留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性可弯曲高容量复合织物电极的制备及性能

杨超 夏兆鹏 王思雨 李婷 王亮 刘雍

杨超, 夏兆鹏, 王思雨, 等. 柔性可弯曲高容量复合织物电极的制备及性能[J]. 复合材料学报, 2022, 39(8): 3804-3814. doi: 10.13801/j.cnki.fhclxb.20211008.002
引用本文: 杨超, 夏兆鹏, 王思雨, 等. 柔性可弯曲高容量复合织物电极的制备及性能[J]. 复合材料学报, 2022, 39(8): 3804-3814. doi: 10.13801/j.cnki.fhclxb.20211008.002
YANG Chao, XIA Zhaopeng, WANG Siyu, et al. Preparation and properties of flexible high capacity composite fabric electrode[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3804-3814. doi: 10.13801/j.cnki.fhclxb.20211008.002
Citation: YANG Chao, XIA Zhaopeng, WANG Siyu, et al. Preparation and properties of flexible high capacity composite fabric electrode[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3804-3814. doi: 10.13801/j.cnki.fhclxb.20211008.002

柔性可弯曲高容量复合织物电极的制备及性能

doi: 10.13801/j.cnki.fhclxb.20211008.002
基金项目: 国家市场监督管理总局科技计划项目(2019MK002)
详细信息
    通讯作者:

    夏兆鹏,博士,高级工程师,博士生导师,研究方向为天然纤维高值化应用及智能纺织品关键器件研究 E-mail: xia_zhaopeng@163.com

  • 中图分类号: TB333

Preparation and properties of flexible high capacity composite fabric electrode

  • 摘要: 随着科学技术的飞速发展,各种可穿戴智能电子设备随之兴起。这些电子设备对化学电源的性能提出了更高要求,如安全高效且柔性的电化学储能装置。目前,大量的研究致力于柔性储能器件,以满足各种可穿戴智能电子设备供能的需求。本文通过调控甲醇相法的沉积时间,将具有高比表面、高孔隙率的钴基金属有机框架(Co-MOF)和镍钴双氢氧化物(NiCo DH)巧妙地结合在镀镍织物(NF)上,制备出了高性能的柔性复合电极。该电极具有高比容量(22.6 μA·h·cm−2 (323 mA·h·g−1))、优异的循环性能(2 000次充放电后容量保持率为56%)及良好的倍率性能(电流增大50倍容量保持率为60%),并且该电极拥有优异的柔韧性,经过多次弯折,该电极的电性能几乎没有大的变化,能够满足服装的各类变形。因此,本文为可穿戴电子设备的能源供应提高了一条新的思路,在智能可穿戴领域有着广阔的前景。

     

  • 图  1  镀镍织物-镍钴双氢氧化物(NF-NiCo DH)复合电极材料的制备流程图

    Figure  1.  Preparation flow chart of nickel plated fabric-NiCo double hydroxides (NF-NiCo DH) composite electrode material

    2-MIM—2-Methylimidazole

    图  2  不同沉积时间的NF-金属有机框架(MOF)织物的SEM图像(小图为对应的局部放大图)

    Figure  2.  SEM images of NF-metal organic framework (MOF) fabric with different deposition time (Small picture is the corresponding local enlarged view)

    图  3  MOF边长和附着量随沉积时间的变化曲线

    Figure  3.  Variation curve of MOF side length and adhesion with deposition time

    图  4  NF-NiCo DH电极刻蚀前后的SEM图像:((a), (b)) 刻蚀前的NF-MOF;((c), (d)) 刻蚀后的NF-MOF

    Figure  4.  SEM images of the NF-NiCo DH electrode before and after etching: ((a), (b)) NF-MOF before etching; ((c), (d)) NF-MOF after etching

    图  5  NF-NiCo DH复合电极的XPS全图谱 (a) 和高分辨XPS图谱:(b) Co2p; (c) Ni2p; (d) O1s

    Figure  5.  XPS full spectrum of NF-NiCo DH composite electrode (a) and high resolution XPS spectra: (b) Co2p; (c) Ni2p; (d) O1s

    Sat.—Satellite peak

    图  6  NF和NF-MOF 24电极的BET测试

    Figure  6.  BET test of NF and NF-MOF 24 electrode

    图  7  不同沉积时间的NF-NiCo DH电极的循环伏安(CV)曲线

    Figure  7.  Cyclic voltammetry (CV) curves of NF-NiCo DH electrode at different deposition times

    图  8  不同沉积时间的NF-NiCo DH电极在不同电流密度下的容量变化

    Figure  8.  Capacity changes of NF-NiCo DH electrode at different deposition times under different current densities

    图  9  NF-NiCo DH 24电极在不同扫描速率下的CV曲线

    Figure  9.  CV curves of NF-NiCo DH 24 electrode at different scanning speeds

    图  10  NF-NiCo DH 24 电极的峰值电流密度与扫描速率的对数关系图

    Figure  10.  Logarithmic relationship between peak current density and scanning rate of NF-NiCo DH 24 electrode

    b—Slope of line

    图  11  NF-NiCo DH 24电极在不同倍率下的放电比容量及效率图

    Figure  11.  Discharge specific capacity and efficiency of NF-NiCo DH 24 electrode at different magnification

    图  12  NF-NiCo DH 24电极在10 mA·cm−2电流密度下的充放电长循环测试图

    Figure  12.  Charge discharge long cycle test diagram of NF-NiCo DH 24 electrode under 10 mA·cm−2 current density

    图  13  NF-NiCo DH 24电极弯折前后的容量保持率

    Figure  13.  Capacity retention rate of NF-NiCo DH 24 electrode before and after bending

    图  14  NF-NiCo DH 24电极弯折400次后的长循环测试图

    Figure  14.  Long cycle test diagram of NF-NiCo DH 24 electrode after bending 400 times

    图  15  NF-NiCo DH 24电极在镍锌电池中的供能测试

    Figure  15.  Energy supply test of NF-NiCo DH 24 electrode in nickel zinc battery

    表  1  不同条件下的复合电极材料

    Table  1.   Composite electrode materials under different conditions

    MaterialDeposition materialDeposition time/hNameEtchingName
    Ni fabric
    Co-metal organic
    framework
    6NF-MOF 6Nickel cobalt
    double hydroxide
    NF-NiCo DH 6
    12NF-MOF 12NF-NiCo DH 12
    18NF-MOF 18NF-NiCo DH 18
    24NF-MOF 24NF-NiCo DH 24
    30NF-MOF 30NF-NiCo DH 30
    下载: 导出CSV

    表  2  NF-NiCo DH 24电极同其他复合电极材料的电化学比容量对比

    Table  2.   Comparison of electrochemical specific capacity between NF-NiCo DH 24 electrode and other composite electrode materials

    Electrode materialCapacity/
    (mA·h·g−1)
    Ref.
    Co3O4@carbon cloth 240.8 [32]
    Co3O4@carbon cloth 230.0 [33]
    Silver-coated nylon fiber@Ni@nickel-cobalt layered double hydroxides 275.0 [30]
    NiSe2@Ni foam 243.8 [34]
    Ni2P@carbon cloth 242.0 [35]
    Ni-NiO/carbon cloth 184.0 [36]
    Ni fabric-nickel cobalt double hydroxide 323.0 This work
    下载: 导出CSV
  • [1] 巩继贤. 智能服装的现状及展望[J]. 现代纺织技术, 2004, 12(1): 47-49.

    GONG Jixian. Current situation and prospect of smart clothing[J]. Modern Textile Technology, 2004, 12(1): 47-49(in Chinese).
    [2] YAN H, IP W S, LAU Y Y, et al. Weavable, conductive yarn-based NiCo//Zn textile battery with high energy density and rate capability[J]. ACS Nano,2017,11(9):8953-8961. doi: 10.1021/acsnano.7b03322
    [3] ZHOU Y, BO L, LI Z. Recent progress in human body energy harvesting for smart bioelectronic system[J]. Fundamental Research, 2021, 1(3): 364-382.
    [4] HAN O Y, JIANG D J, FAN Y B, et al. Self-powered technology for next-generation biosensor[J]. Science Bulletin,2021,66(17):1709-1712. doi: 10.1016/j.scib.2021.04.035
    [5] 刘高燕. 能源危机[J]. 能源与节能, 2015, 20(4): 123.

    LIU Gaoyan. Energy crisis[J]. Energy and Energy Conservation, 2015, 20(4): 123(in Chinese).
    [6] 乔宠如. 可再生能源危机[J]. 经济, 2015, 22: 32-36.

    QIAO Chongru. Renewable energy crisis[J]. Economy, 2015, 22: 32-36(in Chinese).
    [7] 谭杨. 基于MOF结构的Binder-free电极材料的制备及其电化学性能研究[D]. 成都: 电子科技大学, 2020.

    TAN Yang. Preparation and electrochemical properties of binder free electrode materials based on MOF structure[D]. Chengdu: University of Electronic Science and Technology, 2020(in Chinese).
    [8] ZHAO Y H, HE X Y, CHEN R R, et al. A flexible all-solid-state asymmetric supercapacitors based on hierarchical carbon cloth@CoMoO4 NiCo layered double hydroxide core-shell heterostructures[J]. Chemical Engineering Journal, 2018, 352: 29-38.
    [9] WANG C, HU K, LI W J, et al. Wearable wire-shaped symmetric supercapacitors based on activated carbon-coated graphite fibers[J]. ACS Applied Materials & Interfaces,2018,10(40):34302-34310.
    [10] HU P, WANG T S, ZHAO J W, et al. Ultrafast alkaline Ni/Zn battery based on Ni-foam-supported Ni3S2 nanosheets[J]. ACS Applied Materials & Interfaces,2015,7(48):26396-26399.
    [11] 王江林, 徐学良, 丁青青, 等. 锌镍电池在储能技术领域中的应用及展望[J]. 储能科学与技术, 2019, 8(3): 506-511.

    WAMG Jianglin, XU Xueliang, DING Qingqing, et al. Application and prospect of zinc nickel battery in energy storage technology[J]. Energy Storage Science and Technology, 2019, 8(3): 506-511(in Chinese).
    [12] 吴清真. 镍锌电池正极材料的研究[D]. 重庆: 重庆大学, 2016.

    WU Qingzhen. Research on cathode materials for nickel zinc batteries[D]. Chongqing: Chongqing University, 2016(in Chinese).
    [13] 郝志猛. 基于分级有序孔镍/氢氧化镍微电极的微型镍锌电池[D]. 武汉: 武汉理工大学, 2019.

    HAO Zhimeng. Micro nickel zinc battery based on graded ordered pore nickel/nickel hydroxide microelectrode[D]. Wuhan: Wuhan University of Technology, 2019(in Chinese).
    [14] 李先伟. 高性能水系锌离子电池三维柔性电极材料的研究[D]. 南昌: 东华理工大学, 2019.

    LI Xianwei. Research on three-dimensional flexible electrode materials for high-performance aqueous zinc ion batteries[D]. Nanchang: Donghua University of Technology, 2019(in Chinese).
    [15] LAI S B, JAMESH M I, WU X C, et al. A promising energy storage system: Rechargeable Ni-Zn battery[J]. Rare Metals,2017,36(5):381-396.
    [16] LIU J P, GUAN C, ZHOU C, et al. A flexible quasi-solid-state nickel-zinc battery with high energy and power densities based on 3D electrode design[J]. Advanced Materials,2016,28(39):8732-8739. doi: 10.1002/adma.201603038
    [17] LIU J, NIE N Y, WANG J Q, et al. Initiating a wide-tempera-ture-window yarn zinc ion battery by a highly conductive iongel[J]. Materials Today Energy,2020,16:100372. doi: 10.1016/j.mtener.2019.100372
    [18] ZHANG J, CHENG J P, LI M, et al. Flower-like nickel-cobalt binary hydroxides with high specific capacitance: Tuning the composition and asymmetric capacitor application[J]. Journal of Electroanalytical Chemistry,2015,743:38-45. doi: 10.1016/j.jelechem.2015.02.021
    [19] XIA D D, CHEN H C, JIANG J J, et al. Facilely synthesized alpha phase nickel-cobalt bimetallic hydroxides: Tuning the composition for high pseudocapacitance[J]. Electrochimica Acta,2015,156:108-114. doi: 10.1016/j.electacta.2015.01.018
    [20] LI M, YUAN P W, GUO S H, et al. Design and synthesis of Ni-Co and Ni-Mn layered double hydroxides hollow microspheres for supercapacitor[J]. International Journal of Hydrogen Energy,2017,42(8):28797-28806.
    [21] 吴茂琪. 纱线状镍电极及柔性镍锌织物电池的制备与性能研究[D]. 天津: 天津工业大学, 2020.

    WU Maoqi. Study on preparation and performance of yarn nickel electrode and flexible nickel zinc fabric battery[D]. Tianjin: Tianjin University of Technology, 2020(in Chinese).
    [22] 杨甜甜. 金属有机框架材料及其衍生物的制备和电容性能研究[D]. 绵阳: 西南科技大学, 2020.

    YANG Tiantian. Preparation and capacitive properties of metal organic framework materials and their derivatives[D]. Mianyang: Southwest University of Science and Technology, 2020(in Chinese).
    [23] 商梦莉. 金属有机骨架(ZIF-67)材料的制备、微结构调控及性能研究[D]. 保定: 河北大学, 2020.

    SHANG Mengli. Preparation, microstructure regulation and properties of metal organic framework (ZIF-67)[D]. Baoding: Hebei University, 2020(in Chinese).
    [24] HU C Z, XU J H, WANG Y Z, et al. Core-shell crystalline ZIF-67@amorphous ZIF for high-performance supercapaci-tors[J]. Journal of Materials Science,2020,55(34):16360-16373. doi: 10.1007/s10853-020-05163-8
    [25] LIU M, ZHAO H T, XU X X. "Planting" MOF nanotube on Chinese Xuan Paper derived 3D carbon paper: An efficient positive electrode for Ni-Zn battery[J]. Journal of Solid State Chemistry,2020,289:121473.
    [26] ZHEN J, LI Z P, QIN Z H, et al. LDH nanocages synthesized with MOF templates and their high performance as supercapacitors[J]. Nanoscale,2013,5(23):11770-11775. doi: 10.1039/c3nr03829g
    [27] YIN K L, ZHANG H P, YAN Y. High efficiency of toluene adsorption over a novel ZIF-67 membrane coating on paper-like stainless steel fibers[J]. Journal of Solid State Che-mistry,2019,279:120976.
    [28] 杨静, 刘艳君. 石墨烯-棉针织物电极材料的制备及其性能[J]. 纺织学报, 2019, 40(3): 90-95.

    YANG Jing, LIU Yanjun. Preparation and properties of graphene cotton knitted fabric electrode materials[J]. Journal of Textiles, 2019, 40(3): 90-95(in Chinese).
    [29] 王胜, 张胜全. 金属-有机框架材料ZIF-8的合成机理研究[J]. 甘肃冶金, 2016, 38(6):44-48.

    WANG Sheng, ZHANG Shengquan. Study on synthesis mechanism of metal organic framework material ZIF-8[J]. Gansu Metallurgy,2016,38(6):44-48(in Chinese).
    [30] WU M Q, XIA Z P, MAO Z F, et al. Stretchable Ni-Zn fabric battery based on sewable core-shell SCNF@Ni@NiCo LDHs thread cathode for wearable smart garment[J]. Journal of Materials Science,2021,56(17):10537-10554.
    [31] PU X J, ZHAO D, FU C L, et al. Understanding and calibration of charge storage mechanism in cyclic voltammetry curves[J]. Angewandte Chemie, 2021, 133(39): 21480-21488.
    [32] LU Y Z, WANG J, ZENG S Q, et al. An ultrathin defect-rich Co3O4 nanosheet cathode for high-energy and durable aqueous zinc ion batteries[J]. Journal of Materials Che-mistry A,2019,7(38):21678-21683. doi: 10.1039/C9TA08625K
    [33] SHANG W X, YU W T, XIAO X, et al. Microstructure-tuned cobalt oxide electrodes for high-performance Zn-Co batteries[J]. Electrochimica Acta,2020,353:136535. doi: 10.1016/j.electacta.2020.136535
    [34] ZHOU W H, HE J, ZHU D, et al. Hierarchical NiSe2 nanosheet arrays as a robust cathode toward superdurable and ultrafast Ni-Zn aqueous batteries[J]. ACS Applied Materials & Interfaces,2020,12(31):34931-34940.
    [35] WEN J, FENG Z, LIU H R, et al. In-situ synthesized Ni2P nanosheet arrays as the cathode for novel alkaline Ni//Zn rechargeable battery[J]. Applied Surface Science,2019,485:462-467. doi: 10.1016/j.apsusc.2019.04.222
    [36] LI L, JIANG L L, YAN Q, et al. Manipulating nickel oxides in naturally derived cellulose nanofiber networks as robust cathodes for high-performance Ni-Zn batteries[J]. Jour-nal of Materials Chemistry A,2020,8(2):565-572. doi: 10.1039/C9TA09006A
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  1018
  • HTML全文浏览量:  497
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-02
  • 修回日期:  2021-09-06
  • 录用日期:  2021-09-24
  • 网络出版日期:  2021-10-09
  • 刊出日期:  2022-08-31

目录

    /

    返回文章
    返回