留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FFT方法的不同温度下带孔隙单向复合材料横向拉伸性能研究

李孟磊 王兵 胡记强

李孟磊, 王兵, 胡记强. 基于FFT方法的不同温度下带孔隙单向复合材料横向拉伸性能研究[J]. 复合材料学报, 2023, 42(0): 1-15.
引用本文: 李孟磊, 王兵, 胡记强. 基于FFT方法的不同温度下带孔隙单向复合材料横向拉伸性能研究[J]. 复合材料学报, 2023, 42(0): 1-15.
LI Menglei, WANG Bing, HU Jiqiang. FFT-based investigation of transverse tensile behavior of unidirectional composites with voids at different temperatures[J]. Acta Materiae Compositae Sinica.
Citation: LI Menglei, WANG Bing, HU Jiqiang. FFT-based investigation of transverse tensile behavior of unidirectional composites with voids at different temperatures[J]. Acta Materiae Compositae Sinica.

基于FFT方法的不同温度下带孔隙单向复合材料横向拉伸性能研究

基金项目: 国家重点研发计划 (2022YFB3707800);国家自然科学基金 (12272111;12202119)
详细信息
    通讯作者:

    王兵,博士,教授,博士生导师,研究方向为复合材料微细观计算力学 E-mail: wangbing86@hit.edu.cn

  • 中图分类号: TB330.1

FFT-based investigation of transverse tensile behavior of unidirectional composites with voids at different temperatures

Funds: National Key Research and Development Program of China (2022YFB3707800); National Natural Science Foundation of China (12272111; 12202119)
  • 摘要: 本研究旨在深入探讨温度和孔隙率对不同纤维体积分数单向碳纤维增强环氧树脂基复合材料横向拉伸方面的力学行为的影响。为此,本文发展了基于最大偏置方法的代表性体积单元(RVE)生成算法,构建了一系列不同纤维体积分数和孔隙率的高保真的单向复合材料RVE模型。为解决损伤模型的局部化以及克服传统有限元(FEM)方法低效率的弊端,本文提出了一种耦合非局部损伤模型的快速傅里叶变换(FFT)方法计算框架,基于该计算框架通过对已报道的模型和结果进行对比分析,验证了本文所提出的计算框架具有很好的准确性和可靠性。在此基础上,深入研究了温度、孔隙率和纤维体积分数对复合材料在横向拉伸性能方面的影响规律。具体而言,随着温度的升高,复合材料的横向拉伸强度和模量呈现出下降的趋势,随着孔隙率的增加,复合材料的横向拉伸强度和模量均呈现出显著降低的趋势。此外,随着纤维体积分数的增加,复合材料的横向模量显著增加,而拉伸强度则基本保持一致。本研究提出的计算框架和研究结果有望在复合材料的设计和制造中发挥重要的指导作用,以提升材料的性能和可靠性。

     

  • 图  1  RVE模型生成流程

    Figure  1.  Generation process of the RVE Model

    图  2  最大偏置方法中各参数示意图

    Figure  2.  Illustration of the parameters of the maximum bias method

    图  3  RVE模型

    Figure  3.  RVE model

    图  4  不同纤维体积分数和孔隙率的RVE模型

    Figure  4.  RVE models with different fiber and void volume fractions

    图  5  环氧树脂模量与温度关系和常温下硬化曲线[36]

    Figure  5.  Relationship between the modulus of elasticity of epoxy resin and temperature and the cure profile at room temperature[36]

    图  6  复合材料全局应力-应变曲线和失效形式[38]

    Figure  6.  Global stress-strain curves and failure mode of composites[38]

    图  7  30%纤维体积分数复合材料升/降温残余力学响应

    Figure  7.  Residual mechanical behavior after heating/cooling of com-posites with 30% fiber volume fraction

    图  8  60%纤维体积分数复合材料升/降温残余力学响应

    Figure  8.  Residual mechanical behavior after heating/cooling of com-posites with 60% fiber volume fraction

    图  9  不同温度下复合材料横向拉伸力学性能

    Figure  9.  Tensile properties of composites at different temperatures

    图  10  不同温度下复合材料的最终失效形式

    Figure  10.  Final failure modes of composites at different temperatures

    图  11  不同纤维体积分数复合材料的横向拉伸力学性能

    Figure  11.  Tensile properties of composites at different fiber volume fractions

    图  12  全局应变为0.75%时复合材料的失效情况

    Figure  12.  Failure modes of composites at 0.75% global strain

    图  13  不同孔隙率复合材料的横向拉伸力学性能

    Figure  13.  Tensile properties of composites at different void volume fractions

    图  14  复合因素对复合材料的横向拉伸模量的影响

    Figure  14.  Influence of composites transverse tensile modulus by complex factors

    图  15  复合因素对复合材料的横向拉伸强度的影响

    Figure  15.  Influence of composites transverse tensile strength by complex factors

    表  1  RVE模型组分材料力学性能[38-41]

    Table  1.   Mechanical properties of the material of the RVE model components[38-41]

    ${E_{\text{f}}}$/GPa $ {v_{\text{f}}} $ $ {\alpha _{\text{f}}} $/(10−5·K−1) ${E_{\text{m}}}$/GPa $ {v_{\text{m}}} $ $ {\alpha _{\text{m}}} $/(10−5·K−1) ${E_{{\text{interphase}}}}$/GPa $ {v_{{\text{interphase}}}} $ $ {\alpha _{{\text{interphase}}}} $/(10−5·K−1)
    19.8 0.2 1.8 3.73 0.38 5.5 9.0386 0.3205 4.2777
    Notes: ${E_{\text{f}}}$, $ {v_{\text{f}}} $and $ {\alpha _{\text{f}}} $ are the modulus, Poisson's ratio and thermal expansion coefficients of fiber; ${E_{\text{m}}}$, $ {v_{\text{m}}} $and $ {\alpha _{\text{m}}} $ are the modulus, Poisson's ratio and thermal expansion coefficients of epoxy; ${E_{{\text{interphase}}}}$, $ {v_{{\text{interphase}}}} $and $ {\alpha _{{\text{interphase}}}} $ are the modulus, Poisson's ratio and thermal expansion coefficients of interphase.
    下载: 导出CSV
  • [1] 杜善义, 方岱宁, 孟松鹤, 等. “近空间飞行器的关键基础科学问题”重大研究计划结题综述[J]. 中国科学基金, 2017, 31(2): 109-114. doi: 10.16262/j.cnki.1000-8217.2017.02.002

    DU S Y, FANG D N, MENG S H, et al. "Key basic scientific issues of near-space vehicles" major research project summary[J]. Chinese Science Foundation, 2017, 31(2): 109-114 (in Chinese). doi: 10.16262/j.cnki.1000-8217.2017.02.002
    [2] Das T K, Ghosh P, Das N C. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review[J]. Advanced Composites and Hybrid Materials, 2019, 2(2): 214-233. doi: 10.1007/s42114-018-0072-z
    [3] Uyanna O, Najafi H. Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects[J]. Acta Astronautica, 2020, 176: 341-356. doi: 10.1016/j.actaastro.2020.06.047
    [4] Parveez B, Kittur M, Badruddin I A, et al. Scientific Advancements in Composite Materials for Aircraft Applications: A Review[J]. Polymers, 2022, 14(22): 5007. doi: 10.3390/polym14225007
    [5] Allison J, Backman D, Christodoulou L. Integrated computational materials engineering: A new paradigm for the global materials profession[J]. JOM, 2006, 58(11): 25-27. doi: 10.1007/s11837-006-0223-5
    [6] Llorca J, González C, Molina-Aldareguía J M, et al. Multiscale Modeling of Composite Materials: a Roadmap Towards Virtual Testing[J]. Advanced Materials, 2011, 23(44): 5130-5147. doi: 10.1002/adma.201101683
    [7] Tian W, Chao X, Fu M W, et al. An algorithm for generation of RVEs of composites with high particle volume fractions[J]. Composites Science and Technology, 2021, 207: 108714. doi: 10.1016/j.compscitech.2021.108714
    [8] 田文龙, 齐乐华, 晁许江. 基于有限元压缩方法的复合材料RVE创建[J]. 力学学报, 2023, 55 (7): 1537.

    TIAN W L, QI L H, ZHAO X J. An efficient FE compression method for generating the RVEs of composites[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(7): 1537-1547 (in Chinese).
    [9] Rintoul M D, Torquato S. Reconstruction of the Structure of Dispersions[J]. Journal of Colloid and Interface Science, 1997, 186(2): 467-476. doi: 10.1006/jcis.1996.4675
    [10] Melro A R, Camanho P P, Pinho S T. Generation of random distribution of fibres in long-fibre reinforced composites[J]. Composites Science and Technology, 2008, 68(9): 2092-2102. doi: 10.1016/j.compscitech.2008.03.013
    [11] Bisram M, Ahmed J, Hood A, et al. A novel method for creation of complex microstructure cells through artificial molecular dynamics simulations[J]. Composites Science and Technology, 2023, 232: 109849. doi: 10.1016/j.compscitech.2022.109849
    [12] Nakka R, Phanendra Kumar A, Harursampath D, et al. Influence of fibre cross-section profile on the multi-physical properties of uni-directional composites[J]. Composite Structures, 2023, 321: 117321. doi: 10.1016/j.compstruct.2023.117321
    [13] Cai C, Zhang T, Wang X, et al. A versatile and highly efficient algorithm to generate representative microstructures for heterogeneous materials[J]. Composites Science and Technology, 2023, 241: 110138. doi: 10.1016/j.compscitech.2023.110138
    [14] David Müzel S, Bonhin E P, Guimarães N M, et al. Application of the Finite Element Method in the Analysis of Composite Materials: A Review[J]. Polymers, 2020, 12(4): E818. doi: 10.3390/polym12040818
    [15] Panwar V, Gupta P, Bagha A K, et al. A Review on studies of Finite Element Model Updating and Updating of Composite Materials[J]. Materials Today: Proceedings, 2018, 5 (14, Part 2): 27912-27918.
    [16] Jagadeesh G V, Gangi Setti S. A review on micromechanical methods for evaluation of mechanical behavior of particulate reinforced metal matrix composites[J]. Journal of Materials Science, 2020, 55(23): 9848-9882. doi: 10.1007/s10853-020-04715-2
    [17] Naili C, Doghri I, Kanit T, et al. Short fiber reinforced composites: Unbiased full-field evaluation of various homogenization methods in elasticity[J]. Composites Science and Technology, 2020, 187: 107942. doi: 10.1016/j.compscitech.2019.107942
    [18] 刘宝瑞, 方国东, 梁军. 基于 Voxel 有限元网格对球形夹杂复合材料的应力分析[J]. 复合材料学报, 2015, 32(6): 1769-1776.

    LIU B R, FANG G D, LIANG J. Stress analysis of spherical inclusion composites using Voxel finite element mesh[J]. Acta Materiae Compositae Sinica, 2015, 32(6): 1769-1776 (in Chinese).
    [19] Moulinec H, Suquet P. A numerical method for computing the overall response of nonlinear composites with complex microstructure[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 157(1): 69-94.
    [20] Lucarini S, Upadhyay M, Segurado J. FFT based approaches in micromechanics: fundamentals, methods and applications[J]. Modelling and Simulation in Materials Science and Engineering, 2021, 30(2): 023002.
    [21] Schneider M. A review of nonlinear FFT-based computational homogenization methods[J]. Acta Mechanica, 2021, 232(6): 2051-2100. doi: 10.1007/s00707-021-02962-1
    [22] Lee M J. Comparison of Thermoelastic Micromechanical Response of Polycrystalline Microstructures using Finite Element Method and Fast Fourier Transform-based Method[D]. Ulsan National Institute of Science and Technology, 2019.
    [23] Magri M, Lucarini S, Lemoine G, et al. An FFT framework for simulating non-local ductile failure in heterogeneous materials[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 380: 113759. doi: 10.1016/j.cma.2021.113759
    [24] Li J, Meng S, Tian X, et al. A non-local fracture model for composite laminates and numerical simulations by using the FFT method[J]. Composites Part B:Engineering, 2012, 43(3): 961-971. doi: 10.1016/j.compositesb.2011.08.055
    [25] Mehdikhani M, Gorbatikh L, Verpoest I, et al. Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance[J]. Journal of Composite Materials, 2018, 53(12): 1579-1669.
    [26] Wang M, Zhang P, Fei Q, et al. Computational evaluation of the effects of void on the transverse tensile strengths of unidirectional composites considering thermal residual stress[J]. Composite Structures, 2019, 227: 111287. doi: 10.1016/j.compstruct.2019.111287
    [27] 王猛, 郭飞, 于静巍, 等. 热残余应力对考虑微观孔隙碳纤维增强环氧树脂复合材料横向拉伸性能的影响[J]. WANG M, GUO F, YU J W, et al. Effects of thermal residual stress on transverse tensile strength of unidirectional carbon fiber reinforced epoxy composites considering void[J]. Acta Materiae Compositae Sinica, 2019, 36(5): 1101-1113

    复合材料学报, 2019, 36 (05): 1101-1113 (in Chinese).
    [28] Wang M. Computational evaluation of the effect of defects on the tensile properties of 2D woven composite considering thermal residual stress[J]. Composite Structures, 2022, 299: 116042. doi: 10.1016/j.compstruct.2022.116042
    [29] He C, Ge J, Cao X, et al. The effects of fiber radius and fiber shape deviations and of matrix void content on the strengths and failure mechanisms of UD composites by computational micromechanics[J]. Composites Science and Technology, 2022, 218: 109139. doi: 10.1016/j.compscitech.2021.109139
    [30] 李波, 赵美英, 万小朋. 孔隙微观特征对碳纤维/环氧树脂复合材料横向拉伸强度的影响[J]. 复合材料学报, 2018, 35(7): 1864-1868. doi: 10.13801/j.cnki.fhclxb.20170825.001

    LI B, ZHAO M Y, WAN X P. Influence of void micro-characteristics on transverse tensile strength of unidirectional carbon fiber/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2018, 35(7): 1864-1868 (in Chinese). doi: 10.13801/j.cnki.fhclxb.20170825.001
    [31] Ashouri Vajari D, González C, Llorca J, et al. A numerical study of the influence of microvoids in the transverse mechanical response of unidirectional composites[J]. Composites Science and Technology, 2014, 97: 46-54. doi: 10.1016/j.compscitech.2014.04.004
    [32] Michel J C, Moulinec H, Suquet P. A computational scheme for linear and non-linear composites with arbitrary phase contrast[J]. International Journal for Numerical Methods in Engineering, 2001, 52(1-2): 139-160. doi: 10.1002/nme.275
    [33] Li J, Tian X-X, Abdelmoula R. A damage model for crack prediction in brittle and quasi-brittle materials solved by the FFT method[J]. International Journal of Fracture, 2012, 173(2): 135-146. doi: 10.1007/s10704-011-9671-1
    [34] Yang S, Tewari A, Gokhale A M. Modeling of non-uniform spatial arrangement of fibers in a ceramic matrix composite[J]. Acta Materialia, 1997, 45(7): 3059-3069. doi: 10.1016/S1359-6454(96)00394-1
    [35] Sun Q, Zhou G, Meng Z, et al. Failure criteria of unidirectional carbon fiber reinforced polymer composites informed by a computational micromechanics model[J]. Composites Science and Technology, 2019, 172: 81-95. doi: 10.1016/j.compscitech.2019.01.012
    [36] Foreman J P, Porter D, Behzadi S, et al. Predicting the thermomechanical properties of an epoxy resin blend as a function of temperature and strain rate[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(9): 1072-1076. doi: 10.1016/j.compositesa.2009.10.015
    [37] Wang B, Fang G, Liu S, et al. Effect of heterogeneous interphase on the mechanical properties of unidirectional fiber composites studied by FFT-based method[J]. Composite Structures, 2019, 220: 642-651. doi: 10.1016/j.compstruct.2019.04.049
    [38] Sun Q, Meng Z, Zhou G, et al. Multi-scale computational analysis of unidirectional carbon fiber reinforced polymer composites under various loading conditions[J]. Composite Structures, 2018, 196: 30-43. doi: 10.1016/j.compstruct.2018.05.025
    [39] Dong C. Development of a Model for Predicting the Transverse Coefficients of Thermal Expansion of Unidirectional Carbon Fibre Reinforced Composites[J]. Applied Composite Materials, 2008, 15(3): 171-182. doi: 10.1007/s10443-008-9065-3
    [40] Zhang F, Ye Y, Li M, et al. Computational modeling of micro curing residual stress evolution and out-of-plane tensile damage behavior in fiber-reinforced composites[J]. Composite Structures, 2023, 322: 117370. doi: 10.1016/j.compstruct.2023.117370
    [41] Wang B, Wang Z, Fang G, et al. Inverse determine the interfacial strength and surface geometry effects concerning carbon fiber reinforced epoxy composites by experiment aided FFT-based spectral analysis[J]. Polymer Composites, 2022, 43(12): 9205-9217. doi: 10.1002/pc.27098
  • 加载中
计量
  • 文章访问数:  372
  • HTML全文浏览量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-29
  • 修回日期:  2023-10-20
  • 录用日期:  2023-10-23
  • 网络出版日期:  2023-10-31

目录

    /

    返回文章
    返回