Loading [MathJax]/jax/output/SVG/jax.js

掺杂改性的氧化锡电子传输层在钙钛矿太阳能电池中研究进展

华鹏程, 李柯欣, 陈果, 曹进

华鹏程, 李柯欣, 陈果, 等. 掺杂改性的氧化锡电子传输层在钙钛矿太阳能电池中研究进展[J]. 复合材料学报, 2025, 42(2): 617-632. DOI: 10.13801/j.cnki.fhclxb.20240701.002
引用本文: 华鹏程, 李柯欣, 陈果, 等. 掺杂改性的氧化锡电子传输层在钙钛矿太阳能电池中研究进展[J]. 复合材料学报, 2025, 42(2): 617-632. DOI: 10.13801/j.cnki.fhclxb.20240701.002
HUA Pengcheng, LI Kexin, CHEN Guo, et al. Research progress on doping modified tin oxide electron transport layer in perovskite solar cells[J]. Acta Materiae Compositae Sinica, 2025, 42(2): 617-632. DOI: 10.13801/j.cnki.fhclxb.20240701.002
Citation: HUA Pengcheng, LI Kexin, CHEN Guo, et al. Research progress on doping modified tin oxide electron transport layer in perovskite solar cells[J]. Acta Materiae Compositae Sinica, 2025, 42(2): 617-632. DOI: 10.13801/j.cnki.fhclxb.20240701.002

掺杂改性的氧化锡电子传输层在钙钛矿太阳能电池中研究进展

基金项目: 国家重点研发计划项目(2022YFE0109000)
详细信息
    通讯作者:

    曹进,博士,副研究员,硕士生导师,研究方向为有机发光二极管、钙钛矿太阳能电池等薄膜半导体器件 E-mail: cj2007@shu.edu.cn

  • 中图分类号: TB332;TM914.4;TM23

Research progress on doping modified tin oxide electron transport layer in perovskite solar cells

Funds: The State's Key Project of Research and Development Plan (2022YFE0109000)
  • 摘要:

    自从制备出第一件钙钛矿太阳能电池器件以来,钙钛矿太阳能电池的光电转换效率已从3.8%飞跃至26.1%,是下一代商用太阳能电池的有力竞争者。近十年来,SnO2因其适宜的能带结构、较好的电子传输性能、简单的制备工艺及良好的化学稳定性成为n-i-p型钙钛矿太阳能电池电子传输层材料的首选。虽然SnO2电子传输层优点众多,但还存在电子传输性能较差、传输层与钙钛矿层之间能级偏移、界面缺陷造成光生载流子大量损失及成膜性能较差容易出现针孔等问题。鉴于此,本文总结了上述问题形成的主要原因,并通过金属离子掺杂、卤素离子掺杂、有机分子掺杂、纳米颗粒掺杂等不同溶液掺杂工艺研究结果的分析,阐明了不同掺杂工艺在解决溶液法制备的SnO2薄膜缺陷及在钙钛矿电池器件中应用的优点与缺点,并针对钙钛矿器件掺杂SnO2传输层性能优化做出展望。

     

    Abstract:

    Since the preparation of the first perovskite solar cell device, the photoelectric conversion efficiency of perovskite solar cells has jumped from 3.8% to 26.1%, making them a favorable competitor for the next generation of commercial solar cells. In the past decade, tin oxide has become the preferred electron transport layer material for n-i-p perovskite solar cells due to its suitable band structure, good electron transfer performance, simple preparation process, and good chemical stability. Although tin oxide electron transport layer has many advantages, there are still issues that need to be improved in terms of electron transport performance, such as energy level shift between the transport layer and the perovskite layer, interface defects causing significant loss of photo generated carriers, and poor film-forming performance that is prone to pinholes. In view of this, this article summarizes the main reasons for the formation of the above problems, and analyzes the research results of different solution doping processes such as metal ion doping, halogen ion doping, organic molecule doping, and nanoparticle doping. It elucidates the advantages and disadvantages of different doping processes in solving the defects of solution based tin oxide thin films and their applications in perovskite battery devices, and makes prospects for optimizing the performance of doped tin oxide transport layers in perovskite devices.

     

  • 近些年来,随着科学技术的发展,越来越多的通信设备被研发出来。尤其是5G技术投入使用,使得人们在享受更快更便利生活的同时,也面临着日益增多的电磁波辐射。对于航空航天领域来说,克服电磁波对飞机的干扰是保障人身安全必不可少的一步。然而,伴随着碳纤维增强复合材料替代合金在飞机上的大量使用,如何在保证树脂基复合材料力学性能的同时提高复合材料的电磁干扰屏蔽效能(Electromagnetic interference shielding effectiveness,EMI SE)成为了一个亟待解决的难题。

    碳纤维增强复合材料虽然表现出十分优异的力学性能和功能性[1],但其导电性相对合金却显著降低,EMI SE也就随之降低。碳纳米管(Carbon nanotube,CNT)是一种具有良好导电性的材料,其电阻率最小可以达到5.1×10−6 Ω·cm[2]。而且由于其巨大的比表面积,引入适量的CNT,有望在改善电磁屏蔽性能的同时使得树脂基复合材料的力学性能也获得进一步提升[3]。然而,大部分关于电磁屏蔽功能材料的研究都着重关注EMI SE的提高,材料强度尽管可能也有所提升,却很难达到几百兆帕[4-7],难以实现结构-功能一体化。

    并且,CNT虽然具有优异的导电性,但是其在树脂基体中极易团聚,导致最终在基体中形成的导电通路并不理想,甚至根本无法形成导电通路。因此,要想真正达到用CNT来提升复合材料的导电性,如何使CNT均匀分散是一个需要克服的难题。有人提出可以通过化学气相沉积(CVD)等方法对CNT进行处理来减少团聚[8-11],但这些方法由于工艺控制复杂、效率低等,很难用于工业生产,且较少有适用于耐高温基体树脂的报道。

    另一方面,目前与碳纤维搭配使用的树脂基体以热固性树脂,尤其是环氧树脂居多[12-16]。但是热固性树脂不耐高温和无法二次加工等缺点随使用量的增大而日益尖锐。与此同时,以聚醚醚酮(PEEK)为代表的热塑性树脂基复合材料(CFRTP)则因其可回收、可反复熔融加工,以及优异的冲击韧性、耐湿热性、耐溶剂腐蚀性等优势而越加受到航空界的关注[17-18]。然而,正是由于PEEK优良的耐腐蚀性和化学稳定性[19-21],导致它与CF的界面相互作用相对环氧树脂而言更弱,在受到外力时,容易发生层间分层破坏。

    本文设计并制备了CNT网络和CF织物协同增强PEEK热塑性复合材料,拟提供一种可工业化制备兼具优异力学性能和EMI SE的耐高温热塑性复合材料的途径和优化工艺。使用统一上浆剂对CF和CNT同时进行表面处理,以期改善CNT、CF与PEEK之间的界面相互作用,从而分别避免CNT团聚和CF与基体的脱粘。研究了CNT含量和界面改性对材料结构与性能的影响。

    碳纳米管(CNT),XFM19,南京先丰纳米材料科技有限公司;碳纤维织物(T300 3K 5枚缎纹),日本东丽(Toray)公司;聚醚醚酮粉末(PEEK),吉林省中研高分子材料股份有限公司;导电银胶DAD-2,上海市合成树脂研究所;浓硫酸、浓硝酸、米氏酸、丙酮、二甲基亚砜(DMSO)、乙醇、邻苯二甲酸氢钾、氢氧化钠,国药集团化学试剂有限公司;去离子水。

    过滤反应釜装置,定制,斯谱瑞(上海)生物科技有限公司;球磨机,PDM-DECO-V2L,长沙德科仪器设备有限公司;0.5MN真空热压机,FCC-D500×500×1/ZK,宜兴市宜轻机械有限公司。

    于500 mL的三口烧瓶中加入300 mL浓硫酸,并将此烧瓶固定于50℃的油浴中。称取15 g提前烘干的PEEK粉末,用电动搅拌器边慢速搅拌边缓慢加入PEEK粉末,以防止PEEK粉末加入过快导致PEEK粉末团聚。全部加完PEEK粉末后,将电动搅拌器的转速提高到400 r/min,持续反应3.5 h。反应结束后,将溶液缓慢倒入冰水中,静置12 h。最后用去离子水重复洗涤产物至表面呈中性。烘干后即得到磺化聚醚醚酮(SPEEK)。将制备好的SPEEK以0.1wt%的质量分数溶于DMSO中,得到SPEEK上浆剂。

    V(H2SO4)∶V(HNO3)=3∶1的比例向反应釜中加入1500 mL浓硫酸和500 mL浓硝酸,保持65℃水浴。用电动搅拌器充分搅拌均匀后,缓慢加入10 g CNT。持续反应3 h后,将原液用去离子水稀释至pH值为2~3,并静置分层。最后用水泵抽滤后,充分烘干,得到酸化碳纳米管(Acidified-CNT,ACNT)。

    采用定制压机制备SCF-CNT/PEEK层合板。将碳纤维织物(CF)放置在70℃水浴加热的丙酮中反应10 h,以去除CF表面的环氧浆料,反应结束用去离子水充分洗涤CF后烘干。同时将米氏酸以m(米氏酸)∶V(乙醇)=1.5∶100的比例溶于乙醇中,并用超声分散仪使其充分溶解,而后用溶解好的米氏酸浸泡上述去好浆的CF,期间不断翻动CF,使其活化均匀。洗涤烘干后得到活化CF,即为ACF。最后用1.3节中制备好的SPEEK上浆剂分别浸泡ACNT与ACF,并用恒温振荡器振荡24 h,使SPEEK上浆剂分散均匀。上浆结束后充分烘干得到SCNT与SCF。按照表1配方,保持总质量为25 g,以SCNT质量占总体系质量的分数为1wt%、3wt%、5wt%,分别称取SCNT与PEEK粉末,配制成SCF-1wt%SCNT/PEEK、SCF-3wt%SCNT/PEEK、SCF-5wt%SCNT/PEEK体系;另外按照ACNT质量占总体系质量的分数为0wt%、1wt%称取ACNT与PEEK粉末,配制成SCF-0wt% ACNT/PEEK和SCF-1wt%ACNT/PEEK体系。

    表  1  不同组分SCF-CNT/PEEK层合板中原料的质量
    Table  1.  The mass of raw materials in SCF-CNT/PEEK laminates with different components
    No.SampleMass of SCNT/gMass of ACNT/gMass of PEEK/g
    1SCF-0wt%ACNT/PEEK0025.00
    2SCF-1wt%ACNT/PEEK00.2524.75
    3SCF-1wt%SCNT/PEEK0.25024.75
    4SCF-3wt%SCNT/PEEK0.75024.25
    5SCF-5wt%SCNT/PEEK1.25023.75
    Notes: PEEK—Poly(ether-ether-ketone); SCF—Sized carbon fiber; SCNT—Sized carbon nanotube; ACNT—Activated carbon nanotube.
    下载: 导出CSV 
    | 显示表格

    将两种CNT粉末与PEEK充分球磨24 h混合均匀后,按照图1的方式铺层,其中SCF按照0°/90°铺层。而后放进定制压机中,以加工温度395℃、预压力0.7 MPa,维持10 min;预成型压力0.8 MPa,维持5 min;成型压力1 MPa,维持20 min的工艺条件来成型,保压并自然冷却至室温后脱模,得到SCF-SCNT/PEEK与SCF-ACNT/PEEK两种层合板,其厚度约为1 mm。按照CNT含量及类型的不同,分别编号,详见表1

    图  1  SCF-SCNT/PEEK层合板模压成型流程图
    Figure  1.  Schematic diagram for process of SCF-SCNT/PEEK Laminates
    CF—Carbon fiber; PEEK—Poly(ether-ether-ketone); CNT—Carbon nanotube; DMSO—Dimethyl sulfoxide; SPEEK—Sulfonated poly(ether-ether-ketone); SCF—Sized carbon fiber; SCNT—Sized carbon nanotube

    依据ASTM标准[22-23],将层合板裁切成100 mm×10 mm和50.8 mm×12.7 mm两种样条;依据测试仪器的要求,另外将层合板裁切成22.86 mm×10.16 mm的样条。

    采用酸碱滴定法测试SPEEK上浆剂的磺化度。使用邻苯二甲酸氢钾配制成标准液,用其标定氢氧化钠溶液,得到氢氧化钠溶液的准确浓度。再用氢氧化钠溶液标定SPEEK上浆剂的磺化度。依据以下公式计算SPEEK的磺化度:

    I=mNaOHmSPEEK (1)
    D=MSPEEKI1000MSO3NaI (2)

    式中:I表示离子交换速率;D表示磺化度(%)mNaOH表示滴定SPEEK上浆剂的过程中使用的NaOH的质量(g);mSPEEK表示配制的上浆剂中含有的SPEEK的质量(g);MSPEEK表示SPEEK的相对分子质量,为288 g/mol;MSO3Na表示磺酸钠基团的相对分子质量,为103 g/mol。

    采用X射线光电子能谱仪(美国Thermo Scientific公司,Escalab 250Xi)测试CNT酸化前后表面基团的种类。

    采用热重分析仪(德国NETZSCH公司,TG209F1 Libra)来测试ACNT表面羧基的含量以及SCNT中SPEEK的上浆量。

    采用傅里叶红外光谱仪(美国Thermo Scientific公司,Nicolet iS50)来表征ACNT与SPEEK的化学相互作用。

    采用微机控制电子万能试验机(中国万测,ETM 105D),依据ASTM D3039拉伸测试标准[22],拉伸测试的速率为 2.0 mm/min,样条两端分别粘贴加强片。依据ASTM D790弯曲测试标准[23],弯曲测试的速率为 1.1 mm/min。依据以下公式计算拉伸强度与弯曲强度:

    Ts=FtA (3)
    Fs=3FfD2WT2 (4)

    式中:Ts表示拉伸强度(MPa);Ft表示拉伸断裂力(N);A表示拉伸断裂面积(mm2);Fs表示弯曲强度(MPa);Ff表示弯曲断裂力(N);D表示测试时的跨距(mm);W表示试样的宽度(mm);T 2表示试样厚度的平方(mm2)。

    采用矢量网络分析仪(德国Rohde&Schwarz公司,ZNB20)测试层合板的EMI SE。将裁切好的22.86 mm×10.16 mm的样条,充分打磨后装入仪器的夹具中,采用波导法在无线电波段−X波段(8.2~12.4 GHz)测试样品。

    采用扫描电子显微镜(日本JEOL公司,JSM-IT300)观察经拉伸断裂后样条的纤维拔出情况。

    采用场发射扫描电子显微镜(日本Hitachi公司,S-4800)观察CNT在树脂中的分布情况。

    采用金相显微镜(德国Axiovert公司,40MAT)、镶嵌机( 特鲁利(苏州)材料科技有限公司,CM-2M)与研磨抛光机( 特鲁利(苏州)材料科技有限公司,GP-1B)组合,在层合板液氮脆断后,使用镶嵌机与酚醛树脂,将层合板样品压制成直径为30 mm的圆块。在研磨抛光机上分别使用800 CW、1000 CW、1500 CW、2 000 CW粗糙度的砂纸各打磨1 h抛光后,使用金相显微镜观察形貌。

    采用数字万用表(美国Keysight公司,34461A),依据ASTM D257电阻测试标准[24]测试复合材料层合板的电导率。在裁切好的层合板的表面上均匀涂覆导电银胶后,使用四探针法测试层合板的体积电阻[25]

    图2为SPEEK的FTIR图谱与磺化度测试图。可以发现,PEEK分子结构中芳香族化合物典型的的C—C键在1490 cm−1处,但是由于磺化反应的发生,磺酸基团取代了苯环上C—H中的H,使得原本1490 cm−1处的单峰分裂成1491 cm−1和1472 cm−1两个峰。与此同时,与PEEK相比,SPEEK在1012 cm−1和1079 cm−1处出现了来自于磺酸基团的对称和不对称拉伸振动的两个新的特征峰。由此可以证明,PEEK成功发生了磺化反应。

    图  2  SPEEK和PEEK的FTIR图谱
    Figure  2.  FTIR spectras of SPEEK and PEEK

    表2为对进行磺化反应3.5 h后得到的产物SPEEK的磺化度的测定。经过重复多次实验后,得到SPEEK的磺化度约为7.8%。

    表  2  SPEEK磺化度酸碱滴定法测定结果
    Table  2.  Sulfonation degree of SPEEK measured by acid-base titration
    No.12345
    Sulfonation degree/%7.97.67.87.77.5
    下载: 导出CSV 
    | 显示表格

    表3为CNT酸化前后表面的碳元素与氧元素含量。显然,经混合酸处理后得到的ACNT表面的氧元素含量明显上升。因而,进一步用XPS对酸化前后的CNT进行分析,结果如图3所示。对于C元素,如图3(a)3(b)所示,酸化前CNT表面主要是C—C键和C—O键,C=O键几乎不存在,而酸化后ACNT表面的C=O增多,含量增加到14.32%。另外,氧元素的XPS分析图(图3(c)3(d)) 也有同样的现象,C=O含量从20.39%增多到51.66%。

    表  3  CNT酸化前后表面C与O元素相对原子数分数
    Table  3.  Relative atomic fractions of C and O elements on the surface of CNT before and after acidification
    NameC/at%O/at%O/C
    CNT98.821.180.012
    ACNT86.3213.680.158
    Notes:O/C—Relative atomic fractions of C is divided by the relative atomic fractions of O.
    下载: 导出CSV 
    | 显示表格
    图  3  CNT和ACNT的XPS图谱
    Figure  3.  XPS patterns of CNT and ACNT

    由于ACNT表面的羧基在高温时容易脱去,而CNT本身结构稳定,不会发生明显的化学变化,质量变化较小,因此使用热重分析法表征CNT经混合酸处理后表面羧基的接枝率,结果如图4(a)所示。羧基在650℃时全部分解,因此可见ACNT羧基化程度约为16%。

    图  4  ACNT (a)以及ACNT与SCNT联合(b)的热重分析曲线
    Figure  4.  TGA curves of ACNT (a) and ACNT with SCNT (b)

    图4(b)为ACNT与SCNT从50℃逐渐升温的热重分析曲线,从中可见,SCNT在前面一段时间分解速率比ACNT更快,这是由于二者均存在羧基分解的同时,SCNT表面的SPEEK浆料也在分解。因此取395℃时的质量百分比之差作为SCNT在到达395℃时损失的SPEEK上浆剂的量,即1.5%为SCNT表面的SPEEK分解的质量百分比。

    CNT在经混合酸作用后,表面会接枝一定量的羧基,提升SPEEK与CNT界面之间的相互作用力。经磺化反应后,由于引入了磺酸基团,SPEEK不再像PEEK一样耐高温,因此同样使用热重分析法,从50℃升温到395℃,保持1 h后再升温到800℃,模拟模压成型时的温度变化,以考察SPEEK在成型温度395℃下的分解情况。从图5(a)可见,SPEEK在395℃时约分解19.5%。

    图  5  SPEEK热重分析图谱(a)以及ACNT与SCNT联合的FTIR图谱(b)
    Figure  5.  TGA spectra of SPEEK (a) and FTIR spectra of ACNT and SCNT (b)

    结合2.2中SPEEK在395℃时分解的质量分数,可以计算得到SCNT表面的SPEEK上浆量约为7.7%。

    图5(b)为ACNT与SCNT的红外光谱图。由于ACNT表面的羧基与SPEEK中的磺酸基团形成了分子间氢键,使得SCNT中羧基中的羟基峰向长波方向移动了10 cm−1。且在1081 cm−1和1059 cm−1处出现了磺酸基团的两个振动峰。由此可见,SCNT的表面确实存在着SPEEK。

    图6为SCF-CNT/PEEK层合板的力学性能。由图可见,随着SCNT在体系中的含量增多,SCF-SCNT/PEEK的拉伸性能、拉伸模量以及弯曲性能、弯曲模量均呈现先上升后下降的趋势。这是由于,当体系中的SCNT含量适当时,由于CNT表面经过处理和修饰,丰富的羧基、磺酸基以及与PEEK相容性很好的SPEEK使得SCNT与SCF以及PEEK都能有良好的界面结合,这样PEEK与SCF中间除了有直接结合之外,还有SCNT作为“楔子”,使得PEEK与SCF之间的互锁作用增强,从而提升了SCF-SCNT/PEEK层合板的力学性能,如SCF-1wt%SCNT/PEEK的拉伸强度与SCF-0wt%ACNT/PEEK相比增加了20.8%,达到778 MPa;弯曲强度增加了25.9%,达到1684 MPa。然而,当SCNT加入过量时,过多的SCNT会包裹在SCF表面,使得PEEK树脂难以浸润到SCF丝束内部;更严重时,过量的SCNT会团聚到一起结成块,使得SCF发生严重变形,从而大大降低SCF-SCNT/PEEK层合板的力学性能,如SCF-5wt%SCNT/PEEK与SCF-1wt%SCNT/PEEK相比,其拉伸强度降低了38.2%,弯曲强度降低了31.1%。拉伸模量、弯曲模量同样也呈现出了与拉伸强度和弯曲强度相同的规律,但是由于模量主要取决于纤维本身的性能,所以受到的影响较小,造成的模量变化也较小。图7层合板拉伸断裂后断面的扫描电镜图像与图8层合板金相显微镜图像可以很好的佐证这一观点。

    图  6  不同CNT组分的SCF-CNT/PEEK层合板的力学性能
    Figure  6.  Mechanical properties of SCF-CNT/PEEK laminates with different CNT contents
    图  7  不同CNT组分层合板拉伸断裂后断面SEM图像:(a) SCF-0wt%ACNT/PEEK;(b) SCF-1wt%ACNT/PEEK;(c) SCF-1wt%SCNT/PEEK;(d) SCF-3wt%SCNT/PEEK;(e) SCF-5wt%SCNT/PEEK
    Figure  7.  SEM images of the laminates with different contents of CNT:(a) SCF-0wt%ACNT/PEEK; (b) SCF-1wt%ACNT/PEEK; (c) SCF-1wt%SCNT/PEEK; (d) SCF-3wt%SCNT/PEEK; (e) SCF-5wt%SCNT/PEEK
    图  8  不同CNT组分层合板金相显微镜图像:(a) SCF-0wt%ACNT/PEEK;(b) SCF-1wt%ACNT/PEEK;(c) SCF-1wt%SCNT/PEEK;(d) SCF-3wt%SCNT/PEEK;(e) SCF-5wt%SCNT/PEEK
    Figure  8.  Metallurgical microscope images of the laminates with different contents of CNT:(a) SCF-0wt% ACNT/PEEK; (b) SCF-1wt%ACNT/PEEK; (c) SCF-1wt%SCNT/PEEK; (d) SCF-3wt%SCNT/PEEK; (e) SCF-5wt%SCNT/PEEK

    图7所示,SCF-0wt%ACNT/PEEK层合板经SPEEK修饰后仍然存在局部拉伸断裂时大量拔出的现象,而添加1wt% ACNT后,SCF-1wt%ACNT/PEEK还出现了由于局部ACNT团聚使得SCF粘结在一起而后大块拔出的现象,使得层合板的力学性能变差。而SCF-1wt%SCNT/PEEK的断面整齐均匀,证明SCNT分散均匀,且与CF和PEEK结合良好,因而SCF-1wt%SCNT/PEEK的力学性能最好。但是,当SCNT过量时,由于SCNT团聚,又出现了CF大块拔出的情况,如图7(d)~7(e)所示。

    图8是不同CNT组分层合板的金相显微镜图像。类似的,当不添加CNT时,SCF-0wt%ACNT/PEEK内CF排列规整,树脂浸润性好,而当添加ACNT后,SCF-1wt%ACNT/PEEK中的大孔隙明显减少,但是团聚的ACNT会包裹住SCF,使得树脂无法充分浸润SCF,限制了力学性能的提升;而SCF-1wt%SCNT/PEEK中由于SCNT分散均匀,不会存在上述CNT包裹SCF的现象,三者界面结合良好,因而SCF-1wt%SCNT/PEEK的力学性能最好。但是SCNT过量时,大量团聚的SCNT会压迫SCF,使得SCF严重变形,力学性能大大降低,如图8(d)~8(e)所示。

    为了验证“楔子”结构的存在以及金相显微镜中SCNT在树脂中团聚,使用场发射扫描电子显微镜(FESEM)对上述样品进行分析。图9为FESEM观察SCF-SCNT/PEEK体系中SCF与PEEK中SCNT得到的高倍电镜图像。图9(a)中,由于SCNT表面经过SPEEK修饰,可以和PEEK良好的结合在一起,并且,由于受到SCF表面活性基团的作用,整体呈现出垂直于SCF表面的排布,形成了SCF与PEEK之间的“楔子”。图9(b)为该“楔子”结构的100000倍扫描电镜图像。而在图9(c)9(d)中,由于SCNT过量,使得靠近的SCNT彼此相互作用,形成了被PEEK包裹着的团聚体,与金相显微镜中的大块团聚相对应。

    图  9  SCF-SCNT/PEEK中不同部位的FESEM图像:SCF与SCNT的排布((a)、(b) );PEEK中团聚的SCNT((c)、(d))
    Figure  9.  FESEM images of different parts of SCF-SCNT/PEEK: SCNT around the SCF ((a), (b)); SCNT agglomerates within the PEEK ((c), (d) )

    利用矢量网络分析仪测出的数据,依据以下公式计算EMI SE [20,26]

    ETotal=ER+EA+EMR (5)

    式中:ETotal表示总屏蔽效能值;ER表示因反射而产生的屏蔽效能值;EA表示因吸收而产生的的屏蔽效能值;EMR表示因多重反射而产生的屏蔽效能值。

    ETotal≥15 dB时,EMR可以忽略不计,式(5)可以简化为:

    ETotalER+EA (6)
    ER=10lg(1R) (7)
    EA=10lg[T/(1R)] (8)

    式中:RT分别是反射率、透射率的功率系数,另外可设A为吸收率的功率系数,三者的关系及计算公式如下:

    R+A+T=1 (9)
    R=|S11|2=|S22|2 (10)
    T=|S12|2=|S21|2 (11)
    A=1RT (12)

    式中:S11S22S12S21分别是输入反射参数、输出反射参数、反向透射参数和正向透射参数。

    图10(a)是SCF-CNT/PEEK层合板的电磁干扰屏蔽效能图及电导率图。从中可见,与力学性能类似,SCF-CNT/PEEK层合板的电磁干扰屏蔽效能也呈现出先上升后下降的趋势,其中SCF-1wt%SCNT/PEEK最高可以达到34.97 dB,高于用于商用电磁屏蔽的标准规定的20 dB的要求,可以达到99.9%以上的屏蔽效果。这是由于SCF-0wt%ACNT/PEEK中仅由CF形成导电通路,经过与PEEK复合后,导电通路中浸润了不导电的PEEK,因而导电性变差,屏蔽效能降低。而SCF-1wt%ACNT/PEEK中由于加入了导电填料ACNT,使得在不导电的PEEK基体中也能依靠ACNT来形成导电通路,提高了导电性,从而提高了电磁屏蔽效能。但是由于ACNT在PEEK中无法完全均匀分散,仍有团聚,而适量的SCNT在PEEK分散性更好,基本不存在团聚,使得SCF-1wt%SCNT/PEEK的导电性更好,屏蔽效能最高。SCF-CNT/PEEK层合板的体积电导率可以很好地佐证这一观点。SCF-1wt%SCNT/PEEK的电导率最高,达到0.15 S/cm,而不加CNT的SCF-0wt%ACNT/PEEK的电导率最低,仅有0.03 S/cm。依据公式(5~12),将SCF-1wt%SCNT/PEEK的能量系数和电磁屏蔽效能做成图10(b),可以看出SCF-1wt%SCNT/PEEK体系中,R参数值最大,平均值可达0.88 mW,而A参数仅有0.11 mW,因此SCF-1wt%SCNT/PEEK体系主要是反射屏蔽为主。而被吸收进层合板内的电磁波,EA值比ER值更高,所以在趋肤深度内,电磁波主要被吸收屏蔽。当SCNT过量后,团聚使得CNT形成的导电通路反而变差,因此导电性变差,屏蔽效能降低。

    图  10  (a)不同CNT组分层合板的总屏蔽效能值(ETotal);(b) SCF-1wt% SCNT/PEEK层合板的反射率(R)、透射率(T)、吸收率(A)参数与电磁干扰屏蔽效能(EMI SE)组成
    Figure  10.  (a) Total shielding effectiveness (ETotal) spectra of the laminates with different contents of CNT; (b) Reflected (R), transmitted (T), absorbed (A) index and the component of the electromagnetic interference shielding effectiveness (EMI SE) of SCF-1wt% SCNT/PEEK

    (1)磺化聚醚醚酮(SPEEK)中存在的磺酸基团能与经过活化处理的碳纤维(ACF)表面以及活化碳纳米管(ACNT)表面的羧基形成分子间氢键,从而与CF和CNT产生较强的相互作用。又由于SPEEK与PEEK的结构高度相似,二者相容性好。 在高温模压成型的过程中SPEEK仅发生1.5%的分解,绝大部分SPEEK保留在CF和SCNT的表面。在适当的CNT质量分数下,使用SPEEK上浆法进行表面处理的CNT可有效分散在PEEK基体中,避免CNT团聚对SCF-SCNT/PEEK体系性能的影响。

    (2)在SCF/PEEK中加入适量的ACNT可以使得层合板的力学性能得到明显的提升,尤其是当ACNT表面经过与PEEK相容性良好的SPEEK修饰后(SCNT),其拉伸强度可以达到778 MPa,相比不添加CNT的层合板提升了20.8%;弯曲强度可以达到1684 MPa,相比不添加CNT的层合板提升了25.9%。

    (3)加入适量的CNT还可以使SCF/PEEK体系的电导率提高,因而提高层合板的电磁屏蔽性能(EMI SE)。与不添加CNT的SCF-0wt%ACNT/PEEK层合板的0.03 S/cm相比,添加1wt%SCNT的层合板(SCF-1wt%SCNT/PEEK),其电导率提升了约5倍,可以达到0.15 S/cm。在X波段,SCF-1wt%SCNT/PEEK层合板的平均值可以达到34.97 dB,相比不添加CNT的SCF/PEEK层合板提高了69.76%。

  • 图  1   金红石相氧化锡的晶体结构[33]

    Figure  1.   Crystal structure of rutile phase tin oxide[33]

    图  2   (a) SnO2中本征点缺陷形成能[37];(b) SnO2中缺陷转变水平的示意图[41];(c) 60 nm膜厚的TiO2与SnO2膜与FTO衬底的透射图谱[43]

    VO—Oxygen vacancy; VSn—Tin vacancy; Sni—Interstitial tin; Oi—Interstitial oxygen; SnO—Oxidation states of tin; ECBM—Conduction band edge; EVBM—Valence band maximum; HO—H impurity; FTO—Fluorine doped tin oxide

    Figure  2.   (a) Eigenpoint defect formation energy in SnO2[37]; (b) Schematic diagram of defect transformation level in SnO2[41]; (c) Transmission spectra of 60 nm thick TiO2 and SnO2 films and FTO substrate[43]

    图  3   氧化锡晶体中的常见缺陷[41]

    Figure  3.   Common defects in tin oxide crystals[41]

    图  4   (a)能级悬崖结构;(b)能级尖峰结构[51]

    ETL—Electron transport layer; Ec—Conduction band edge; Ev—Valence band maximum; EFN—Fermi level of n-type semiconductor; EFP—Fermi level of p-type semiconductor; ΔEc—Potential barrier of conduction band edge; qV—Potential barrier

    Figure  4.   (a) Energy level cliff structure; (b) Energy level spike structure[51]

    图  5   沉积在具有不同Nb5+含量的石英衬底上的SnO2膜的透射光谱(a)、紫外-可见漫反射光谱(b)、载流子浓度(c)及迁移率(d)[65]

    Figure  5.   Transmission spectra (a), ultraviolet-visible diffuse reflection spectrum (b), carrier concentrations (c) and mobility (d) of SnO2 films deposited on quartz substrates with different Nb5+ contents[65]

    图  6   (a)不同掺杂氧化锡的电流-电压特性;(b) 不同掺杂氧化锡的能级图[74]

    PSK—Perovskite material

    Figure  6.   (a) Current-voltage characteristics of different doped SnO2; (b) Energy level diagrams of different doped SnO2[74]

    图  7   SnO2 (a)和 SnO2-Cl (b)膜的SEM图像;SnO2 (c)和SnO2-Cl (d) 膜的AFM图像;SnO2和SnO2-Cl薄膜的透射光谱(e)和吸收光谱(f);(g)单载流子器件的电流密度-电压特性曲线;(h)器件光电流的演变(偏置电压为0.8 V)[76]

    RMS—Root mean square

    Figure  7.   SEM images of SnO2 (a) and SnO2-Cl films (b); AFM images of SnO2 (c) and SnO2-Cl films (d); Transmission spectra (e) and absorption spectra (f) of SnO2 and SnO2-Cl films; (g) Current density-voltage characteristic curves of single carrier devices; (h) Evolution of device photocurrent with bias voltage of 0.8 V [76]

    图  8   (a) 乳酸钾、苹果酸钾和柠檬酸钾的钙钛矿太阳能电池(PSCs)结构和化学组成示意图;(b)本工作中SnO2的原位钝化策略[81]

    Spiro-OMeTAD—2, 2', 7, 7'-tetra kis[N, N-di(4-methoxyphenyl)amino]-9, 9'-spirobifluorene; FTO—F-doped tin oxide; FA—Formamidine

    Figure  8.   (a) Schematic diagram of the structure and chemical composition of perovskite solar cells (PSCs) in potassuim lactate, potassuim malate, and potassuim citrate; (b) In situ passivation strategy of SnO2 in this work [81]

    图  9   (a) 聚丙烯酰胺(PAM)改性SnO2的原理示意图;(b) SnO2、SnO2:PAM和PAM薄膜的XPS光谱;(c) 薄膜中锡元素的高分辨率XPS光谱;(d) SnO2和SnO2:PAM溶液的电势[85]

    Figure  9.   (a) Illustration of perovskite films on pristine SnO2 and polyacrylamide (PAM)-modified SnO2; (b) XPS spectra for the SnO2, SnO2 : PAM and PAM films; (c) High-resolution XPS spectra for Sn in the films; (d) Potential of SnO2 and SnO2 : PAM solution[85]

    表  1   钙钛矿太阳能电池中常见金属氧化物电子传输层(ETL)的导带能级与体相迁移率

    Table  1   Conduction band energy levels and bulk phase mobility of common metal oxide electron transport layers (ETL) in perovskite solar cells

    ETL CE/eV Bulk mobility/(cm2·(V·s)−1) Ref.
    TiO2 −4.1 0.15-4.1 [34]
    ZnO −4.2 80-150 [34]
    WO3 −4.2 10-20 [35]
    SnO2 −4.1 240 [34]
    Cr2O3 −3.9 1 [21]
    In2O3 −4.5 80-120 [36]
    Nb2O5 −4 0.2 [16]
    Note: CE is the position of the inverted band energy level relative to the vacuum energy level.
    下载: 导出CSV

    表  2   SnO2电子传输层基钙钛矿太阳能电池中常见的添加剂及其对太阳能电池性能的贡献

    Table  2   Dopants and their contribution to the improvement of PSCs based on SnO2 ETL

    Device structure VOC/V JSC/(mA·cm−2) FF PCE/% Ref.
    FTO/SnO2/FAPbI3/spiro-OMeTAD/Au 1.144 21.43 0.752 19.69 [65]
    Nb-doped 1.157 22.77 0.747 20.47
    ITO/SnO2/FAPbI3/spiro-OMeTAD/Au 1.158 21.65 0.777 19.48 [66]
    Ta-doped 1.161 22.79 0.786 2.80
    FTO/SnO2/MAPbI3/spiro-OMeTAD/Au 1.000 16.80 0.530 9.02 [63]
    Al-doped 1.030 19.40 0.580 12.10
    ITO/SnO2/(FAPbI3)0.95(MAPbBr3)0.05/spiro-OMeTAD/Au 1.060 24.80 0.66 17.30 [67]
    Zr-doped 1.080 25.30 0.72 19.54
    FTO/SnO2/MAPbI3/spiro-OMeTAD/Au 1.030 18.60 0.610 11.69 [68]
    Y-doped 1.070 21.80 0.670 15.60
    FTO/SnO2/CsFAMA/spiro-OMeTAD/Ag 1.078 23.20 0.771 19.43 [70]
    Cu-doped 1.108 24.20 0.790 21.35
    AZO/SnO2/Csx(FAMA)100-x/spiro-OMeTAD/Au 0.997 22.10 0.570 12.50 [76]
    Ga-doped 1.070 22.80 0.786 22.80
    FTO/SnO2/(FAPbI3)0.85(MAPbBr3)0.15/spiro-OMeTAD/Au 1.020 21.00 0.590 15.07
    Cl-doped 1.110 23.00 0.690 18.10
    ITO/SnO2/(FA0.98MA0.02)0.95Cs0.05Pb(I0.95Br0.05)3/spiro-MeOTAD/Au 1.060 24.46 0.759 19.72 [74]
    K-doped 1.080 24.47 0.769 20.40
    Rb-doped 1.100 24.51 0.776 20.84
    Cs-doped 1.060 24.37 0.802 20.64
    ITO/SnO2/FA0.95MA0.05PbI3/spiro-OMeTAD/Au 1.060 23.23 0.708 17.43 [79]
    MES-doped 1.120 23.88 78.69 21.05
    ITO/SnO2/FA0.95MA0.05PbI3/spiro-OMeTAD/Au 1.090 24.05 79.15 20.78 [80]
    DMAPAI2-doped 1.17 24.20 82.19 23.20
    FTO/SnO2/(FAPbI3)0.96(MAPbBr3)0.04/spiro-OMeTAD/Au 1.136 24.89 0.811 22.92 [81]
    PC-doped 1.188 24.98 0.821 24.36
    ITO/SnO2/CsFAMA/spiro-OMeTAD/Ag 1.070 21.80 0.740 18.74 [82]
    PEIE-doped 1.140 23.80 0.760 20.61
    ITO/SnO2/Cs0.04FA0.74MA0.22/spiro-OMeTAD/Au 1.070 22.60 0.771 18.60 [84]
    PEG-doped 1.110 22.70 0.818 20.80
    ITO/SnO2/FA0.95MA0.05PbI2.95Br0.05/spiro-OMeTAD/Au 1.103 23.16 0.792 20.22 [85]
    PAM-doped 1.122 24.82 0.811 22.59
    ITO/SnO2/Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3/spiro-OMeTAD/Au 1.030 22.30 0.746 17.13 [88]
    RCQ-doped 1.140 23.30 0.826 22.51
    ITO/SnO2/FA0.95MA0.05PbI3/PCBM/Au 1.125 22.93 0.743 19.17 [31]
    GYD-doped 1.137 23.32 0.796 21.11
    Notes: VOC—Open circuit voltage; JSC—Short-circuit current; PCE—Photoelectric conversion efficiency; FF—Fill factor; MES—4-morpholine ethane sulfonic acid sodium salt; DMAPAI2—N, N-dimethyl-1, 3-propanediamine dihydroiodide; PC—Potassium citrate; PEIE—Polyethylenimine-ethoxylated; PEG—Polyethylene glycol; PAM—Polyacrylamide; RCQ—Red-carbon quantum dots; GYD—Graphdiyne; PCBM—(6, 6)-phenyl C61 butyric acid methyl ester; FA—Formamidine; MA—Methyalamino group.
    下载: 导出CSV
  • [1]

    The National Renewable Energy Laboratory (NREL). Best research-cell efficiency chart [EB/OL]. (2024-04-08).

    [2]

    KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. DOI: 10.1021/ja809598r

    [3]

    LIANG Z, ZHANG Y, XU H, et al. Homogenizing out-of-plane cation composition in perovskite solar cells[J]. Nature, 2023, 624(7992): 557-563. DOI: 10.1038/s41586-023-06784-0

    [4]

    KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2(1): 591. DOI: 10.1038/srep00591

    [5]

    LIU M, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467): 395-398. DOI: 10.1038/nature12509

    [6]

    CHEN Y, MENG Q, ZHANG L, et al. SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress[J]. Journal of Energy Chemistry, 2019, 35: 144-167. DOI: 10.1016/j.jechem.2018.11.011

    [7]

    KIM J Y, LEE J W, JUNG H S, et al. High-efficiency perovskite solar cells[J]. Chemical Reviews, 2020, 120(15): 7867-7918. DOI: 10.1021/acs.chemrev.0c00107

    [8]

    XING G, MATHEWS N, SUN S, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156): 344-347. DOI: 10.1126/science.1243167

    [9]

    NI Y, LI H Y, LI H M, et al. Strong connection between PVK and ETL induced by an anti-allergic agent interface for high-quality PSCs[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(9): 6456. DOI: 10.1007/s10854-022-07817-6

    [10]

    GUO Z, GAO L, ZHANG C, et al. Low-temperature processed non-TiO2 electron selective layers for perovskite solar cells[J]. Journal of Materials Chemistry A, 2018, 6(11): 4572-4589. DOI: 10.1039/C7TA10742K

    [11]

    WANG Y, ZHANG X, WANG Q, et al. Investigating PCE of PSCs with N-based groups doped TiO2 ETLs prepared by sol-gel and sputtering technologies[J]. Materials Letters, 2022, 327: 133055. DOI: 10.1016/j.matlet.2022.133055

    [12]

    WEI J, ZHANG C, JI G, et al. Roll-to-roll printed stable and thickness-independent ZnO: PEI composite electron transport layer for inverted organic solar cells[J]. Solar Energy, 2019, 193: 102-110. DOI: 10.1016/j.solener.2019.09.037

    [13]

    DONG J, WU J, JIA J, et al. Annealing-free Cr2O3 electron-selective layer for efficient hybrid perovskite solar cells[J]. ChemSusChem, 2018, 11(3): 619-628. DOI: 10.1002/cssc.201701864

    [14]

    GHENO A, THU PHAM T T, DI BIN C, et al. Printable WO3 electron transporting layer for perovskite solar cells: Influence on device performance and stability[J]. Solar Energy Materials and Solar Cells, 2017, 161: 347-354. DOI: 10.1016/j.solmat.2016.10.002

    [15]

    JIANG Q, ZHANG X, YOU J. SnO2: A wonderful electron transport layer for perovskite solar cells[J]. Small, 2018, 14(31): 1801154. DOI: 10.1002/smll.201801154

    [16]

    FERNANDES S L, VÉRON A C, NETO N F A, et al. Nb2O5 hole blocking layer for hysteresis-free perovskite solar cells[J]. Materials Letters, 2016, 181: 103-107. DOI: 10.1016/j.matlet.2016.06.018

    [17]

    THAMPY S, ZHANG B, HONG K H, et al. Altered stability and degradation pathway of CH3NH3PbI3 in contact with metal oxide[J]. ACS Energy Letters, 2020, 5: 1147-1152. DOI: 10.1021/acsenergylett.0c00041

    [18]

    HAN J, KWON H, KIM E, et al. Interfacial engineering of a ZnO electron transporting layer using self-assembled monolayers for high performance and stable perovskite solar cells[J]. Journal of Materials Chemistry A, 2020, 8(4): 2105-2113. DOI: 10.1039/C9TA12750J

    [19]

    LIU P, WANG W, LIU S, et al. Fundamental understanding of photocurrent hysteresis in perovskite solar cells[J]. Advanced Energy Materials, 2019, 9(13): 1803017. DOI: 10.1002/aenm.201803017

    [20]

    JI J, LIU X, JIANG H, et al. Two-stage ultraviolet degradation of perovskite solar cells induced by the oxygen vacancy-Ti4+ states[J]. iScience, 2020, 23(4): 101013. DOI: 10.1016/j.isci.2020.101013

    [21]

    CHEN B, YANG M, PRIYA S, et al. Origin of J-V hysteresis in perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 2016, 7(5): 905-917. DOI: 10.1021/acs.jpclett.6b00215

    [22]

    DENG H X, LI S S, LI J. Quantum confinement effects and electronic properties of SnO2 quantum wires and dots[J]. The Journal of Physical Chemistry C, 2010, 114(11): 4841-4845. DOI: 10.1021/jp911035z

    [23]

    REN X, YANG D, YANG Z, et al. Solution-processed Nb: SnO2 electron transport layer for efficient planar perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2421-2429.

    [24]

    LIU X, TSAI K W, ZHU Z, et al. A low-temperature, solution processable tin oxide electron-transporting layer prepared by the dual-fuel combustion method for efficient perovskite solar cells[J]. Advanced Materials Interfaces, 2016, 3(13): 1600122. DOI: 10.1002/admi.201600122

    [25]

    KE W, FANG G, LIU Q, et al. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells[J]. Journal of the American Chemical Society, 2015, 137(21): 6730-6733. DOI: 10.1021/jacs.5b01994

    [26]

    SONG J, ZHENG E, BIAN J, et al. Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells[J]. Journal of Materials Chemistry A, 2015, 3(20): 10837-10844. DOI: 10.1039/C5TA01207D

    [27]

    JIANG Q, ZHAO Y, ZHANG X, et al. Surface passivation of perovskite film for efficient solar cells[J]. Nature Photonics, 2019, 13(7): 460-466. DOI: 10.1038/s41566-019-0398-2

    [28]

    MIN H, LEE D Y, KIM J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes[J]. Nature, 2021, 598(7881): 444-450. DOI: 10.1038/s41586-021-03964-8

    [29]

    AHMAD W, LIU D, AHMAD W, et al. Physisorption of oxygen in SnO2 nanoparticles for perovskite solar cells[J]. IEEE Journal of Photovoltaics, 2019, 9: 200-206. DOI: 10.1109/JPHOTOV.2018.2877002

    [30]

    YU M, GUO Y, YUAN S, et al. The influence of the electron transport layer on charge dynamics and trap-state properties in planar perovskite solar cells[J]. RSC Advances, 2020, 10(21): 12347-12353. DOI: 10.1039/D0RA00375A

    [31]

    ZHANG S, SI H, FAN W, et al. Graphdiyne: Bridging SnO2 and perovskite in planar solar cells[J]. Angewandte Chemie International Edition, 2020, 59(28): 11573-11582. DOI: 10.1002/anie.202003502

    [32]

    JARZEBSKI Z, MORTON. Physical properties of SnO2 materials: III . Optical properties[J]. Journal of the Electrochemical Society, 1976, 123: 333C.

    [33]

    ANARAKI E H, KERMANPUR A, STEIER L, et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide[J]. Energy & Environmental Science, 2016, 9(10): 3128-3134.

    [34]

    TIWANA P, DOCAMPO P, JOHNSTON M B, et al. Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells[J]. ACS Nano, 2011, 5(6): 5158-5166. DOI: 10.1021/nn201243y

    [35]

    ZHENG H, TACHIBANA Y, KALANTAR-ZADEH K. Dye-sensitized solar cells based on WO3[J]. Langmuir, 2010, 26(24): 19148-19152. DOI: 10.1021/la103692y

    [36]

    YOON S, KIM S J, KIM H S, et al. Solution-processed indium oxide electron transporting layers for high-performance and photo-stable perovskite and organic solar cells[J]. Nanoscale, 2017, 9(42): 16305-16312. DOI: 10.1039/C7NR05695H

    [37]

    KILIÇ Ç, ZUNGER A. Origins of coexistence of conductivity and transparency in SnO2[J]. Physical Review Letters, 2002, 88(9): 095501. DOI: 10.1103/PhysRevLett.88.095501

    [38]

    WANG Z P, LI R, ZHANG M, et al. Interface modification and performance optimization of SnO2 based perovskite solar cells[J]. Chinese Journal of Engineering, 2023, 45(2): 263-277.

    [39]

    YANG G, CHEN C, YAO F, et al. Effective carrier-concentration tuning of SnO2 quantum dot electron-selective layers for high-performance planar perovskite solar cells[J]. Advanced Materials, 2018, 30(14): 1706023. DOI: 10.1002/adma.201706023

    [40]

    GANOSE A M, SCANLON D O. Band gap and work function tailoring of SnO2 for improved transparent conducting ability in photovoltaics[J]. Journal of Materials Chemistry C, 2016, 4(7): 1467-1475. DOI: 10.1039/C5TC04089B

    [41]

    PARK S Y, ZHU K. Advances in SnO2 for efficient and stable n–i–p perovskite solar cells[J]. Advanced Materials, 2022, 34(27): 2110438. DOI: 10.1002/adma.202110438

    [42]

    XIONG L, GUO Y, WEN J, et al. Review on the application of SnO2 in perovskite solar cells[J]. Advanced Functional Materials, 2018, 28(35): 1802757. DOI: 10.1002/adfm.201802757

    [43]

    DONG Q, SHI Y, WANG K, et al. Insight into perovskite solar cells based on SnO2 compact electron-selective layer[J]. The Journal of Physical Chemistry C, 2015, 119(19): 10212-10217. DOI: 10.1021/acs.jpcc.5b00541

    [44]

    SUBBIAH A S, MATHEWS N, MHAISALKAR S G, et al. Novel plasma-assisted low-temperature-processed SnO2 thin films for efficient flexible perovskite photovoltaics[J]. ACS Energy Letters, 2018, 3(7): 1482-1491. DOI: 10.1021/acsenergylett.8b00692

    [45]

    DONG Q, SHI Y, ZHANG C, et al. Energetically favored formation of SnO2 nanocrystals as electron transfer layer in perovskite solar cells with high efficiency exceeding 19%[J]. Nano Energy, 2017, 40: 336-344. DOI: 10.1016/j.nanoen.2017.08.041

    [46]

    JIANG Q, ZHANG L, WANG H, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells[J]. Nature Energy, 2016, 2(1): 16177. DOI: 10.1038/nenergy.2016.177

    [47]

    ZHANG J, BAI C, DONG Y, et al. Batch chemical bath deposition of large-area SnO2 film with mercaptosuccinic acid decoration for homogenized and efficient perovskite solar cells[J]. Chemical Engineering Journal, 2021, 425: 131444. DOI: 10.1016/j.cej.2021.131444

    [48]

    TONG G, ONO L K, LIU Y, et al. Up-scalable fabrication of SnO2 with multifunctional interface for high performance perovskite solar modules[J]. Nanomicro Letters, 2021, 13(1): 155.

    [49]

    CORREA BAENA J P, STEIER L, TRESS W, et al. Highly efficient planar perovskite solar cells through band alignment engineering[J]. Energy & Environmental Science, 2015, 8(10): 2928-2934.

    [50]

    SHAO S, LOI M A. The role of the interfaces in perovskite solar cells[J]. Advanced Materials Interfaces, 2020, 7(1): 1901469. DOI: 10.1002/admi.201901469

    [51]

    PAN H, SHAO H, ZHANG X L, et al. Interface engineering for high-efficiency perovskite solar cells [J]. Journal of Applied Physics, 2021, 129(13): 130904.

    [52]

    HOANG HUY V P, NGUYEN T M H, BARK C W. Recent advances of doped SnO2 as electron transport layer for high-performance perovskite solar cells[J]. Materials, 2023, 16(18): 6170. DOI: 10.3390/ma16186170

    [53]

    ZHAO P, LIN Z, WANG J, et al. Numerical simulation of planar heterojunction perovskite solar cells based on SnO2 electron transport layer[J]. ACS Applied Energy Materials, 2019, 2(6): 4504-4512. DOI: 10.1021/acsaem.9b00755

    [54]

    BOEHM H P. Acidic and basic properties of hydroxylated metal oxide surfaces[J]. Discussions of the Faraday Society, 1971, 52: 264-275. DOI: 10.1039/df9715200264

    [55]

    YUAN Y, WANG Y, WANG M, et al. Effect of unsaturated Sn atoms on gas-sensing property in hydrogenated SnO2 nanocrystals and sensing mechanism[J]. Scientific Reports, 2017, 7(1): 1231. DOI: 10.1038/s41598-017-00891-5

    [56]

    YOO J J, SEO G, CHUA M R, et al. Efficient perovskite solar cells via improved carrier management[J]. Nature, 2021, 590(7847): 587-593. DOI: 10.1038/s41586-021-03285-w

    [57]

    HAN D, JIANG B, FENG J, et al. Photocatalytic self-doped SnO2−x nanocrystals drive visible-light-responsive color switching[J]. Angewandte Chemie International Edition, 2017, 56(27): 7792-7796. DOI: 10.1002/anie.201702563

    [58] 刘贤哲, 张旭, 陶洪, 等. 溶胶-凝胶法制备氧化锡基薄膜及薄膜晶体管的研究进展[J]. 物理学报, 2020, 69(22): 228102. DOI: 10.7498/aps.69.20200653

    LIU Xianzhe, ZHANG Xu, TAO Hong, et al. Research progress of tin oxide-based thin films and thin-film transistors prepared by sol-gel method[J]. Acta Physica Sinica, 2020, 69(22): 228102(in Chinese). DOI: 10.7498/aps.69.20200653

    [59]

    WANG H, LIU H, YE F, et al. Hydrogen peroxide-modified SnO2 as electron transport layer for perovskite solar cells with efficiency exceeding 22%[J]. Journal of Power Sources, 2021, 481: 229160. DOI: 10.1016/j.jpowsour.2020.229160

    [60]

    XU Z, ZHOU X, LI X, et al. Polymer-regulated SnO2 composites electron transport layer for high-efficiency n–i–p perovskite solar cells[J]. Solar RRL, 2022, 6(8): 2200092. DOI: 10.1002/solr.202200092

    [61]

    HALVANI ANARAKI E, KERMANPUR A, MAYER M T, et al. Low-temperature Nb-doped SnO2 electron-selective contact yields over 20% efficiency in planar perovskite solar cells[J]. ACS Energy Letters, 2018, 3(4): 773-778. DOI: 10.1021/acsenergylett.8b00055

    [62]

    CHEN Y, WANG Q, YAO Y, et al. Synergistic transition metal ion co-doping and multiple functional additive passivation for realizing 25.30% efficiency perovskite solar cells[J]. Energy & Environmental Science, 2023, 16(11): 5243-5254.

    [63]

    CHEN H, LIU D, WANG Y, et al. Enhanced performance of planar perovskite solar cells using low-temperature solution-processed Al-doped SnO2 as electron transport layers[J]. Nanoscale Reseach Letters, 2017, 12(1): 238. DOI: 10.1186/s11671-017-1992-1

    [64]

    ROOSE B, JOHANSEN C M, DUPRAZ K, et al. A Ga-doped SnO2 mesoporous contact for UV stable highly efficient perovskite solar cells[J]. Journal of Materials Chemistry A, 2018, 6(4): 1850-1857. DOI: 10.1039/C7TA07663K

    [65]

    GUO R, ZHAO Y, ZHANG Y, et al. Significant performance enhancement of all-inorganic CsPbBr3 perovskite solar cells enabled by Nb-doped SnO2 as effective electron transport layer[J]. Energy & Environmental Materials, 2021, 4(4): 671-680.

    [66]

    LIU Q, ZHANG X, LI C, et al. Effect of tantalum doping on SnO2 electron transport layer via low temperature process for perovskite solar cells[J]. Applied Physics Letters, 2019, 115(14): 143903. DOI: 10.1063/1.5118679

    [67]

    NOH Y W, LEE J H, JIN I S, et al. Tailored electronic properties of Zr-doped SnO2 nanoparticles for efficient planar perovskite solar cells with marginal hysteresis[J]. Nano Energy, 2019, 65: 104014. DOI: 10.1016/j.nanoen.2019.104014

    [68]

    SONG J, ZHANG W, WANG D, et al. Colloidal synthesis of Y-doped SnO2 nanocrystals for efficient and slight hysteresis planar perovskite solar cells[J]. Solar Energy, 2019, 185: 508-515. DOI: 10.1016/j.solener.2019.04.084

    [69]

    QUY H V, BARK C W. Ni-doped SnO2 as an electron transport layer by a low-temperature process in planar perovskite solar cells[J]. ACS Omega, 2022, 7(26): 22256-22262. DOI: 10.1021/acsomega.2c00965

    [70]

    ZHOU X, ZHANG W, WANG X, et al. Solution-processed Cu-doped SnO2 as an effective electron transporting layer for high-performance planar perovskite solar cells[J]. Applied Surface Science, 2022, 584: 152651. DOI: 10.1016/j.apsusc.2022.152651

    [71]

    CHENG N, LI W, ZHENG D, et al. Enhance the efficiency of perovskite solar cells using W doped SnO2 electron transporting layer[J]. ChemPhotoChem, 2024, 8(6): e202300275. DOI: 10.1002/cptc.202300275

    [72]

    WANG E, CHEN P, YIN X, et al. Tailoring electronic properties of SnO2 quantum dots via aluminum addition for high-efficiency perovskite solar cells[J]. Solar RRL, 2019, 3(5): 1900041. DOI: 10.1002/solr.201900041

    [73]

    WANG J, QIN M, TAO H, et al. Performance enhancement of perovskite solar cells with Mg-doped TiO2 compact film as the hole-blocking layer[J]. Applied Physics Letters, 2015, 106(12): 121104. DOI: 10.1063/1.4916345

    [74]

    HOANG M T, YANG Y, CHIU W H, et al. Unraveling the mechanism of alkali metal fluoride post-treatment of SnO2 for efficient planar perovskite solar cells[J]. Small Methods, 2024, 8(2): 2300431. DOI: 10.1002/smtd.202300431

    [75]

    HUANG Y, LI S, WU C, et al. Introduction of LiCl into SnO2 electron transport layer for efficient planar perovskite solar cells[J]. Chemical Physics Letters, 2020, 745: 137220. DOI: 10.1016/j.cplett.2020.137220

    [76]

    GONG W, GUO H, ZHANG H, et al. Chlorine-doped SnO2 hydrophobic surfaces for large grain perovskite solar cells[J]. Journal of Materials Chemistry C, 2020, 8(33): 11638-11646. DOI: 10.1039/D0TC00515K

    [77]

    LI Z, WANG L, LIU R, et al. Spontaneous interface ion exchange: Passivating surface defects of perovskite solar cells with enhanced photovoltage[J]. Advanced Energy Materials, 2019, 9(38): 1902142. DOI: 10.1002/aenm.201902142

    [78]

    ZHANG S, GU H, CHEN S C, et al. KF-doped SnO2 as an electron transport layer for efficient inorganic CsPbI2Br perovskite solar cells with enhanced open-circuit voltages[J]. Journal of Materials Chemistry C, 2021, 9(12): 4240-4247. DOI: 10.1039/D1TC00277E

    [79]

    MENG X, DENG J, SUN Q, et al. High-efficiency planar heterojunction perovskite solar cell produced by using 4-morpholine ethane sulfonic acid sodium salt doped SnO2[J]. Journal of Colloid and Interface Science, 2022, 609: 547-556. DOI: 10.1016/j.jcis.2021.11.051

    [80]

    MA H, WANG M, WANG Y, et al. Asymmetric organic diammonium salt buried in SnO2 layer enables fast carrier transfer and interfacial defects passivation for efficient perovskite solar cells[J]. Chemical Engineering Journal, 2022, 442: 136291. DOI: 10.1016/j.cej.2022.136291

    [81]

    DONG W, ZHU C, BAI C, et al. Low-cost hydroxyacid potassium synergists as an efficient in situ defect passivator for high performance tin-oxide-based perovskite solar cells[J]. Angewandte Chemie International Edition, 2023, 62(25): e202302507. DOI: 10.1002/anie.202302507

    [82]

    ANEFNAF I, AAZOU S, SCHMERBER G, et al. Polyethylenimine-ethoxylated interfacial layer for efficient electron collection in SnO2-based inverted organic solar cells[J]. Crystals, 2020, 10(9): 731. DOI: 10.3390/cryst10090731

    [83]

    WANG D, CHEN S C, ZHENG Q. Poly(vinylpyrrolidone)-doped SnO2 as an electron transport layer for perovskite solar cells with improved performance[J]. Journal of Materials Chemistry C, 2019, 7(39): 12204-12210. DOI: 10.1039/C9TC04269E

    [84]

    WEI J, GUO F, WANG X, et al. SnO2-in-polymer matrix for high-efficiency perovskite solar cells with improved reproducibility and stability[J]. Advanced Materials, 2018, 30(52): 1805153. DOI: 10.1002/adma.201805153

    [85]

    DONG H, WANG J, LI X, et al. Modifying SnO2 with polyacrylamide to enhance the performance of perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2022, 14(29): 34143-34150.

    [86]

    GONG H, WANG Y J, TEO S C, et al. Interaction between thin-film tin oxide gas sensor and five organic vapors[J]. Sensors and Actuators B: Chemical, 1999, 54(3): 2325.

    [87]

    CHEN J, DONG H, ZHANG L, et al. Graphitic carbon nitride doped SnO2 enabling efficient perovskite solar cells with PCEs exceeding 22%[J]. Journal of Materials Chemistry A, 2020, 8(5): 2644-2653. DOI: 10.1039/C9TA11344D

    [88]

    HUI W, YANG Y, XU Q, et al. Red-carbon-quantum-dot-doped SnO2 composite with enhanced electron mobility for efficient and stable perovskite solar cells[J]. Advanced Materials, 2020, 32(4): 1906374. DOI: 10.1002/adma.201906374

  • 期刊类型引用(10)

    1. 徐建蓉,梅启林,姜端洋,蔡永祺,刘备,丁国民. Ca~(2+)辅助增强CNT/PEEK界面结合及其导电复合材料制备与性能. 复合材料学报. 2025(01): 283-298 . 本站查看
    2. 赵宏婷,王鹤峰,罗居杰,贾宜委,何艳骄,树学峰. N, S共掺杂碳/PVDF纳米复合膜的电磁屏蔽效能及其力学性能. 复合材料学报. 2025(02): 845-853 . 本站查看
    3. 朱再斌,凌辉,杨小平,李刚,王超. 碳纳米管膜层间增强增刚碳纤维增强树脂基复合材料的压缩强度与导热性能. 复合材料学报. 2024(03): 1235-1248 . 本站查看
    4. 施水娟,卞达,李佳红,王恺璇,徐鹏程,赵鹏,赵永武,陈义. 不同注射温度和热处理对聚醚醚酮/碳纤维复合材料摩擦磨损性能的影响. 塑料科技. 2024(04): 23-27 . 百度学术
    5. 周杰,何相明,耿闻,李闯,李伟. 碳纳米管改性热固性树脂的研究进展. 广州化工. 2024(14): 11-13 . 百度学术
    6. 王文波,宋彦平,李年,王振洋. 激光诱导石墨烯的纳米银颗粒原位修饰及其导电性能调控. 复合材料学报. 2024(08): 4124-4133 . 本站查看
    7. 李纪康,刘雁雁,王维超,郑振荣. 纳米材料在防护纺织品中的应用研究. 天津纺织科技. 2023(03): 1-5 . 百度学术
    8. 李亚洲 ,杨强 ,彭瑞龙 ,王富 ,李涤尘 . 聚醚醚酮及其复合材料激光粉末床熔融成形的研究现状与展望. 精密成形工程. 2023(11): 46-60 . 百度学术
    9. 任天翔,滕晓波,黄兴,马金星,赵德方,占海华. 聚醚醚酮的改性及应用研究进展. 塑料科技. 2022(09): 123-128 . 百度学术
    10. 杨琴,汪莹,刘逸众. 热塑性树脂聚醚醚酮(PEEK)改性研究进展. 长沙航空职业技术学院学报. 2022(04): 33-37 . 百度学术

    其他类型引用(8)

  • 目的 

    随着钙钛矿太阳能技术的发展,SnO材料因其良好的光稳定性、高透射率、良好的电子迁移率、相对于普通钙钛矿的合适的能级位置、低温加工工艺等优点成为钙钛矿太阳能电池电子传输层材料的重要选择。但溶液法制备的SnO薄膜很难形成良好的氧化锡晶相,这将导致氧化锡薄膜出现迁移率显著下降、界面缺陷增多、能级不匹配、成膜性较差等问题。因此本文聚焦于SnO薄膜出现问题的原因,重点论述了掺杂工程改善SnO薄膜的方案。

    方法 

    本文将从氧化锡的晶体结构与物理性质出发,基于溶液法氧化锡薄膜的缺陷特点及其作为钙钛矿电池器件中电子传输材料的要求,分析并总结了当前仍存在的导电性能仍需提高、界面能级需要更加匹配、界面缺陷需要钝化、成膜性能(尤其是大面积制备)不足等问题并针对金属离子掺杂、卤素离子掺杂、有机分子掺杂、纳米颗粒掺杂等不同的溶液掺杂工艺,分析了其在解决溶液法氧化锡薄膜缺陷以及在钙钛矿电池器件中应用的优点与缺点;最后对溶液法掺杂氧化锡的研究方向与发展趋势做出展望。

    结果 

    氧化锡晶体的缺陷按照其存在的位置大概可以分为内部缺陷与界面缺陷两类。其中晶体内部的V、Sn是氧化锡晶体具有优异导电性能的原因,但由于缺陷产生的自发性,很难通过控制手段来重复制备具有相同自掺杂程度的氧化锡薄膜,这就导致氧化锡导电能力与能级位置容易发生改变。而溶液制备的氧化锡薄膜在晶体表面会存在大量的悬空键与悬挂羟基。这些悬空键会在氧化锡层与钙钛矿层之间形成大量的氧空位缺陷,形成的缺陷能级将会捕获光生电子,成为电子陷阱,使得器件效率大量降低。为了改善薄膜性能,可以通过掺杂工程进行改性,常用的掺杂剂可分为金属离子、卤素离子、有机分子以及碳量子点四种。在氧化锡薄膜中采用金属离子掺杂主要通过提高SnO 薄膜的载流子迁移率,使导带能级向更有利的方向偏移,钝化界面缺陷以及减少钙钛矿内部缺陷的方式来提升器件性能。但是目前金属离子的掺杂一般都维持在较低浓度,这是因为如果掺杂浓度过高会引起氧化锡严重的晶格畸变,导致整体器件性能下降。因此金属离子掺杂对氧化锡某些性能的改善有限,只能用于微调。卤素离子不仅可以通过氢键和静电相互作用有效钝化晶体表面的悬空键,还能改善钙钛矿膜的成膜情况,此外还可以通过离子交换或离子扩散到钙钛矿层中同时钝化钙钛矿的缺陷。但是由于卤素离子一般较小,可以扩散到钙钛矿层中,这会使得钙钛矿层的构成更加复杂,使得原本就很复杂的混合卤素钙钛矿成膜及添加剂研究变得更加困难。有机分子与碳量子点的官能团可以有效钝化缺陷且复杂多样的有机物分子可以更加准确的调配氧化锡层能级,实现与钙钛矿的最优匹配。除了官能团之外,长链结构的聚合物可以有效提升氧化锡层与钙钛矿层界面的亲和性,改善钙钛矿的成膜性能。但是有机分子与碳量子点载流子迁移率一般较低并且其稳定性与致密性和无机材料相比都较差,这些都会使得器件的寿命降低,这就为钙钛矿太阳能电池的封装工艺提出了新的挑战。

    结论 

    氧化锡的性能提升与长期稳定性的改善仍然是目前钙钛矿太阳能电池研发环节中的一项重要内容。目前来看,在提升氧化锡传输层性能的道路上选择复合掺杂的道路不可避免,选择协同掺杂策略可以实现不同掺杂材料的优势互补。虽然复合掺杂道路上困难重重,但将会是解决问题的有效手段。

图(9)  /  表(2)
计量
  • 文章访问数:  416
  • HTML全文浏览量:  246
  • PDF下载量:  67
  • 被引次数: 18
出版历程
  • 收稿日期:  2024-04-14
  • 修回日期:  2024-06-01
  • 录用日期:  2024-06-16
  • 网络出版日期:  2024-07-04
  • 发布日期:  2024-06-30
  • 刊出日期:  2024-11-26

目录

/

返回文章
返回