Preparation, characterization, adsorption performance and mechanism of Fe3O4@PANI-PG boron adsorbent
-
摘要: 基于磁性分离原理,设计并制备了一种磁性多元醇硼吸附剂,有效解决了传统吸附剂与水相分离困难问题。首先,以苯胺为单体,采用原位聚合反应在自制的磁性Fe3O4纳米颗粒表面包裹了一层聚苯胺(PANI),然后通过缩水甘油与聚苯胺末端活性胺基开环反应,制备了一种核壳结构的多元醇硼吸附剂:Fe3O4@PANI-PG;采用SEM、TEM、EDS、XRD、XPS和FT-IR等表征方法对材料的微观形貌、结构、组成及官能团进行了表征。其次,通过单因素实验考察了吸附时间、硼酸初始浓度、pH等因素对其硼吸附性能的影响,在此基础上采用响应面法优化得到了吸附最佳条件:时间t=10 h,初始浓度C0=1309 mg/L,pH=9.93;和相应最佳吸附量:Qe=0.1181 mmol/g。此外,通过吸附动力学及吸附等温式拟合,研究发现该吸附剂对硼吸附过程符合准二级吸附动力学和Langmuir等温吸附模型。最后对其吸附机理进行探究,研究发现:该吸附剂末端邻位羟基与水相中的B(OH)4−发生络合反应形成了稳定的五元环螯合物。Abstract: In this paper, the traditional difficult problem of separation between adsorbent and water phase was effectively solved by a kind of magnetic polyols boron adsorbent, which were designed and prepared based on the principle of magnetic separation. Firstly, the Fe3O4@PANI composites with core-shell structure were prepared by the in-situ polymerization reaction at the presence of aniline and Fe3O4 nanoparticles, which were prepared by ourselves. Then Fe3O4@PANI-PG boron adsorbent was successfully prepared by the ring-opening reaction between polyaniline terminal active —NH2 and glycidyl. After that, the micro-structure, composition and functional groups were analyzed by the SEM, TEM, EDS, XRD, XPS and FT-IR, respectively. The adsorption time, initial concentration of boric acid, pH and other factors of Fe3O4@PANI-PG were investigated by the single factor experiment. On this basis, the optimal adsorption conditions (time t=10 h, initial concentration C0=1309 mg/L, pH=9.93) were obtained by response surface method, and the corresponding optimal adsorption capacity up to Qe=0.1181 mmol/g. In addition, it was found that the adsorption process was in accordance with the quasi-second-order adsorption kinetics and Langmuir adsorption isotherm based on the adsorption kinetics and adsorption isotherm fitting. Finally, the adsorption mechanism of Fe3O4@PANI-PG was explored and the results indicating the complex reaction between the hydroxyl group at the end of the adsorbent and B(OH)4− in the aqueous phase formed a stable five-membered ring chelate.
-
Key words:
- Magnetic nanoparticles /
- Boron adsorbent /
- Core-shell structure /
- Response surface method /
- Polyaniline /
- Glycidol
-
图 11 各因素交互作用 (a) t 和 C0 (pH=9); (b) t 和C0 (pH=10); (c) t和 C0 (pH=11); (d) pH 和 t (C0=1200 mg); (e) pH 和 t (C0=1300 mg); (f) pH和 t (C0=1400 mg); (g) pH和C0 (t=6 h); (h) pH和 C0 (t=8 h); (i) pH和 C0 (t=10 h) 对Fe3O4@PANI-PG单位硼吸附量的影响
Figure 11. Interaction of all factors (a) t and C0 (pH=9); (b) t and C0 (pH=10); (c) t and C0 (pH=11); (d) pH and t (C0=1200 mg); (e) pH and t (C0=1300 mg); (f) pH and t (C0=1400 mg); (g) pH and C0 (t=6 h); (h) pH and C0 (t=8 h); (I) Effects of pH and C0 (t=10 h) on Fe3O4@PANI-PG unit boron adsorption
表 1 Langmuir和Freundlich方程对Fe3O4@PANI-PG吸附等温线的拟合参数
Table 1. Fitting parameters of Langmuir and Freundlich equations to Fe3O4@PANI-PG adsorption isotherms
Models and parameters Langmuir Freundlich $\dfrac{{{C_{\text{e}}}}}{{{Q_{\text{e}}}}} = \dfrac{1}{{{Q_{\text{m}}}{K_{\text{L}}}}} + \dfrac{{{C_{\text{e}}}}}{{{Q_{\text{m}}}}}$ $\lg {Q_{\text{e}}} = \lg {K_{\text{F}}} + \dfrac{1}{n}\lg {C_{\text{e}}}$ KL Qm R2 KF n R2 Value 0.00118 0.1877 0.99241 0.00102 1.4952 0.98101 Note:Qe—Equilibrium adsorption capacity; Qm—Maximum adsorption capacity; KL—Adsorption coefficient of Langmuir; Ce—Solution boron concentration at adsorption equilibrium; KF—Adsorption coefficient of Freundlich. 表 2 Fe3O4@PANI-PG吸附硼的动力学模型拟合参数
Table 2. Parameters of kinetic model fitting for Fe3O4@PANI-PG adsorbed boron
Models and parameters Pseudo-first-order kinetics model Pseudo-second order kinetic model ${\text{ln}}({q_{\text{e}}} - q) = {\text{ln}}{q_{\text{e}}} - {k_{\text{1}}}t$ $\dfrac{t}{q} = \dfrac{1}{{{k_{\text{2}}}\cdot{q_{\text{e}}}^2}} + \dfrac{t}{{{q_{\text{e}}}}}$ k1 qe R2 k2 qe R2 Value 0.44211 0.1160 0.9802 1.7574 0.1577 0.9975 Note:qe—Equilibrium adsorption capacity; q—Adsorption capacity at time t; t—Adsorption time; k1—Pseudo- first order adsorption rate constant;k2—Pseudo-second order adsorption rate constant. 表 3 各影响因素与水平
Table 3. Influencing factors and levels
factor Symbol unit level −1 0 1 t A h 6 8 10 C0 B mg/L 1200 1300 1400 pH C - 9 10 11 Response value Qe mmol/g Note:Qe—adsorption capacity; C0—Boric acid concentration. 表 4 Fe3O4@PANI-PG吸附硼酸条件的优化——Box-Behnken试验结果与分析
Table 4. Optimization of conditions for Fe3O4@PANI-PG to adsorb boric acid results and analysis of Box-Behnken test
Number A B C Qe 1 10 1300 9 0.11224 2 6 1400 10 0.1001 3 6 1300 11 0.09708 4 8 1300 10 0.11417 5 10 1300 11 0.11038 6 8 1300 10 0.11409 7 10 1200 10 0.11143 8 6 1300 9 0.09924 9 8 1400 9 0.10315 10 6 1200 10 0.09824 11 8 1400 11 0.10157 12 8 1200 11 0.09919 13 8 1300 10 0.11415 14 10 1400 10 0.11357 15 8 1200 9 0.10162 16 8 1300 10 0.11415 17 8 1300 10 0.11408 表 5 响应面试验结果方差分析
Table 5. Variance analysis of response surface test results
Source SS df MS F-value P-value Significance Modle 0.0008 9 0.0001 25359.34 <0.0001 significant A-time 0.0004 1 0.0004 103529.48 <0.0001 significant B-C 7.821 E-06 1 7.821 E-06 2309.52 <0.0001 significant C-pH 8.060 E-06 1 8.060 E-6 2380.12 <0.0001 significant AB 1.960 E-08 1 1.960 E-08 5.79 0.0471 significant AC 2.250 E-08 1 2.250 E-08 6.64 <0.0366 significant BC 1.806 E-07 1 1.806 E-07 53.34 0.0002 significant A2 0.0000 1 0.0000 7587.11 <0.0001 significant B2 0.0001 1 0.0001 42155.16 <0.0001 significant C2 0.0002 1 0.0002 59587.03 <0.0001 significant Residual 2.371 E-08 7 3.386 E-09 Lack of Fit 1.723 E-08 3 5.742 E-09 3.54 0.1266 not significant Pure Error 6.480 E-09 4 1.620 E-09 Cor Total 0.008 16 C.V. %=5.44% R2=99.99% Adjust R2=99.98% Predicted R2=99.96% Note:SS—Sum of squares; df—Degrees of freedom; MS—Mean square. -
[1] 林鸿. 邻苯二酚修饰树脂的合成及其硼吸附性能研究 [D]. 天津: 天津大学, 2014.LIN Hong. Study on the Synthesis of Caterpillar Pendant Checking Resin and its Adsorption Performance of Boron [D]. Tianjin: Tianjin University, 2014(in Chinese). [2] 丁伟. 硼选择性吸附剂的制备及其吸附性能研究 [D]. 呼和浩特: 内蒙古大学, 2018.DING Wei. Study on Preparation and Adsorption Performance of Boron Selective Adsorbent [D]. Hohhot: Inner Mongolia University, 2018(in Chinese). [3] 李松松. 硼特效配位吸附树脂对反渗透海水淡化中硼的吸附研究 [D]. 天津: 天津工业大学, 2017.LI Songsong. Study on the Adsorption of Boron in Reverse Osmosis Seawater Desalination by Boron Specific Coordination Adsorption Resin [D]. Tianjin: Tianjin University of Technology, 2017(in Chinese). [4] 胡俊威. 硼吸附改性材料的制备及性能研究 [D]. 衡阳: 南华大学, 2017.HU Junwei. Study on Preparation and Performance of Boron Adsorption Modified Materials [D]. Hengyang: Nanhua University, 2017(in Chinese). [5] 赵丹. 树脂吸附法去除淡化水中超标硼的应用基础研究 [D]. 杭州: 浙江大学, 2019.ZHAO Dan. Basic Research on the Application of Resin Adsorption Method to Remove Excess Boron in Desalination Water [D]. Hangzhou: Zhejiang University, 2019(in Chinese). [6] KLUCZKA J, GNUS M, KAZEK-KESIK A, et al. Zirconium-chitosan hydrogel beads for removal of boron from aqueous solutions [J]. Polymer 2018, 150: 109-118. [7] TURKER O C, BARAN T. Evaluation and application of an innovative method based on various chitosan composites and Lemna gibba for boron removal from drinking water[J]. Carbohydr Polym,2017,166:209-218. doi: 10.1016/j.carbpol.2017.02.106 [8] 吕佳绯. 硼酸吸附和硼同位素分离材料的合成及性能研究 [D]. 天津: 天津大学, 2019.LU Jiafei, Study on Synthesis and Performance of Boric Acid Adsorption and Boron Isotope Separation Materials [D]. Tianjin: Tianjin University, 2019(in Chinese). [9] WEI Y T, ZHENG Y M, CHEN J P. Functionalization of regenerated cellulose membrane via surface initiated atom transfer radical polymerization for boron removal from aqueous solution [J]. Langmuir 2011, 27(10): 6018-6025. [10] 胡伟, 杨晓军, 符寒光. 富硼渣盐酸浸出液中硼酸结晶的研究[J]. 化工矿物与加工, 2016, 45(8):31-36. doi: 10.16283/j.cnki.hgkwyjg.2016.08.009HU Wei, YANG Xiaojun, FU Hanguang. Study on Boric Acid Crystallization in Hydrochloric Acid Leaching Solution of Boron rich Slag[J]. Chemical Minerals and Processing,2016,45(8):31-36(in Chinese). doi: 10.16283/j.cnki.hgkwyjg.2016.08.009 [11] REMY P, MUHR H, PLASARI E, et al. Removal of boron from wastewater by precipitation of a sparingly soluble salt[J]. Environmental Progress,2005,24(1):105-110. doi: 10.1002/ep.10058 [12] NAJID N, KOUZBOUR S, RUIZ-GARCíA A, et al. Comparison analysis of different technologies for the removal of boron from seawater: A review[J]. Journal of Environmental Chemical Engineering,2021,9(2):105133. doi: 10.1016/j.jece.2021.105133 [13] 付喜林, 杨晓军, 符寒光, 等. 浮选法富集低品位含硼尾矿研究[J]. 矿产综合利用, 2018(1):101-105. doi: 10.3969/j.issn.1000-6532.2018.01.022FU Xilin, YANG Xiaojun, FU Hanguang, et al. Study on enrichment of low-grade boron bearing tailings by flotation[J]. Comprehensive Utilization of Minerals,2018(1):101-105(in Chinese). doi: 10.3969/j.issn.1000-6532.2018.01.022 [14] FORTUNY A, COLL M T, KEDARI C S, et al. Effect of phase modifiers on boron removal by solvent extraction using 1, 3 diolic compounds[J]. Journal of Chemical Technology & Biotechnology,2014,89(6):858-865. [15] JUNG J, CHOI H, HONG S, et al. Surface-initiated ATRP of glycidyl methacrylate in the presence of divinylbenzene on porous polystyrene-based resins for boron adsorption[J]. Desalination,2020,473:8. [16] SEN F, ALTIOK E, CYGANOWSKI P, et al. Reclamation of RO permeate and concentrate of geothermal water by new chelating resins having N-methyl-D-glucamine ligands[J]. Separation and Purification Technology,2021,254:7. [17] 张倩倩. 丙烯酸系除硼树脂的合成及性能研究 [D]. 长沙: 湖南师范大学, 2020.ZHANG Qianqian. Study on the Synthesis and Properties of Acrylic Resin for Boron Removal [D]. Changsha: Hunan Normal University, 2020(in Chinese). [18] 王金明, 刘文飞, 张勇, 等. 硼吸附用聚丙纤维接枝苯乙烯离子交换纤维[J]. 化学工业与工程, 2010, 27(4):308-312. doi: 10.3969/j.issn.1004-9533.2010.04.006WANG Jinming, LIU Wenfei, ZHANG Yong, et al. Polypropylene fiber grafted styrene ion exchange fiber for boron adsorption[J]. Chemical Industry and Engineering,2010,27(4):308-312(in Chinese). doi: 10.3969/j.issn.1004-9533.2010.04.006 [19] DARWISH N B, KOCHKODAN V, HILAL N. Boron removal from water with fractionized Amberlite IRA743 resin[J]. Desalination,2015,370:1-6. doi: 10.1016/j.desal.2015.05.009 [20] 王婕. 甲亚胺—H分光光度法测定水中硼 [J]. 科技资讯, 2011, (09): 208.WANG Jie. Determination of Boron in Water by Methylimine-H Spectrophotometry [J] Science and Technology Information, 2011, (09): 208(in Chinese). [21] 邢书才, 岳亚萍, 杨永. 甲亚胺-H光度法检测水中硼测定条件的改进性研究[J]. 应用化工, 2019, 48(2):494-496+500. doi: 10.3969/j.issn.1671-3206.2019.02.056XING Shucai, YUE Yaping, YANG Yong. Study on Improvement of Determination Conditions of Boron in Water by Methylimine-H Photometric Method[J]. Applied Chemistry,2019,48(2):494-496+500(in Chinese). doi: 10.3969/j.issn.1671-3206.2019.02.056 [22] 陈少锋. 多羟基功能化硼螯合树脂的制备及其硼吸附性能研究 [D]. 杭州: 浙江大学, 2016.CHEN Shaofeng. Preparation of Polyhydroxy Functionalized Boron Chelating Resin and Study on Its Boron Adsorption Performance [D]. Hangzhou: Zhejiang University, 2016(in Chinese). [23] ADEBAYO L L, SOLEIMANI H, GUAN B H, et al. A simple route to prepare Fe3O4@C microspheres as electromagnetic wave absorbing material[J]. Journal of Materials Research and Technology,2021,12:1552-1563. doi: 10.1016/j.jmrt.2021.03.094 [24] LI G-Y, JIANG Y-R, HUANG K-L, et al. Preparation and properties of magnetic Fe3O4–chitosan nanoparticles[J]. Journal of Alloys and Compounds,2008,466(1-2):451-456. doi: 10.1016/j.jallcom.2007.11.100 [25] 吴强. 交联壳聚糖基硼吸附剂的制备及性能研究 [D], 天津: 天津大学, 2019.WU Qiang. Study on Preparation and Performance of Cross linked Chitosan based Boron Adsorbent [D]. Tianjin: Tianjin University, 2019(in Chinese). [26] 刘晨. 硼吸附材料的制备及其吸附性能的研究 [D]. 西宁: 青海师范大学, 2018.LIU Chen, Preparation of Boron Adsorption Materials and Study on Their Adsorption Properties [D]. Xining: Qinghai Normal University, 2018(in Chinese). [27] SILVA V A J, ANDRADE P L, SILVA M P C, et al. Bustamante D, L. De Los Santos Valladares, J. Albino Aguiar, Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides[J]. Journal of Magnetism and Magnetic Materials,2013,343:138-143. doi: 10.1016/j.jmmm.2013.04.062 [28] YANG K, PENG H, WEN Y, et al. Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles[J]. Applied Surface Science,2010,256:3093-3097. doi: 10.1016/j.apsusc.2009.11.079 [29] LI L, WEN Y, HAN G, et al. Tailoring the stability of Fe-N-C via pyridinic nitrogen for acid oxygen reduction reaction[J]. Chemical Engineering Journal,2022:437. [30] PENG H, MO Z, LIAO S, et al. High Performance Fe- and N- Doped Carbon Catalyst with Graphene Structure for Oxygen Reduction[J]. Scientific Reports,2013,3(1):1765. doi: 10.1038/srep01765 [31] GAO J, WU Z, CHEN L, et al. Synergistic effects of iron ion and PANI in biochar material for the efficient removal of Cr(VI)[J]. Materials Letters,2019,240:147-149. doi: 10.1016/j.matlet.2018.12.116 [32] WILSON D, LANGELL M A. XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature[J]. Applied Surface Science,2014,303:6-13. doi: 10.1016/j.apsusc.2014.02.006 [33] NARAYANASAMY S, JAYAPRAKASH J. Carbon cloth/nickel cobaltite (NiCo2O4)/polyaniline (PANI) composite electrodes: Preparation, characterization, and application in microbial fuel cells[J]. Fuel,2021,301:121016. doi: 10.1016/j.fuel.2021.121016 [34] WAGHMODE B J, PATIL S H, JAHAGIRDAR M M, et al. Studies on morphology of polyaniline films formed at liquid–liquid and solid–liquid interfaces at 25 and 5℃, respectively, and effect of doping[J]. Colloid and Polymer Science,2014,292(5):1079-1089. doi: 10.1007/s00396-013-3150-3 [35] SHEN T, LIU S, YAN W, et al. Highly efficient preparation of hexagonal boron nitride by direct microwave heating for dye removal[J]. Journal of Materials Science,2019,54(12):8852-9. doi: 10.1007/s10853-019-03514-8 [36] XIE L, REN Z, ZHU P, et al. A novel CeO2–TiO2/PANI/NiFe2O4 magnetic photocatalyst: Preparation, characterization and photodegradation of tetracycline hydrochloride under visible light[J]. Journal of Solid State Chemistry,2021,300:122208. doi: 10.1016/j.jssc.2021.122208 [37] ESFANDIARI N, KASHEFI M, MIRJALILI M, et al. Role of silica mid-layer in thermal and chemical stability of hierarchical Fe3 O4-SiO2-TiO2 nanoparticles for improvement of lead adsorption: Kinetics, thermodynamic and deep XPS investigation[J]. Materials Science and Engineering:B,2020,262:114690. doi: 10.1016/j.mseb.2020.114690 [38] JOUYANDEH M, GANJALI M R, REZAPOUR M, et al. Nonisothermal cure behavior and kinetics of cerium-doped Fe3O4/epoxy nanocomposites[J]. Applied Organometallic Chemistry,2022,13:e6825. [39] KOUOTOU P M, TIAN Z-Y. Controlled synthesis of α-Fe2O3@Fe3O4 composite catalysts for exhaust gas purification[J]. Proceedings of the Combustion Institute,2019,37(4):5445-5453. doi: 10.1016/j.proci.2018.05.172 [40] WANG Z, MA K, ZHANG Y, et al. High internal phase emulsion hierarchical porous polymer grafting polyol compounds for boron removal[J]. Journal of Water Process Engineering,2021,41:102025. doi: 10.1016/j.jwpe.2021.102025 [41] AFOLABI H K, NASEF M M, NORDIN N A H M, et al. N. Y. Harun, A. Abbasi, Facile preparation of fibrous glycidol-containing adsorbent for boron removal from solutions by radiation-induced grafting of poly(vinylamine) and functionalisation[J]. Radiation Physics and Chemistry,2021,188:109596. doi: 10.1016/j.radphyschem.2021.109596 [42] 廖雪平. 基于环糊精的新型吸附材料的构建及其性能研究 [D]. 南京: 南京理工大学, 2019.LIAO Xueping. Study on the Construction and Performance of a Novel Adsorption Material Based on Cyclodextrin [D]. Nanjing: Nanjing University of Technology, 2019(in Chinese). [43] HONG M, LI D, WANG B, et al. Cellulose-derived polyols as high-capacity adsorbents for rapid boron and organic pollutants removal from water [J]. journal of hazardous materials 2021, 419: 126503. -