363
    [50] AKRAMIFARD H R, SHAMANIAN M, SABBAGHIAN M, et al. Microstructure and mechanical properties of Cu/SiC metal matrix composite fabricated via friction stir processing[J]. Materials & Design,2014,54:838-844. doi: 10.1016/j.matdes.2013.08.107
    [51] KUMAR S, YADAV A, PATEL V, et al. Mechanical behaviour of SiC particulate reinforced Cu alloy based metal matrix composite[J]. Materials Today: Proceedings,2021,41:186-190. doi: 10.1016/j.matpr.2020.08.580
    [52] WEGLEWSKI W, PITCHAI P, CHMIELEWSKI M, et al. Thermal conductivity of Cu-matrix composites reinforced with coated SiC particles: Numerical modeling and experimental verification[J]. International Journal of Heat Mass Transfer,2022,188:122633. doi: 10.1016/j.ijheatmasstransfer.2022.122633
    [53] CELEBI E G, IPEK M, ZEYTIN S, et al. An investigation of the effect of SiC particle size on Cu-SiC composites[J]. Composites Part B: Engineering,2012,43(4):1813-1822. doi: 10.1016/j.compositesb.2012.01.006
    [54] 刘有金, 张云龙, 高晶, 等. SiC颗粒尺寸对SiCp/Cu基复合材料热膨胀系数的影响[J]. 兵器材料科学与工程, 2013, 36(1):118-121.

    LIU Youjin, ZHANG Yunlong, GAO Jing, et al. Effect of SiC particle size on thermal expansion coefficients of SiCp/Cu composites[J]. Ordnance Material Science and Engineering,2013,36(1):118-121(in Chinese).
    [55] SOMANI N, TYAGI Y, KUMAR P, et al. Enhanced tribological properties of SiC reinforced copper metal matrix composites[J]. Materials Research Express,2018,6(1):016549. doi: 10.1088/2053-1591/aae6dc
    [56] 白芳. 原位纳米TiCx颗粒增强铜基复合材料组织与性能研究[D]. 长春: 吉林大学, 2017.

    BAI Fang. Microstructures and properties of in situ nano TiCx particles reinforced Cu-matrix composites[D]. Changchun: Jilin University, 2017(in Chinese).
    [57] 李月英, 倪慨宇, 祝夫文. TiC颗粒增强铜基复合材料的研究[J]. 粉末冶金技术, 2018, 36(2):106-110.

    LI Yueying, NI Kaiyu, ZHU Fuwen. Study of TiC particle-reinforced copper matrix composite materials[J]. Powder Metallurgy Technology,2018,36(2):106-110(in Chinese).
    [58] 闫洁, 江开勇. TiC/Cu复合材料的PM法制备与性能[J]. 重庆理工大学学报(自然科学), 2012, 26(9):42-45, 60.

    YAN Jie, JIANG Kaiyong. Fabrication with power metallurgy and study on properties of TiC/Cu composites[J]. Journal of Chongqing University of Technology (Natural Science),2012,26(9):42-45, 60(in Chinese).
    [59] 张煜, 宋美慧, 李岩, 等. 氮化铝颗粒增强铜基复合材料的制备及性能[J]. 黑龙江科技大学学报, 2016, 26(1):48-52. doi: 10.3969/j.issn.2095-7262.2016.01.012

    ZHANG Yu, SONG Meihui, LI Yan, et al. Preparation and properties of AlN particles reinforced Cu-base composites[J]. Journal of Heilongjiang University of Science and Technology,2016,26(1):48-52(in Chinese). doi: 10.3969/j.issn.2095-7262.2016.01.012
    [60] 刘佳思, 纪箴, 贾成厂, 等. 纳米AlN颗粒弥散增强铜基复合材料的制备及性能研究[J]. 粉末冶金技术, 2017, 35(5):323-327.

    LIU Jiasi, JI Zhen, JIA Chengchang, et al. Preparation and performance study of nano AlN particle dispersion reinforced copper matrix composite materials[J]. Powder Metallurgy Technology,2017,35(5):323-327(in Chinese).
    [61] RAJKUMAR K, ARAVINDAN S. Mechanical, electrical, and tribological properties of copper-graphite composites[M]// Composite Materials: Processing, Applications, Characterizations. Berlin: Springer, 2017: 433-455.
    [62] 杜建华, 刘贵民, 宋娅玲, 等. 纳米SiC晶须增强铜基纳米复合材料摩擦学性能研究[J]. 装甲兵工程学院学报, 2009, 23(1):77-80. doi: 10.3969/j.issn.1672-1497.2009.01.019

    DU Jianhua, LIU Guimin, SONG Yaling. Study on the tribological performance of nano-SiCw reinforced Cu-based composites[J]. Journal of Armored Forces,2009,23(1):77-80(in Chinese). doi: 10.3969/j.issn.1672-1497.2009.01.019
    [63] FENG J, LIANG S, GUO X, et al. Electrical conductivity anisotropy of copper matrix composites reinforced with SiC whiskers[J]. Nanotechnology Reviews,2019,8(1):26. doi: 10.1515/ntrev-2019-0027
    [64] LUO X, YANG Y, LI J, et al. The effect of fabrication processes on the mechanical and interfacial properties of SiCf/Cu-matrix composites[J]. Composites Part A: Applied Science and Manufacturing,2007,38(10):2102-2108. doi: 10.1016/j.compositesa.2007.07.016
    [65] LUO X, YANG Y, LI J, et al. Effect of nickel on the interface and mechanical properties of SiCf/Cu composites[J]. Journal of Alloys and Compounds,2009,469(1-2):237-243. doi: 10.1016/j.jallcom.2008.01.089
    [66] LUO X, YANG Y, LIU C, et al. The thermal expansion behavior of unidirectional SiC fiber-reinforced Cu-matrix composites[J]. Scripta Materialia,2008,58(5):401-404. doi: 10.1016/j.scriptamat.2007.10.022
    [67] LUO X, YANG Y, LIU Y, et al. The fabrication and property of SiC fiber reinforced copper matrix composites[J]. Materials Science and Engineering: A,2007,459(1-2):244-250. doi: 10.1016/j.msea.2007.01.010
    [68] 冯江, 宋克兴, 梁淑华. 混杂增强铜基复合材料的设计与研究进展[J]. 材料热处理学报, 2018, 39(5):1-9.

    FENG Jiang, SONG Kexing, LIANG Shuhua, et al. Design and research progress of hybrid reinforced copper matrix composites[J]. Transactions of Materials and Heat Treatment,2018,39(5):1-9(in Chinese).
    [69] 邹存磊. 原位Cu-Ti(Zr)-B颗粒增强铜基复合材料的制备与性能研究[D]. 大连: 大连理工大学, 2018.

    ZOU Cunlei. Study on the fabrication and properties of in situ Cu-Ti(Zr)-B particulate reinforced copper matrix composites[D]. Dalian: Dalian University of Technology, 2018(in Chinese).
    [70] 张胜利, 国秀花, 宋克兴, 等. 多粒径TiB2颗粒增强铜基复合材料的制备与载流摩擦磨损性能[J]. 复合材料学报, 2019, 36(10):2348-2356.

    ZHANG Shengli, GUO Xiuhua, SONG Kexing, et al. Preparation and electrical wear characteristics of copper matrix composites reinforced with mixing sized TiB2 particles[J]. Acta Materiae Compositae Sinica,2019,36(10):2348-2356(in Chinese).
    [71] 刘勇, 李辉, 杨志强, 等. TiC粒径对颗粒增强铜基复合材料高温变形行为的影响[J]. 材料热处理学报, 2015, 36(8):1-5.

    LIU Yong, LI Hui, YANG Zhiqiang, et al. Effect of TiC particle size of particle-strengthen Cu-based composites on deformation behavior at high temperature[J]. Transactions of Materials and Heat Treatment,2015,36(8):1-5(in Chinese).
    [72] ZHU J, CAI Y, ZHANG Y, et al. Particle-reinforced Cu matrix composites fabricated by sintering core-shell-type amorphous/crystalline composite powders[J]. Materials Science Engineering: A,2022,854:143823. doi: 10.1016/j.msea.2022.143823
    [73] SALVO C, CHICARDI E, HERNANDEZ-SAZ J, et al. Microstructure, electrical and mechanical properties of Ti2AlN MAX phase reinforced copper matrix composites processed by hot pressing[J]. Materials Characterization,2021,171:110812. doi: 10.1016/j.matchar.2020.110812
    [74] PRABHU T R, VARMA V K, VEDANTAM S. Tribological and mechanical behavior of multilayer Cu/SiC + Gr hybrid composites for brake friction material applications[J]. Wear,2014,317(1-2):201-212. doi: 10.1016/j.wear.2014.06.006
    [75] LIANG S H, LI W Z, JIANG Y H, et al. Microstructures and properties of hybrid copper matrix composites reinforced by TiB whiskers and TiB2 particles[J]. Journal of Alloys and Compounds,2019,797:589-594. doi: 10.1016/j.jallcom.2019.05.129
    [76] 周永欣, 徐飞, 吕振林, 等. SiC和石墨颗粒混杂增强铜基复合材料的摩擦磨损性能[J]. 机械工程材料, 2015, 39(2):90-93, 97.

    ZHOU Yongxin, XU Fei, LV Zhenlin, et al. Friction and wear properties of Cu matrix composites hybrid reinforced with SiC and graphite particles[J]. Materials for Mechanical Engineering,2015,39(2):90-93, 97(in Chinese).
    [77] GUO X, YANG Y, SONG K, et al. Arc erosion resistance of hybrid copper matrix composites reinforced with CNTs and micro-TiB2 particles[J]. Journal of Materials Research and Technology,2021,11:1469-1479. doi: 10.1016/j.jmrt.2021.01.084
    [78] JAMWAL A, SETH P P, KUMAR D, et al. Microstructural, tribological and compression behaviour of copper matrix reinforced with graphite-SiC hybrid composites[J]. Materials Chemistry Physics,2020,251:123090. doi: 10.1016/j.matchemphys.2020.123090
    [79] DUAN D, YIN X, WANG Q, et al. Performance evaluation of borohydride electrooxidation reaction with ternary alloy Au-Ni-Cu/C catalysts[J]. Journal of Applied Electrochemistry,2018,48:835-847. doi: 10.1007/s10800-018-1208-0
    [80] WANG S, SHEN B, SONG Q. Kinetics of acetylene hydrochlorination over bimetallic Au-Cu/C catalyst[J]. Catalysis Letters,2010,134:102-109. doi: 10.1007/s10562-009-0216-4
    [81] BUKHTIYAROV A, PROSVIRIN I, CHETYRIN I, et al. Thermal stability of Ag-Au, Cu-Au, and Ag-Cu bimetallic nanoparticles supported on highly oriented pyrolytic graphite[J]. Kinetics Catalysis Letters,2016,57:704-711. doi: 10.1134/S0023158416050049
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  1472
  • HTML全文浏览量:  404
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-09
  • 修回日期:  2023-05-14
  • 录用日期:  2023-05-17
  • 网络出版日期:  2023-05-24
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回