留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺杂改性的氧化锡电子传输层在钙钛矿太阳能电池中研究进展

华鹏程 李柯欣 陈果 曹进

华鹏程, 李柯欣, 陈果, 等. 掺杂改性的氧化锡电子传输层在钙钛矿太阳能电池中研究进展[J]. 复合材料学报, 2024, 42(0): 1-17.
引用本文: 华鹏程, 李柯欣, 陈果, 等. 掺杂改性的氧化锡电子传输层在钙钛矿太阳能电池中研究进展[J]. 复合材料学报, 2024, 42(0): 1-17.
HUA Pengcheng, LI Kexin, CHEN Guo, et al. Research progress on doping modified tin oxide electron transport layer in perovskite solar cells[J]. Acta Materiae Compositae Sinica.
Citation: HUA Pengcheng, LI Kexin, CHEN Guo, et al. Research progress on doping modified tin oxide electron transport layer in perovskite solar cells[J]. Acta Materiae Compositae Sinica.

掺杂改性的氧化锡电子传输层在钙钛矿太阳能电池中研究进展

基金项目: 国家重点研发计划项目(2022YFE0109000)
详细信息
    通讯作者:

    曹进,博士后,副研究员,硕士生导师,研究方向为有机发光二极管、钙钛矿太阳能电池等薄膜半导体器件 E-mail: cj2007@shu.edu.cn

  • 中图分类号: TB332; TM914.4; TM23

Research progress on doping modified tin oxide electron transport layer in perovskite solar cells

Funds: The State’s Key Project of Research and Development Plan (2022YFE0109000)
  • 摘要: 自从制备出第一件钙钛矿太阳能电池器件以来,钙钛矿太阳能电池的光电转换效率已从3.8%飞跃至26.1%,是下一代商用太阳能电池的有力竞争者。近10年来,SnO2因其适宜的能带结构、较好的电子传输性能、简单的制备工艺以及良好的化学稳定性成为n-i-p型钙钛矿太阳能电池电子传输层材料的首选。虽然SnO2电子传输层优点众多,但还存在电子传输性能较差、传输层与钙钛矿层之间能级偏移、界面缺陷造成光生载流子大量损失以及成膜性能较差容易出现针孔等问题。鉴于此,本文总结了上述问题形成的主要原因,并通过金属离子掺杂、卤素离子掺杂、有机分子掺杂、纳米颗粒掺杂等不同溶液掺杂工艺研究结果的分析,阐明了不同掺杂工艺在解决溶液法SnO2薄膜缺陷以及在钙钛矿电池器件中应用的优点与缺点,并针对钙钛矿器件掺杂SnO2传输层性能优化做出展望。

     

  • 图  1  金红石相氧化锡晶体结构[40]

    Figure  1.  Crystal structure of rutile phase tin oxide[40]

    图  2  (a) SnO2中本征点缺陷形成能[38]; (b) SnO2中缺陷转变水平的示意图[43](c) 60 nm膜厚的TiO2与SnO2膜与FTO衬底的透射光谱[45]

    Figure  2.  (a) Eigenpoint defect formation energy in SnO2 [38]; (b) Schematic diagram of defect transformation level in SnO2[43]; (c) Transmission spectra of 60 nm thick TiO2 and SnO2 films and FTO substrate[45]

    图  3  氧化锡晶体中的常见缺陷[43]

    Figure  3.  Common defects in tin oxide crystals [43]

    图  4  (a)能级悬崖结构; (b)能级尖峰结构[54]

    Figure  4.  (a) Energy level cliff structure; (b) Energy level spike structure[54]

    图  5  沉积在具有不同Nb含量的石英衬底上的SnO2膜的(a)透射光谱,(b)紫外可见漫反射光谱,(c)迁移率,以及(d)的载流子浓度[67]

    Figure  5.  (a) Transmission spectra, (b) UPS, (c) Mobility, and (d) Carrier concentrations of SnO2 films deposited on quartz substrates with different Nb contents [67]

    图  6  (a)不同掺杂氧化锡的I-V特性; (b) 不同掺杂氧化锡的能级图[77]

    Figure  6.  (a) I-V characteristics of different doped SnO2; (b) Energy level diagrams of different doped SnO2 [77]

    图  7  (a) SnO2和(b) SnO2-Cl膜的SEM图像; (c) SnO2和(d) SnO2-Cl膜的AFM图像; (e) SnO2和SnO2-Cl薄膜的透射光谱 (f) SnO2和SnO2-Cl薄膜的吸收光谱; (g)单载流子器件的J-V特性曲线; (h)器件光电流的演变,偏置电压为0.8 V[79]

    Figure  7.  (a) SEM images of SnO2 and (b) SnO2-Cl films; (c) AFM images of SnO2 and (d) SnO2-Cl films; (e) Transmission spectra of SnO2 and SnO2-Cl films; (f) Absorption spectra of SnO2 and SnO2-Cl films; (g) J-V characteristic curve of single carrier devices; (h) Evolution of device photocurrent with bias voltage of 0.8 V [79]

    图  8  (a) PL、PM和PC的PSCs结构和化学组成示意图; (b)本工作中SnO2的原位钝化策略[84]

    Figure  8.  (a) Schematic diagram of the structure and chemical composition of PSCs in PL, PM, and PC; (b) In situ passivation strategy of SnO2 in this work [84]

    图  9  (a)PAM改性SnO2的原理示意图。(b) SnO2、SnO2:PAM和PAM薄膜的XPS光谱。(c) 薄膜中锡元素的高分辨率XPS光谱。(d) SnO2和SnO2:PAM溶液的电势。[88]

    Figure  9.  Illustration of perovskite films on pristine SnO2 and PAM-modified SnO2. (b) XPS spectra for the SnO2, SnO2:PAM, and PAM films. (c) High-resolution XPS spectra for Sn in the films. (d) Potential of SnO2 and the SnO2:PAM solution.[88]

    表  1  钙钛矿太阳能电池中常见金属氧化物电子传输层(ETL)的导带能级与体相迁移率

    Table  1.   The conduction band energy levels and bulk phase mobility of common metal oxide electron transport layers (ETL) in perovskite solar cells

    ETL CE/eV Bulk mobility/cm2/(V·s) ref
    TiO2 −4.1 0.15-4.1 [22]
    ZnO −4.2 80-150 [22]
    WO3 −4.2 10-20 [23]
    SnO2 −4.1 240 [22]
    Cr2O3 −3.9 1 [24]
    In2O3 −4.5 80-120 [25]
    Nb2O5 −4 0.2 [16]
    Notes: CE is the position of the inverted band energy level relative to the vacuum energy level.
    下载: 导出CSV

    表  2  SnO2电子传输层基钙钛矿太阳能电池中常见的添加剂及其对太阳能电池性能的贡献

    Table  2.   Dopants and their contribution to the improvement of PSCs based on SnO2 ETL.

    Device Structure VOC/V JSC/(mA·cm−2) FF PCE/% ref
    FTO/SnO2/FAPbI3/spiro-OMeTAD/Au 1.144 21.43 0.752 19.69 [67]
    Nb-doped 1.157 22.77 0.747 20.47
    ITO/SnO2/FAPbI3/spiro-OMeTAD/Au 1.158 21.65 0.777 19.48 [68]
    Ta-doped 1.161 22.79 0.786 2.80
    FTO/SnO2/MAPbI3/spiro-OMeTAD/Au 1.000 16.80 0.530 9.02 [65]
    Al-doped 1.030 19.40 0.580 12.10
    ITO/SnO2/(FAPbI3)0.95(MAPbBr3)0.05/spiro-OMeTAD/Au 1.060 24.80 0.66 17.30 [69]
    Zr-doped 1.080 25.30 0.72 19.54
    FTO/SnO2/MAPbI3/spiro-OMeTAD/Au 1.030 18.60 0.610 11.69 [70]
    Y-doped 1.070 21.80 0.670 15.60
    FTO/SnO2/CsFAMA/spiro-OMeTAD/Ag 1.078 23.20 0.771 19.43 [72]
    Cu-doped 1.108 24.20 0.790 21.35
    AZO/SnO2/Csx(FAMA)100-x/spiro-OMeTAD/Au 0.997 22.10 0.570 12.50 [73]
    Ga-doped 1.070 22.80 0.786 22.80
    FTO/SnO2/(FAPbI3)0.85(MAPbBr3)0.15/spiro-OMeTAD/Au 1.020 21.00 0.590 15.07 [79]
    Cl-doped 1.110 23.00 0.690 18.10
    ITO/SnO2/(FA0.98MA0.02)0.95Cs0.05Pb(I0.95Br0.05)3/spiro-MeOTAD/Au 1.060 24.46 0.759 19.72 [77]
    K-doped 1.080 24.47 0.769 20.40
    Rb-doped 1.100 24.51 0.776 20.84
    Cs-doped 1.060 24.37 0.802 20.64
    ITO/SnO2/FA0.95MA0.05PbI3/spiro-OMeTAD/Au 1.060 23.23 0.708 17.43 [82]
    MES-doped 1.120 23.88 78.69 21.05
    ITO/SnO2/FA0.95MA0.05PbI3/spiro-OMeTAD/Au 1.090 24.05 79.15 20.78 [83]
    DMAPAI2-doped 1.17 24.20 82.19 23.20
    FTO/SnO2/(FAPbI3)0.96(MAPbBr3)0.04/spiro-OMeTAD/Au 1.136 24.89 0.811 22.92 [84]
    PC-doped 1.188 24.98 0.821 24.36
    ITO/SnO2/CsFAMA/spiro-OMeTAD/Ag 1.070 21.80 0.740 18.74 [85]
    PEIE-doped 1.140 23.80 0.760 20.61
    ITO/SnO2/Cs0.04FA0.74MA0.22/spiro-OMeTAD/Au 1.070 22.60 0.771 18.60 [87]
    PEG-doped 1.110 22.70 0.818 20.80
    ITO/SnO2/FA0.95MA0.05PbI2.95Br0.05/spiro-OMeTAD/Au 1.103 23.16 0.792 20.22 [88]
    PAM-doped 1.122 24.82 0.811 22.59
    ITO/SnO2/Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3/spiro-OMeTAD/Au 1.030 22.30 0.746 17.13 [91]
    RCQ-doped 1.140 23.30 0.826 22.51
    ITO/SnO2/FA0.95MA0.05PbI3/PCBM/Au 1.125 22.93 0.743 19.17 [36]
    GYD-doped 1.137 23.32 0.796 21.11
    Notes: Voc is the open circuit voltage; Jsc is the short-circuit current; PCE is the photoelectric conversion efficiency; FF is the fill factor; MES is the 4-morpholine ethane sulfonic acid sodium salt; DMAPAI2 is the N, N-dimethyl-1,3-propanediamine dihydroiodide; PC is the potassium citrate; PEIE is the polyethylenimine-ethoxylated; PEG is the polyethylene glycol; PAM is the polyacrylamide; RCQ is the red-carbon quantum dots; GYD is the graphdiyne.
    下载: 导出CSV
  • [1] National Renewable Energy Laboratory (NREL), Best Research-Cell Efficiencies Chart, https://www.nrel.gov/pv/assets/pdfs/cell-pv-eff-emergingpv.pdf.
    [2] KOJIMA A, TESHIMA K, SHIRAI Y, MIYASAKA T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. doi: 10.1021/ja809598r
    [3] LIANG Z, ZHANG Y, XU H, et al. Homogenizing out-of-plane cation composition in perovskite solar cells[J]. Nature, 2023, 624(7992): 557-563. doi: 10.1038/s41586-023-06784-0
    [4] KIM H S, LEE C R, IM J H, et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%[J]. Scientific Reports, 2012, 2(1): 591. doi: 10.1038/srep00591
    [5] LIU M, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467): 395-398. doi: 10.1038/nature12509
    [6] CHEN Y, MENG Q, ZHANG L, et al. SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress[J]. Journal of Energy Chemistry, 2019, 35: 144-167. doi: 10.1016/j.jechem.2018.11.011
    [7] KIM J Y, LEE J W, JUNG H S, et al. High-Efficiency Perovskite Solar Cells[J]. Chemical Reviews, 2020, 120(15): 7867-7918. doi: 10.1021/acs.chemrev.0c00107
    [8] XING G, MATHEWS N, SUN S, et al. Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156): 344-347. doi: 10.1126/science.1243167
    [9] NI Y, LI H, LI H, et al. Strong connection between PVK and ETL induced by an anti-allergic agent interface for high-quality PSCs[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(9): 6456-6456. doi: 10.1007/s10854-022-07817-6
    [10] GUO Z, GAO L, ZHANG C, et al. Low-temperature processed non-TiO2 electron selective layers for perovskite solar cells[J]. Journal of Materials Chemistry A, 2018, 6(11): 4572-4589. doi: 10.1039/C7TA10742K
    [11] WANG Y, ZHANG X, WANG Q, et al. Investigating PCE of PSCs with N-based groups doped TiO2 ETLs prepared by sol-gel and sputtering technologies[J]. Materials Letters, 2022, 327: 133055. doi: 10.1016/j.matlet.2022.133055
    [12] WEI J, ZHANG C, JI G, et al. Roll-to-roll printed stable and thickness-independent ZnO: PEI composite electron transport layer for inverted organic solar cells[J]. Solar Energy, 2019, 193: 102-110. doi: 10.1016/j.solener.2019.09.037
    [13] DONG J, WU J, JIA J, et al. Annealing-Free Cr2O3 Electron-Selective Layer for Efficient Hybrid Perovskite Solar Cells[J]. ChemSusChem, 2018, 11(3): 619-628. doi: 10.1002/cssc.201701864
    [14] GHENO A, THU PHAM T T, DI BIN C, et al. Printable WO3 electron transporting layer for perovskite solar cells: Influence on device performance and stability[J]. Solar Energy Materials and Solar Cells, 2017, 161: 347-354. doi: 10.1016/j.solmat.2016.10.002
    [15] JIANG Q, ZHANG X, YOU J. SnO2: A Wonderful Electron Transport Layer for Perovskite Solar Cells[J]. Small, 2018, 14(31): 1801154. doi: 10.1002/smll.201801154
    [16] FERNANDES S L, VéRON A C, NETO N F A, et al. Nb2O5 hole blocking layer for hysteresis-free perovskite solar cells[J]. Materials Letters, 2016, 181: 103-107. doi: 10.1016/j.matlet.2016.06.018
    [17] THAMPY S, ZHANG B, HONG K-H, et al. Altered Stability and Degradation Pathway of CH3NH3PbI3 in Contact with Metal Oxide[J]. ACS energy letters, 2020, 5: 1147-1152. doi: 10.1021/acsenergylett.0c00041
    [18] HAN J, KWON H, KIM E, et al. Interfacial engineering of a ZnO electron transporting layer using self-assembled monolayers for high performance and stable perovskite solar cells[J]. Journal of Materials Chemistry A, 2020, 8(4): 2105-2113. doi: 10.1039/C9TA12750J
    [19] KOJIMA A, TESHIMA K, SHIRAI Y, MIYASAKA T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. doi: 10.1021/ja809598r
    [20] LIU P, WANG W, LIU S, et al. Fundamental Understanding of Photocurrent Hysteresis in Perovskite Solar Cells[J]. Advanced Energy Materials, 2019, 9(13): 1803017. doi: 10.1002/aenm.201803017
    [21] JI J, LIU X, JIANG H, et al. Two-Stage Ultraviolet Degradation of Perovskite Solar Cells Induced by the Oxygen Vacancy-Ti4+ States[J]. iScience, 2020, 23(4): 101013. doi: 10.1016/j.isci.2020.101013
    [22] TIWANA P, DOCAMPO P, JOHNSTON M B, et al. Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells[J]. ACS Nano, 2011, 5(6): 5158-5166. doi: 10.1021/nn201243y
    [23] ZHENG H, TACHIBANA Y, KALANTAR-ZADEH K. Dye-sensitized solar cells based on WO3[J]. Langmuir, 2010, 26(24): 19148-19152. doi: 10.1021/la103692y
    [24] DONG J, WU J, JIA J, et al. Annealing-Free Cr2O3 Electron-Selective Layer for Efficient Hybrid Perovskite Solar Cells[J]. ChemSusChem, 2018, 11(3): 619-628. doi: 10.1002/cssc.201701864
    [25] YOON S, KIM S J, KIM H S, et al. Solution-processed indium oxide electron transporting layers for high-performance and photo-stable perovskite and organic solar cells[J]. Nanoscale, 2017, 9(42): 16305-16312. doi: 10.1039/C7NR05695H
    [26] CHEN B, YANG M, PRIYA S, ZHU K. Origin of J–V Hysteresis in Perovskite Solar Cells[J]. The Journal of Physical Chemistry Letters, 2016, 7(5): 905-917. doi: 10.1021/acs.jpclett.6b00215
    [27] DENG H-X, LI S-S, LI J. Quantum Confinement Effects and Electronic Properties of SnO2 Quantum Wires and Dots[J]. The Journal of Physical Chemistry C, 2010, 114(11): 4841-4845. doi: 10.1021/jp911035z
    [28] REN X, YANG D, YANG Z, et al. Solution-Processed Nb: SnO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells[J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2421-2429.
    [29] LIU X, TSAI K-W, ZHU Z, et al. A Low-Temperature, Solution Processable Tin Oxide Electron-Transporting Layer Prepared by the Dual-Fuel Combustion Method for Efficient Perovskite Solar Cells[J]. Advanced Materials Interfaces, 2016, 3(13): 1600122. doi: 10.1002/admi.201600122
    [30] KE W, FANG G, LIU Q, et al. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells[J]. Journal of the American Chemical Society, 2015, 137(21): 6730-6733. doi: 10.1021/jacs.5b01994
    [31] SONG J, ZHENG E, BIAN J, et al. Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells[J]. Journal of Materials Chemistry A, 2015, 3(20): 10837-10844. doi: 10.1039/C5TA01207D
    [32] JIANG Q, ZHAO Y, ZHANG X, et al. Surface passivation of perovskite film for efficient solar cells[J]. Nature Photonics, 2019, 13(7): 460-466. doi: 10.1038/s41566-019-0398-2
    [33] MIN H, LEE D Y, KIM J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes[J]. Nature, 2021, 598(7881): 444-450. doi: 10.1038/s41586-021-03964-8
    [34] AHMAD W, LIU D, AHMAD W, et al. Physisorption of Oxygen in SnO2 Nanoparticles for Perovskite Solar Cells[J]. IEEE Journal of Photovoltaics, 2019, 9: 200-206. doi: 10.1109/JPHOTOV.2018.2877002
    [35] YU M, GUO Y, YUAN S, et al. The influence of the electron transport layer on charge dynamics and trap-state properties in planar perovskite solar cells[J]. RSC Advances, 2020, 10(21): 12347-12353. doi: 10.1039/D0RA00375A
    [36] ZHANG S, SI H, FAN W, et al. Graphdiyne: Bridging SnO2 and Perovskite in Planar Solar Cells[J]. Angewandte Chemie International Edition, 2020, 59(28): 11573-11582. doi: 10.1002/anie.202003502
    [37] JARZEBSKI Z, Morton. Physical Properties of SnO2 Materials: III . Optical Properties[J]. Journal of The Electrochemical Society, 1976, 123: 333C.
    [38] KıLıç Ç, ZUNGER A. Origins of Coexistence of Conductivity and Transparency in SnO2[J]. Physical Review Letters, 2002, 88(9): 095501. doi: 10.1103/PhysRevLett.88.095501
    [39] WANG Z P, LI R, ZHANG M, GUO M. Interface modification and performance optimization of SnO2 based perovskite solar cells[J]. Chinese Journal of Engineering, 2023, 45(2): 263-277.
    [40] ANARAKI E H, KERMANPUR A, STEIER L, et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide[J]. Energy & Environmental Science, 2016, 9(10): 3128-3134.
    [41] YANG G, CHEN C, YAO F, et al. Effective Carrier-Concentration Tuning of SnO2 Quantum Dot Electron-Selective Layers for High-Performance Planar Perovskite Solar Cells[J]. Advanced Materials, 2018, 30(14): 1706023. doi: 10.1002/adma.201706023
    [42] GANOSE A M, SCANLON D O. Band gap and work function tailoring of SnO2 for improved transparent conducting ability in photovoltaics[J]. Journal of Materials Chemistry C, 2016, 4(7): 1467-1475. doi: 10.1039/C5TC04089B
    [43] PARK S Y, ZHU K. Advances in SnO2 for Efficient and Stable n–i–p Perovskite Solar Cells[J]. Advanced Materials, 2022, 34(27): 2110438. doi: 10.1002/adma.202110438
    [44] XIONG L, GUO Y, WEN J, et al. Review on the Application of SnO2 in Perovskite Solar Cells[J]. Advanced Functional Materials, 2018, 28(35): 1802757. doi: 10.1002/adfm.201802757
    [45] DONG Q, SHI Y, WANG K, et al. Insight into Perovskite Solar Cells Based on SnO2 Compact Electron-Selective Layer[J]. The Journal of Physical Chemistry C, 2015, 119(19): 10212-10217. doi: 10.1021/acs.jpcc.5b00541
    [46] SUBBIAH A S, MATHEWS N, MHAISALKAR S G, SARKAR S K. Novel Plasma-Assisted Low-Temperature-Processed SnO2 Thin Films for Efficient Flexible Perovskite Photovoltaics[J]. ACS Energy Letters, 2018, 3(7): 1482-1491. doi: 10.1021/acsenergylett.8b00692
    [47] DONG Q, SHI Y, ZHANG C, et al. Energetically favored formation of SnO2 nanocrystals as electron transfer layer in perovskite solar cells with high efficiency exceeding 19%[J]. Nano Energy, 2017, 40: 336-344. doi: 10.1016/j.nanoen.2017.08.041
    [48] JIANG Q, ZHANG L, WANG H, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells[J]. Nature Energy, 2016, 2(1): 16177. doi: 10.1038/nenergy.2016.177
    [49] ZHANG J, BAI C, DONG Y, et al. Batch chemical bath deposition of large-area SnO2 film with mercaptosuccinic acid decoration for homogenized and efficient perovskite solar cells[J]. Chemical Engineering Journal, 2021, 425: 131444. doi: 10.1016/j.cej.2021.131444
    [50] TONG G, ONO L K, LIU Y, et al. Up-Scalable Fabrication of SnO2 with Multifunctional Interface for High Performance Perovskite Solar Modules[J]. Nanomicro Letters, 2021, 13(1): 155.
    [51] CORREA BAENA J P, STEIER L, TRESS W, et al. Highly efficient planar perovskite solar cells through band alignment engineering[J]. Energy & Environmental Science, 2015, 8(10): 2928-2934.
    [52] XU Z, NG C H, ZHOU X, et al. Polymer-complexed SnO2 electron transport layer for high-efficiency n-i-p perovskite solar cells[J]. Nanoscale, 2022, 14(33): 12090-12098. doi: 10.1039/D2NR03754H
    [53] SHAO S, LOI M A. The Role of the Interfaces in Perovskite Solar Cells[J]. Advanced Materials Interfaces, 2020, 7(1): 1901469. doi: 10.1002/admi.201901469
    [54] HOANG HUY V P, NGUYEN T M H, BARK C W. Recent Advances of Doped SnO2 as Electron Transport Layer for High-Performance Perovskite Solar Cells[J]. Materials, 2023, 16(18): 6170. doi: 10.3390/ma16186170
    [55] ZHAO P, LIN Z, WANG J, et al. Numerical Simulation of Planar Heterojunction Perovskite Solar Cells Based on SnO2 Electron Transport Layer[J]. ACS Applied Energy Materials, 2019, 2(6): 4504-4512. doi: 10.1021/acsaem.9b00755
    [56] BOEHM H P. Acidic and basic properties of hydroxylated metal oxide surfaces[J]. Discussions of the Faraday Society, 1971, 52: 264-275. doi: 10.1039/df9715200264
    [57] YUAN Y, WANG Y, WANG M, et al. Effect of Unsaturated Sn Atoms on Gas-Sensing Property in Hydrogenated SnO2 Nanocrystals and Sensing Mechanism[J]. Scientific Reports, 2017, 7(1): 1231. doi: 10.1038/s41598-017-00891-5
    [58] YOO J J, SEO G, CHUA M R, et al. Efficient perovskite solar cells via improved carrier management[J]. Nature, 2021, 590(7847): 587-593. doi: 10.1038/s41586-021-03285-w
    [59] HAN D, JIANG B, FENG J, et al. Photocatalytic Self-Doped SnO2−x Nanocrystals Drive Visible-Light-Responsive Color Switching[J]. Angewandte Chemie International Edition, 2017, 56(27): 7792-7796. doi: 10.1002/anie.201702563
    [60] 刘贤哲, 张旭, 陶洪, 等. 溶胶-凝胶法制备氧化锡基薄膜及薄膜晶体管的研究进展[J]. 物理学报, 2020, 69(22): 228102. doi: 10.7498/aps.69.20200653

    LIU X Z, ZHANG X, TAO H, et al. Research progress of tin oxide-based thin films and thin-film transistors prepared by sol-gel method[J]. Acta Physica Sinica, 2020, 69(22): 228102(in Chinese). doi: 10.7498/aps.69.20200653
    [61] WANG H, LIU H, YE F, et al. Hydrogen peroxide-modified SnO2 as electron transport layer for perovskite solar cells with efficiency exceeding 22%[J]. Journal of Power Sources, 2021, 481: 229160. doi: 10.1016/j.jpowsour.2020.229160
    [62] XU Z, ZHOU X, LI X, ZHANG P. Polymer-Regulated SnO2 Composites Electron Transport Layer for High-Efficiency n–i–p Perovskite Solar Cells[J]. Solar RRL, 2022, 6(8): 2200092. doi: 10.1002/solr.202200092
    [63] HALVANI ANARAKI E, KERMANPUR A, MAYER M T, et al. Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells[J]. ACS Energy Letters, 2018, 3(4): 773-778. doi: 10.1021/acsenergylett.8b00055
    [64] CHEN Y, WANG Q, YAO Y, et al. Synergistic transition metal ion co-doping and multiple functional additive passivation for realizing 25.30% efficiency perovskite solar cells[J]. Energy & Environmental Science, 2023, 16(11): 5243-5254.
    [65] CHEN H, LIU D, WANG Y, et al. Enhanced Performance of Planar Perovskite Solar Cells Using Low-Temperature Solution-Processed Al-Doped SnO2 as Electron Transport Layers[J]. Nanoscale Reseach Letters, 2017, 12(1): 238. doi: 10.1186/s11671-017-1992-1
    [66] ROOSE B, JOHANSEN C M, DUPRAZ K, et al. A Ga-doped SnO2 mesoporous contact for UV stable highly efficient perovskite solar cells[J]. Journal of Materials Chemistry A, 2018, 6(4): 1850-1857. doi: 10.1039/C7TA07663K
    [67] GUO R, ZHAO Y, ZHANG Y, et al. Significant performance enhancement of all-inorganic CsPbBr3 perovskite solar cells enabled by Nb-doped SnO2 as effective electron transport layer[J]. ENERGY & ENVIRONMENTAL MATERIALS, 2021, 4(4): 671-680.
    [68] LIU Q, ZHANG X, LI C, et al. Effect of tantalum doping on SnO2 electron transport layer via low temperature process for perovskite solar cells[J]. Applied Physics Letters, 2019, 115(14): 143903. doi: 10.1063/1.5118679
    [69] NOH Y W, LEE J H, JIN I S, et al. Tailored electronic properties of Zr-doped SnO2 nanoparticles for efficient planar perovskite solar cells with marginal hysteresis[J]. Nano Energy, 2019, 65: 104014. doi: 10.1016/j.nanoen.2019.104014
    [70] SONG J, ZHANG W, WANG D, et al. Colloidal synthesis of Y-doped SnO2 nanocrystals for efficient and slight hysteresis planar perovskite solar cells[J]. Solar Energy, 2019, 185: 508-515. doi: 10.1016/j.solener.2019.04.084
    [71] QUY H V, BARK C W. Ni-Doped SnO2 as an Electron Transport Layer by a Low-Temperature Process in Planar Perovskite Solar Cells[J]. ACS Omega, 2022, 7(26): 22256-22262. doi: 10.1021/acsomega.2c00965
    [72] ZHOU X, ZHANG W, WANG X, et al. Solution-processed Cu-doped SnO2 as an effective electron transporting layer for High-Performance planar perovskite solar cells[J]. Applied Surface Science, 2022, 584: 152651. doi: 10.1016/j.apsusc.2022.152651
    [73] ROOSE B, JOHANSEN C M, DUPRAZ K, et al. A Ga-doped SnO2 mesoporous contact for UV stable highly efficient perovskite solar cells[J]. Journal of Materials Chemistry A, 2018, 6(4): 1850-1857. doi: 10.1039/C7TA07663K
    [74] CHENG N, LI W, ZHENG D, YANG W-X. Enhance the efficiency of perovskite solar cells using W doped SnO2 electron transporting layer[J]. ChemPhotoChem, 2024, 8(6): e202300275. doi: 10.1002/cptc.202300275
    [75] WANG E, CHEN P, YIN X, et al. Tailoring Electronic Properties of SnO2 Quantum Dots via Aluminum Addition for High-Efficiency Perovskite Solar Cells[J]. Solar RRL, 2019, 3(5): 1900041. doi: 10.1002/solr.201900041
    [76] WANG J, QIN M, TAO H, et al. Performance enhancement of perovskite solar cells with Mg-doped TiO2 compact film as the hole-blocking layer[J]. Applied Physics Letters, 2015, 106(12): 121104. doi: 10.1063/1.4916345
    [77] HOANG M T, YANG Y, CHIU W H, et al. Unraveling the Mechanism of Alkali Metal Fluoride Post-Treatment of SnO2 for Efficient Planar Perovskite Solar Cells[J]. Small Methods, 2024, 8(2): 2300431. doi: 10.1002/smtd.202300431
    [78] HUANG Y, LI S, WU C, et al. Introduction of LiCl into SnO2 electron transport layer for efficient planar perovskite solar cells[J]. Chemical Physics Letters, 2020, 745: 137220. doi: 10.1016/j.cplett.2020.137220
    [79] GONG W, GUO H, ZHANG H, et al. Chlorine-doped SnO2 hydrophobic surfaces for large grain perovskite solar cells[J]. Journal of Materials Chemistry C, 2020, 8(33): 11638-11646. doi: 10.1039/D0TC00515K
    [80] LI Z, WANG L, LIU R, et al. Spontaneous Interface Ion Exchange: Passivating Surface Defects of Perovskite Solar Cells with Enhanced Photovoltage[J]. Advanced Energy Materials, 2019, 9(38): 1902142. doi: 10.1002/aenm.201902142
    [81] ZHANG S, GU H, CHEN S-C, ZHENG Q. KF-Doped SnO2 as an electron transport layer for efficient inorganic CsPbI2Br perovskite solar cells with enhanced open-circuit voltages[J]. Journal of Materials Chemistry C, 2021, 9(12): 4240-4247. doi: 10.1039/D1TC00277E
    [82] MENG X, DENG J, SUN Q, et al. High-efficiency planar heterojunction perovskite solar cell produced by using 4-morpholine ethane sulfonic acid sodium salt doped SnO2[J]. Journal of Colloid and Interface Science, 2022, 609: 547-556. doi: 10.1016/j.jcis.2021.11.051
    [83] MA H, WANG M, WANG Y, et al. Asymmetric organic diammonium salt buried in SnO2 layer enables fast carrier transfer and interfacial defects passivation for efficient perovskite solar cells[J]. Chemical Engineering Journal, 2022, 442: 136291. doi: 10.1016/j.cej.2022.136291
    [84] DONG W, ZHU C, BAI C, et al. Low-Cost Hydroxyacid Potassium Synergists as an Efficient In Situ Defect Passivator for High Performance Tin-Oxide-Based Perovskite Solar Cells[J]. Angewandte Chemie International Edition, 2023, 62(25): e202302507. doi: 10.1002/anie.202302507
    [85] ANEFNAF I, AAZOU S, SCHMERBER G, et al. Polyethylenimine-Ethoxylated Interfacial Layer for Efficient Electron Collection in SnO2-Based Inverted Organic Solar Cells[J]. Crystals, 2020, 10(9): 731. doi: 10.3390/cryst10090731
    [86] WANG D, CHEN S-C, ZHENG Q. Poly(vinylpyrrolidone)-doped SnO2 as an electron transport layer for perovskite solar cells with improved performance[J]. Journal of Materials Chemistry C, 2019, 7(39): 12204-12210. doi: 10.1039/C9TC04269E
    [87] WEI J, GUO F, WANG X, et al. SnO2-in-Polymer Matrix for High-Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability[J]. Advanced Materials, 2018, 30(52): 1805153. doi: 10.1002/adma.201805153
    [88] DONG H, WANG J, LI X, et al. Modifying SnO2 with Polyacrylamide to Enhance the Performance of Perovskite Solar Cells[J]. ACS Applied Materials & Interfaces, 2022, 14(29): 34143-34150.
    [89] GONG H, WANG Y J, TEO S C, HUANG L. Interaction between thin-film tin oxide gas sensor and five organic vapors[J]. Sensors and Actuators B: Chemical, 1999, 54(3): 2325.
    [90] CHEN J, DONG H, ZHANG L, et al. Graphitic carbon nitride doped SnO2 enabling efficient perovskite solar cells with PCEs exceeding 22%[J]. Journal of Materials Chemistry A, 2020, 8(5): 2644-2653. doi: 10.1039/C9TA11344D
    [91] HUI W, YANG Y, XU Q, et al. Red-Carbon-Quantum-Dot-Doped SnO2 Composite with Enhanced Electron Mobility for Efficient and Stable Perovskite Solar Cells[J]. Advanced Materials, 2020, 32(4): 1906374. doi: 10.1002/adma.201906374
  • 加载中
计量
  • 文章访问数:  199
  • HTML全文浏览量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-15
  • 修回日期:  2024-06-02
  • 录用日期:  2024-06-17
  • 网络出版日期:  2024-07-05

目录

    /

    返回文章
    返回