留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe3O4@PANI-PG硼吸附剂的制备、表征及其吸附性能

乐云龙 关云山 鲍郁瑞 马晓娜 张卫东

乐云龙, 关云山, 鲍郁瑞, 等. Fe3O4@PANI-PG硼吸附剂的制备、表征及其吸附性能[J]. 复合材料学报, 2023, 40(8): 4625-4636. doi: 10.13801/j.cnki.fhclxb.20221109.002
引用本文: 乐云龙, 关云山, 鲍郁瑞, 等. Fe3O4@PANI-PG硼吸附剂的制备、表征及其吸附性能[J]. 复合材料学报, 2023, 40(8): 4625-4636. doi: 10.13801/j.cnki.fhclxb.20221109.002
LE Yunlong, GUAN Yunshan, BAO Yurui, et al. Preparation, characterization, adsorption performance and mechanism of Fe3O4@PANI-PG boron adsorbent[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4625-4636. doi: 10.13801/j.cnki.fhclxb.20221109.002
Citation: LE Yunlong, GUAN Yunshan, BAO Yurui, et al. Preparation, characterization, adsorption performance and mechanism of Fe3O4@PANI-PG boron adsorbent[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4625-4636. doi: 10.13801/j.cnki.fhclxb.20221109.002

Fe3O4@PANI-PG硼吸附剂的制备、表征及其吸附性能

doi: 10.13801/j.cnki.fhclxb.20221109.002
基金项目: 国家自然基金-联合基金项目(U20A20149);青海大学大学生创新创业训练计划项目(2021-QX-16)
详细信息
    通讯作者:

    关云山,博士,教授,研究方向为盐湖资源综合利用 E-mail:qh-gys@163.com

  • 中图分类号: TQ424;TB333

Preparation, characterization, adsorption performance and mechanism of Fe3O4@PANI-PG boron adsorbent

Funds: National Natural Fund-Joint Fund Project (U20A20149); Qinghai University College Students' Innovation and Entrepreneurship Training Program (2021-QX-16)
  • 摘要: 基于磁性分离原理,设计并制备了一种磁性多元醇硼吸附剂,有效解决了传统吸附剂与水相分离困难问题。首先,以苯胺为单体,采用原位聚合反应在自制的磁性Fe3O4纳米颗粒表面包裹了一层聚苯胺(PANI),然后通过缩水甘油与聚苯胺末端活性胺基开环反应,制备了一种核壳结构的多元醇硼吸附剂:丙二醇改性聚苯胺复合四氧化三铁(Fe3O4@PANI-PG);采用SEM、TEM、EDS、XRD、XPS和FTIR等表征方法对材料的微观形貌、结构、组成及官能团进行了表征。其次,通过单因素实验考察了吸附时间、硼酸初始浓度、pH等因素对其硼吸附性能的影响,在此基础上采用响应面法优化得到了吸附最佳条件:时间t=10 h,初始浓度C0=1309 mg/L,pH=9.93和相应最佳吸附量Qe=0.1181 mmol/g。此外,通过吸附动力学及吸附等温式拟合,研究发现该吸附剂对硼吸附过程符合准二级吸附动力学和Langmuir等温吸附模型。最后对其吸附机制进行探究,研究发现:该吸附剂末端邻位羟基与水相中的B(OH)4发生络合反应形成了稳定的五元环螯合物。

     

  • 图  1  丙二醇改性聚苯胺复合四氧化三铁(Fe3O4@PANI-PG)的合成过程

    Figure  1.  Synthesis process of propylene glycol modified polyaniline compound Fe3O4 (Fe3O4@PANI-PG)

    图  2  硼酸标准曲线

    Figure  2.  Standard curve of boric acid

    图  3  (a) Fe3O4的SEM图像;(b) Fe3O4@PANI-PG的SEM图像;(c) Fe3O4@PANI-PG的EDS图像

    Figure  3.  (a) SEM image of Fe3O4; (b) SEM image of Fe3O4@PANI-PG; (c) EDS image of Fe3O4@PANI-PG

    图  4  Fe3O4@PANI-PG在不同放大倍数下的TEM图像

    Figure  4.  TEM images of Fe3O4@PANI-PG at different magnifications

    图  5  Fe3O4@PANI-PG的XRD图谱

    Figure  5.  XRD patterns of Fe3O4@PANI-PG

    图  6  Fe3O4@PANI-PG的FTIR图谱

    Figure  6.  FTIR spectra of Fe3O4@PANI-PG

    图  7  Fe3O4@PANI-PG的XPS图谱:(a) 全谱;(b) N1s;(c) O1s;(d) C1s;(e) Fe2p

    Figure  7.  XPS spectrum of Fe3O4@PANI-PG: (a) Full spectrum; (b) N1s; (c) O1s; (d) C1s; (e) Fe2p

    图  8  pH对Fe3O4@PANI-PG的单位硼吸附量的影响

    Figure  8.  Effect of pH on boron adsorption per unit of Fe3O4@PANI-PG

    qe—Equilibrium adsorption capacity

    图  9  Fe3O4@PANI-PG对硼酸的吸附等温式拟合

    Figure  9.  Fe3O4@PANI-PG isothermal fitting of boric acid adsorption

    Qe—Equilibrium adsorption capacity; Ce—Solution boron concentration at adsorption equilibrium

    图  10  (a) 时间对Fe3O4@PANI-PG的单位硼吸附量的影响;(b) Fe3O4@PANI-PG的准一级和准二级吸附动力学模型

    Figure  10.  (a) Effect of time on boron adsorption per unit of Fe3O4@PANI-PG; (b) Quasi-first-order and quasi-second-order adsorption kinetic models for Fe3O4@PANI-PG

    q—Adsorption capacity at time t; t—Adsorption time

    图  11  各因素交互作用:(a) tC0 (pH=9); (b) tC0 (pH=10); (c) tC0 (pH=11); (d) pH和t (C0=1200 mg); (e) pH和t (C0=1300 mg); (f) pH和t (C0=1400 mg); (g) pH和C0 (t=6 h); (h) pH和C0 (t=8 h); (i) pH和C0 (t=10 h)对Fe3O4@PANI-PG单位硼吸附量的影响

    Figure  11.  Interaction of all factors: (a) t and C0 (pH=9); (b) t and C0 (pH=10); (c) t and C0 (pH=11); (d) pH and t (C0=1200 mg); (e) pH and t (C0=1300 mg); (f) pH and t (C0=1400 mg); (g) pH and C0 (t=6 h); (h) pH and C0 (t=8 h); (I) Effects of pH and C0 (t=10 h) on Fe3O4@PANI-PG unit boron adsorption

    图  12  Fe3O4@PANI-PG对硼的吸附机制

    Figure  12.  Adsorption mechanism of Fe3O4@PANI-PG on boron

    表  1  Langmuir和Freundlich方程对Fe3O4@PANI-PG吸附等温线的拟合参数

    Table  1.   Fitting parameters of Langmuir and Freundlich equations to Fe3O4@PANI-PG adsorption isotherms

    Model and parameterLangmuirFreundlich
    $\dfrac{{{C_{\text{e}}}}}{{{Q_{\text{e}}}}} = \dfrac{1}{{{Q_{\text{m}}}{K_{\text{L}}}}} + \dfrac{{{C_{\text{e}}}}}{{{Q_{\text{m}}}}}$$\lg {Q_{\text{e}}} = \lg {K_{\text{F}}} + \dfrac{1}{n}\lg {C_{\text{e}}}$
    KLQmR2KFnR2
    Value0.001180.18770.992410.001021.49520.98101
    Notes: Qm—Maximum adsorption capacity; KL—Adsorption coefficient of Langmuir; KF—Adsorption coefficient of Freundlich; n—Adsorption intensity characteristic constant.
    下载: 导出CSV

    表  2  Fe3O4@PANI-PG吸附硼的动力学模型拟合参数

    Table  2.   Parameters of kinetic model fitting for Fe3O4@PANI-PG adsorbed boron

    Model and parameterPseudo-first-order kinetic modelPseudo-second-order kinetic model
    ${\text{ln}}({q_{\text{e}}} - q) = {\text{ln}}{q_{\text{e}}} - {k_{\text{1}}}t$$\dfrac{t}{q} = \dfrac{1}{ { {k_{\text{2} } }{q_{\text{e} } }^2} } + \dfrac{t}{ { {q_{\text{e} } } }}$
    k1qeR2k2qeR2
    Value0.442110.11600.98021.75740.15770.9975
    Notes: qe—Equilibrium adsorption capacity; k1—Pseudo-first order adsorption rate constant;k2—Pseudo-second order adsorption rate constant; R—Correlation coefficient.
    下载: 导出CSV

    表  3  各影响因素与水平

    Table  3.   Influencing factors and levels

    FactorSymbolLevel
    −101
    t/h A 6 8 10
    C0/(mg·L−1) B 1200 1300 1400
    pH C 9 10 11
    Response value/(mmol·g−1) Qe
    Notes: Qe—Adsorption capacity; C0—Boric acid concentration.
    下载: 导出CSV

    表  4  Fe3O4@PANI-PG吸附硼酸条件的优化—Box-Behnken试验结果与分析

    Table  4.   Optimization of conditions for Fe3O4@PANI-PG to adsorb boric acid results and analysis of Box-Behnken test

    NumberABCQe
    1 10 1300 9 0.11224
    2 6 1400 10 0.10010
    3 6 1300 11 0.09708
    4 8 1300 10 0.11417
    5 10 1300 11 0.11038
    6 8 1300 10 0.11409
    7 10 1200 10 0.11143
    8 6 1300 9 0.09924
    9 8 1400 9 0.10315
    10 6 1200 10 0.09824
    11 8 1400 11 0.10157
    12 8 1200 11 0.09919
    13 8 1300 10 0.11415
    14 10 1400 10 0.11357
    15 8 1200 9 0.10162
    16 8 1300 10 0.11415
    17 8 1300 10 0.11408
    下载: 导出CSV

    表  5  响应面试验结果方差分析

    Table  5.   Variance analysis of response surface test results

    SourceSSdfMSF-valueP-valueSignificance
    Modle 0.0008 9 0.0001 25359.34 <0.0001 Significant
    A-Time 0.0004 1 0.0004 103529.48 <0.0001 Significant
    B-Concentration 7.821×10–6 1 7.821×10–6 2309.52 <0.0001 Significant
    C-pH 8.060×10–6 1 8.060×10–6 2380.12 <0.0001 Significant
    AB 1.960×10–8 1 1.960×10–8
    5.79 0.0471 Significant
    AC 2.250×10–8 1 2.250×10–8 6.64 <0.0366 Significant
    BC 1.806×10–7 1 1.806×10–7 53.34 0.0002 Significant
    A2 0.0000 1 0.0000 7587.11 <0.0001 Significant
    B2 0.0001 1 0.0001 42155.16 <0.0001 Significant
    C2 0.0002 1 0.0002 59587.03 <0.0001 Significant
    Residual 2.371×10–8 7 3.386×10–9
    Lack of fit 1.723×10–8 3 5.742×10–9 3.54 0.1266 Not significant
    Pure error 6.480×10–9 4 1.620×10–9
    Cor total 0.008 16
    CV/%=5.44% R2=99.99% Adjust R2=99.98% Predicted R2=99.96%
    Notes: SS—Sum of squares; df—Degrees of freedom; MS—Mean square; F—Variance test amount; P—A parameter used to determine the hypothesis test result; CV—Ratio of the standard deviation to the average.
    下载: 导出CSV
  • [1] 林鸿. 邻苯二酚修饰树脂的合成及其硼吸附性能研究[D]. 天津: 天津大学, 2014.

    LIN Hong. Study on the synthesis of caterpillar pendant checking resin and its adsorption performance of boron[D]. Tianjin: Tianjin University, 2014(in Chinese).
    [2] 丁伟. 硼选择性吸附剂的制备及其吸附性能研究[D]. 呼和浩特: 内蒙古大学, 2018.

    DING Wei. Study on preparation and adsorption performance of boron selective adsorbent[D]. Hohhot: Inner Mongolia University, 2018(in Chinese).
    [3] 李松松. 硼特效配位吸附树脂对反渗透海水淡化中硼的吸附研究[D]. 天津: 天津工业大学, 2017.

    LI Songsong. Study on the adsorption of boron in reverse osmosis seawater desalination by boron specific coordination adsorption resin[D]. Tianjin: Tianjin University of Technology, 2017(in Chinese).
    [4] 胡俊威. 硼吸附改性材料的制备及性能研究[D]. 衡阳: 南华大学, 2017.

    HU Junwei. Study on preparation and performance of boron adsorption modified materials[D]. Hengyang: Nanhua University, 2017(in Chinese).
    [5] 赵丹. 树脂吸附法去除淡化水中超标硼的应用基础研究[D]. 杭州: 浙江大学, 2019.

    ZHAO Dan. Basic research on the application of resin adsorption method to remove excess boron in desalination water[D]. Hangzhou: Zhejiang University, 2019(in Chinese).
    [6] KLUCZKA J, GNUS M, KAZEK-KESIK A, et al. Zirconium-chitosan hydrogel beads for removal of boron from aqueous solutions[J]. Polymer, 2018, 150: 109-118.
    [7] TURKER O C, BARAN T. Evaluation and application of an innovative method based on various chitosan composites and Lemna gibba for boron removal from drinking water[J]. Carbohydrate Polymers,2017,166:209-218. doi: 10.1016/j.carbpol.2017.02.106
    [8] 吕佳绯. 硼酸吸附和硼同位素分离材料的合成及性能研究[D]. 天津: 天津大学, 2019.

    LYU Jiafei. Study on synthesis and performance of boric acid adsorption and boron isotope separation materials[D]. Tianjin: Tianjin University, 2019(in Chinese).
    [9] WEI Y T, ZHENG Y M, CHEN J P. Functionalization of regenerated cellulose membrane via surface initiated atom transfer radical polymerization for boron removal from aqueous solution[J]. Langmuir, 2011, 27(10): 6018-6025.
    [10] 胡伟, 杨晓军, 符寒光. 富硼渣盐酸浸出液中硼酸结晶的研究[J]. 化工矿物与加工, 2016, 45(8):31-36. doi: 10.16283/j.cnki.hgkwyjg.2016.08.009

    HU Wei, YANG Xiaojun, FU Hanguang. Study on boric acid crystallization in hydrochloric acid leaching solution of boron rich slag[J]. Chemical Minerals and Processing,2016,45(8):31-36(in Chinese). doi: 10.16283/j.cnki.hgkwyjg.2016.08.009
    [11] REMY P, MUHR H, PLASARI E, et al. Removal of boron from wastewater by precipitation of a sparingly soluble salt[J]. Environmental Progress,2005,24(1):105-110. doi: 10.1002/ep.10058
    [12] NAJID N, KOUZBOUR S, RUIZ-GARCÍA A, et al. Comparison analysis of different technologies for the removal of boron from seawater: A review[J]. Journal of Environmental Chemical Engineering,2021,9(2):105133. doi: 10.1016/j.jece.2021.105133
    [13] 付喜林, 杨晓军, 符寒光, 等. 浮选法富集低品位含硼尾矿研究[J]. 矿产综合利用, 2018(1):101-105. doi: 10.3969/j.issn.1000-6532.2018.01.022

    FU Xilin, YANG Xiaojun, FU Hanguang, et al. Study on enrichment of low-grade boron bearing tailings by flotation[J]. Comprehensive Utilization of Minerals,2018(1):101-105(in Chinese). doi: 10.3969/j.issn.1000-6532.2018.01.022
    [14] FORTUNY A, COLL M T, KEDARI C S, et al. Effect of phase modifiers on boron removal by solvent extraction using 1, 3-diolic compounds[J]. Journal of Chemical Technology & Biotechnology,2014,89(6):858-865.
    [15] JUNG J, CHOI H, HONG S, et al. Surface-initiated ATRP of glycidyl methacrylate in the presence of divinylbenzene on porous polystyrene-based resins for boron adsorption[J]. Desalination,2020,473:114116.
    [16] SEN F, ALTIOK E, CYGANOWSKI P, et al. Reclamation of RO permeate and concentrate of geothermal water by new chelating resins having N-methyl-D-glucamine ligands[J]. Separation and Purification Technology,2021,254:117558.
    [17] 张倩倩. 丙烯酸系除硼树脂的合成及性能研究[D]. 长沙: 湖南师范大学, 2020.

    ZHANG Qianqian. Study on the synthesis and properties of acrylic resin for boron removal[D]. Changsha: Hunan Normal University, 2020(in Chinese).
    [18] 王金明, 刘文飞, 张勇, 等. 硼吸附用聚丙纤维接枝苯乙烯离子交换纤维[J]. 化学工业与工程, 2010, 27(4):308-312. doi: 10.3969/j.issn.1004-9533.2010.04.006

    WANG Jinming, LIU Wenfei, ZHANG Yong, et al. Polypropylene fiber grafted styrene ion exchange fiber for boron adsorption[J]. Chemical Industry and Engineering,2010,27(4):308-312(in Chinese). doi: 10.3969/j.issn.1004-9533.2010.04.006
    [19] DARWISH N B, KOCHKODAN V, HILAL N. Boron removal from water with fractionized amberlite IRA743 resin[J]. Desalination,2015,370:1-6. doi: 10.1016/j.desal.2015.05.009
    [20] 王婕. 甲亚胺-H分光光度法测定水中硼[J]. 科技资讯, 2011(9): 208.

    WANG Jie. Determination of boron in water by methylimine-H spectrophotometry[J]. Science and Technology Information, 2011(9): 208(in Chinese).
    [21] 邢书才, 岳亚萍, 杨永. 甲亚胺-H光度法检测水中硼测定条件的改进性研究[J]. 应用化工, 2019, 48(2):494-496, 500. doi: 10.3969/j.issn.1671-3206.2019.02.056

    XING Shucai, YUE Yaping, YANG Yong. Study on improvement of determination conditions of boron in water by methylimine-H photometric method[J]. Applied Che-mistry,2019,48(2):494-496, 500(in Chinese). doi: 10.3969/j.issn.1671-3206.2019.02.056
    [22] 陈少锋. 多羟基功能化硼螯合树脂的制备及其硼吸附性能研究 [D]. 杭州: 浙江大学, 2016.

    CHEN Shaofeng. Preparation of polyhydroxy functionalized boron chelating resin and study on its boron adsorption performance[D]. Hangzhou: Zhejiang University, 2016(in Chinese).
    [23] ADEBAYO L L, SOLEIMANI H, GUAN B H, et al. A simple route to prepare Fe3O4@C microspheres as electromagnetic wave absorbing material[J]. Journal of Materials Research and Technology,2021,12:1552-1563. doi: 10.1016/j.jmrt.2021.03.094
    [24] LI G Y, JIANG Y R, HUANG K L, et al. Preparation and pro-perties of magnetic Fe3O4-chitosan nanoparticles[J]. Journal of Alloys and Compounds,2008,466(1-2):451-456. doi: 10.1016/j.jallcom.2007.11.100
    [25] 吴强. 交联壳聚糖基硼吸附剂的制备及性能研究[D]. 天津: 天津大学, 2019.

    WU Qiang. Study on preparation and performance of cross linked chitosan based boron adsorbent[D]. Tianjin: Tianjin University, 2019(in Chinese).
    [26] 刘晨. 硼吸附材料的制备及其吸附性能的研究[D]. 西宁: 青海师范大学, 2018.

    LIU Chen. Preparation of boron adsorption materials and study on their adsorption properties[D]. Xi'ning: Qinghai Normal University, 2018(in Chinese).
    [27] SILVA V A J, ANDRADE P L, SILVA M P C, et al. Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides[J]. Journal of Magnetism and Magnetic Materials,2013,343:138-143. doi: 10.1016/j.jmmm.2013.04.062
    [28] YANG K, PENG H, WEN Y, et al. Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles[J]. Applied Surface Science,2010,256:3093-3097. doi: 10.1016/j.apsusc.2009.11.079
    [29] LI L, WEN Y, HAN G, et al. Tailoring the stability of Fe-N-C via pyridinic nitrogen for acid oxygen reduction reaction[J]. Chemical Engineering Journal,2022 , 437:135320.
    [30] PENG H, MO Z, LIAO S, et al. High performance Fe- and N-doped carbon catalyst with graphene structure for oxygen reduction[J]. Scientific Reports,2013,3(1):1765. doi: 10.1038/srep01765
    [31] GAO J, WU Z, CHEN L, et al. Synergistic effects of iron ion and PANI in biochar material for the efficient removal of Cr(VI)[J]. Materials Letters,2019,240:147-149. doi: 10.1016/j.matlet.2018.12.116
    [32] WILSON D, LANGELL M A. XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature[J]. Applied Surface Science,2014,303:6-13. doi: 10.1016/j.apsusc.2014.02.006
    [33] NARAYANASAMY S, JAYAPRAKASH J. Carbon cloth/nickel cobaltite (NiCo2O4)/polyaniline (PANI) composite electrodes: Preparation, characterization, and application in microbial fuel cells[J]. Fuel,2021,301:121016. doi: 10.1016/j.fuel.2021.121016
    [34] WAGHMODE B J, PATIL S H, JAHAGIRDAR M M, et al. Studies on morphology of polyaniline films formed at liquid-liquid and solid-liquid interfaces at 25 and 5℃, respectively, and effect of doping[J]. Colloid and Polymer Science,2014,292(5):1079-1089. doi: 10.1007/s00396-013-3150-3
    [35] SHEN T, LIU S, YAN W, et al. Highly efficient preparation of hexagonal boron nitride by direct microwave heating for dye removal[J]. Journal of Materials Science,2019,54(12):8852-8859. doi: 10.1007/s10853-019-03514-8
    [36] XIE L, REN Z, ZHU P, et al. A novel CeO2-TiO2/PANI/NiFe2O4 magnetic photocatalyst: Preparation, characterization and photodegradation of tetracycline hydrochloride under visible light[J]. Journal of Solid State Chemistry,2021,300:122208. doi: 10.1016/j.jssc.2021.122208
    [37] ESFANDIARI N, KASHEFI M, MIRJALILI M, et al. Role of silica mid-layer in thermal and chemical stability of hierarchical Fe3O4-SiO2-TiO2 nanoparticles for improvement of lead adsorption: Kinetics, thermodynamic and deep XPS investigation[J]. Materials Science and Engineering: B,2020,262:114690. doi: 10.1016/j.mseb.2020.114690
    [38] JOUYANDEH M, GANJALI M R, REZAPOUR M, et al. Nonisothermal cure behavior and kinetics of cerium-doped Fe3O4/epoxy nanocomposites[J]. Applied Organometallic Chemistry,2022,13:e6825.
    [39] KOUOTOU P M, TIAN Z Y. Controlled synthesis of α-Fe2O3@Fe3O4 composite catalysts for exhaust gas purification[J]. Proceedings of the Combustion Institute,2019,37(4):5445-5453. doi: 10.1016/j.proci.2018.05.172
    [40] WANG Z, MA K, ZHANG Y, et al. High internal phase emulsion hierarchical porous polymer grafting polyol compounds for boron removal[J]. Journal of Water Process Engineering,2021,41:102025. doi: 10.1016/j.jwpe.2021.102025
    [41] AFOLABI H K, NASEF M M, NORDIN N A H M, et al. Facile preparation of fibrous glycidol-containing adsorbent for boron removal from solutions by radiation-induced grafting of poly(vinylamine) and functionalisation[J]. Radiation Physics and Chemistry,2021,188:109596. doi: 10.1016/j.radphyschem.2021.109596
    [42] 廖雪平. 基于环糊精的新型吸附材料的构建及其性能研究[D]. 南京: 南京理工大学, 2019.

    LIAO Xueping. Study on the construction and performance of a novel adsorption material based on cyclodextrin[D]. Nanjing: Nanjing University of Technology, 2019(in Chinese).
    [43] HONG M, LI D, WANG B, et al. Cellulose-derived polyols as high-capacity adsorbents for rapid boron and organic pollutants removal from water[J]. Journal of Hazardous Materials, 2021, 419: 126503.
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  552
  • HTML全文浏览量:  304
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-21
  • 修回日期:  2022-10-26
  • 录用日期:  2022-10-29
  • 网络出版日期:  2022-11-10
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回