留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变刚度复合材料平板与开孔板屈曲性能试验验证与数值仿真

张雅会 陈普会 孔斌

张雅会, 陈普会, 孔斌. 变刚度复合材料平板与开孔板屈曲性能试验验证与数值仿真[J]. 复合材料学报, 2022, 40(0): 1-13
引用本文: 张雅会, 陈普会, 孔斌. 变刚度复合材料平板与开孔板屈曲性能试验验证与数值仿真[J]. 复合材料学报, 2022, 40(0): 1-13
Yahui ZHANG, Puhui CHEN, Bin KONG. Experimental verification and numerical simulation of buckling behavior of variable stiffness composite plates and open-hole plates[J]. Acta Materiae Compositae Sinica.
Citation: Yahui ZHANG, Puhui CHEN, Bin KONG. Experimental verification and numerical simulation of buckling behavior of variable stiffness composite plates and open-hole plates[J]. Acta Materiae Compositae Sinica.

变刚度复合材料平板与开孔板屈曲性能试验验证与数值仿真

详细信息
    通讯作者:

    陈普会,博士,教授,博士生导师,研究方向为复合材料结构设计 E-mail: phchen@nuaa.edu.cn

  • 中图分类号: TB332

Experimental verification and numerical simulation of buckling behavior of variable stiffness composite plates and open-hole plates

  • 摘要: 为验证基于丝束曲线铺放的变刚度设计在改善典型航空结构屈曲性能中的应用潜力,设计并制造了变刚度复合材料平板和开孔板试件。通过应变片和非接触式三维光学测量系统,全面地测量了试件受单轴压缩载荷过程中的面外位移和载荷方向应变。试验结果表明:变刚度平板和开孔板较同构型直线铺层试件屈曲载荷分别提升53.4%和46.6%;试件力学响应相似,均为线性加载至屈曲载荷后刚度大幅折减,变刚度试件后屈曲阶段呈近似线性,而直线铺层试件则连续变化。根据试验方案细化了数值模型,屈曲载荷、面外位移及应变的计算结果与试验结果基本吻合。在此基础上,提取了数值模型中的刚度分布和加载截面载荷分布,阐明了变刚度设计的抗屈曲机制。对于本文试件,采用变刚度设计还可显著提高破坏载荷,并降低侧边载荷,缓解应力集中。

     

  • 图  1  变刚度复合材料试件丝束路径定义方法

    Figure  1.  Method of defining the path of the tow of the variable stiffness composite specimens

    图  2  自动丝束铺放设备

    Figure  2.  Automatic tow laying equipment

    图  3  丝束最小曲率半径工艺试验结果(单位:mm)

    Figure  3.  Process experimental results of tow’s minimum curvature radius (Unit: mm)

    图  4  平移导致的丝束间空隙与重叠区域

    Figure  4.  Gap and overlap areas between tows due to translation

    图  5  变刚度开孔试件构型与标准尺寸(单位:mm)

    Figure  5.  Configuration and standard dimensions of variable stiffness specimen with a hole (Unit: mm)

    图  6  丝束角度离散化(<45 |80>)

    Figure  6.  Discretization of the curvilinear tow angle (<45 |80>)

    图  7  侧边支持夹具

    Figure  7.  Side support fixture

    图  8  试件应变片布置方案与散斑制作方法 (单位:mm)

    Figure  8.  Strain gauge arrangement scheme and speckle fabrication method of test pieces (Unit: mm)

    图  9  变刚度复合材料压缩试验

    Figure  9.  Compression experiment of variable stiffness composites

    图  10  T700-12 K/UA2433变刚度复合材料平板和开孔板试件载荷-压缩位移曲线

    Figure  10.  Load-compression displacement curves of the T700-12 K/UA2433 variable stiffness composite plate and open-hole plate specimens

    图  11  T700-12 K/UA2433变刚度复合材料平板与开孔板试件PB-1与KB-1面外位移光测结果

    Figure  11.  Optical measurement results of out-of-plane displacement of the T700-12 K/UA2433 variable stiffness composite plate and open-hole plate specimens PB-1 and KB-1

    图  12  变刚度复合材料开孔板数值模型网格及边界条件

    Figure  12.  Mesh and boundary conditions of numerical model of variable stiffness composite open-hole plates

    图  13  T700-12 K/UA2433变刚度复合材料平板和开孔板屈曲载荷试验结果与数值计算结果对比

    Figure  13.  Comparison of experimental and numerical results of buckling load of the T700-12 K/UA2433 variable stiffness composite plates and open-hole plates

    图  14  T700-12 K/UA2433变刚度复合材料平板和开孔板面外位移试验与数值计算结果:(a) PB中心位置;(b) KB的#1应变片以及#1和#2应变片中间位置

    Figure  14.  Experimental and numerical results of out-of-plane displacement of the T700-12 K/UA2433 variable stiffness composite plates and open-hole plates: (a) Central position of the PB; (b) Position of strain gauge #1 and the middle of #1 and#2 of KB

    图  15  T700-12 K/UA2433变刚度复合材料平板和开孔板应变试验与数值计算结果:(a) PB中心位置(#1和#2应变片);(b) KB#1和#11应变测点处

    Figure  15.  Experimental and numerical results of strain of the T700-12 K/UA2433 variable stiffness composite plates and open-hole plates: (a) the central position of the PB (#1 and #11 strain gauges); (b) #1 and #11 strain gauges of KB

    图  16  T700-12 K/UA2433复合材料平板和开孔板试件后屈曲阶段应变分布光测与数值计算结果对比

    Figure  16.  Comparisons between optical measurement and numerical results of strain distribution of the T700-12 K/UA2433 composite plate and open-hole plate secimens in post-buckling stage

    图  17  T700-12 K/UA2433复合材料平板试件加载方向面内刚度分布

    Figure  17.  In plane stiffness distribution of the T700-12 K/UA2433 composite plate specimens in loading direction

    图  18  T700-12 K/UA2433复合材料平板和开孔板试件数值模型加载方向截面力分布 (50 kN)

    Figure  18.  Section force distribution in loading direction of the T700-12 K/UA2433 composite plate and open-hole plate specimens numerical models (50 kN)

    表  1  T700-12 K/UA2433碳纤维增强环氧树脂基预浸料工程弹性常数

    Table  1.   Engineering elastic constants of T700-12 K/UA2433 carbon fiber reinforced epoxy prepreg

    E1/GPaE2/GPaν12G12/MPaG13/MPaG23/MPa
    11080.3400040002818
    Notes:E1 is the longitudinal elastic modulus; E2 is the transverse elastic modulus; ν12 is the in-plane Poisson's ratio; G12 and G13 are the in-plane shear modulus; G23 is the transverse shear modulus.
    下载: 导出CSV

    表  2  试件编号与铺层

    Table  2.   Number and lay-up of specimens

    Specimen No.Lay-up
    PA-1-3[±45]6 s
    KA-1-3
    PB-1-3[±45/(±<75 |85>)2/
    ±<65 |85>/±<65 |80>/±<0 |10>]s
    KB-1-3
    Notes:P and K represent panel and open-hole panel specimens respectively; A and B are respectively used to characterize the two types of lay-ups; 1-3 denotes the number of each piece in each class of specimens.
    下载: 导出CSV

    表  3  T700-12 K/UA2433变刚度复合材料平板和开孔板屈曲载荷试验与数值分析结果

    Table  3.   Experimental and numerical results of buckling loads of the T700-12 K/UA2433 variable stiffness composite plates and open-hole plates

    Specimen No.Buckling load/kN
    Experimental resultAverage valueNumerical resultDeviation
    PA-163.963.856.4-7.4
    PA-263.8
    PA-363.9
    PB-199.397.999.9+2.0
    PB-292.1
    PB-3102.4
    KA-160.161.155.1-6.0
    KA-261.2
    KA-361.9
    KB-195.389.692.0+2.4
    KB-285.6
    KB-388.0
    下载: 导出CSV
  • [1] 邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7):1327-1338.

    XING Liying, BAO Jianwen, LI Songming, et al. Development status and facing challenge of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1327-1338(in Chinese).
    [2] HYER M W, CHARETTE R F. The use of curvilinear fiber format in composite structure design[J]. 30 th AIAA Structures, Structural Dynamics and Materials Conference,1989:2137-2145.
    [3] GÜRDAL Z, OLMEDO R. In-plane response of laminates with spatially varying fiber orientations: variable stiffness concept[J]. AIAA Journal,1993,31(4):751-758. doi: 10.2514/3.11613
    [4] GÜRDAL Z, TATTING B F, Wu C K. Variable stiffness composite panels: Effects of stiffness variation on the in-plane and buckling response[J]. Composites Part A:Applied Science and Manufacturing,2008,39(5):911-922. doi: 10.1016/j.compositesa.2007.11.015
    [5] SETOODEH S, ABDALLA M M, IJSSELMUI-DEN S T, et al. Design of variable-stiffness composite panels for maximum buckling load[J]. Composite Structures,2009,87(1):109-117. doi: 10.1016/j.compstruct.2008.01.008
    [6] IJSSELMUIDEN S T, ABDALLA M M, GÜRD-AL Z. Optimization of variable-stiffness panels for maximum buckling load using lamination parameters[J]. AIAA Journal,2010,48(1):134-143. doi: 10.2514/1.42490
    [7] WHITE S C, RAJU G, WEAVER P M. Initial post-buckling of variable-stiffness curved panels[J]. Journal of the Mechanics and Physics of Solids,2014,71:132-155. doi: 10.1016/j.jmps.2014.07.003
    [8] MILAZZO A, OLIVERI V. Investigation of buckling characteristics of cracked variable stiffness composite plates by an eXtended Ritz approach[J]. Thin-Walled Structures,2021,163:107750. doi: 10.1016/j.tws.2021.107750
    [9] WU Z M, WEAVER P M, RAJU G, et al. Buckling analysis and optimisation of variable angle tow composite plates[J]. Thin-Walled Structures,2012,60:163-172. doi: 10.1016/j.tws.2012.07.008
    [10] 顾杰斐, 陈普会, 孔斌, 等. 考虑制造因素的变刚度层合板的抗屈曲铺层优化设计[J]. 复合材料学报, 2018, 35(4):866-875.

    GU Jiefei, CHEN Puhui, KONG Bin, et al. Layup optimization for maximum buckling load of variable-stiffness laminates considering manufacturing factors[J]. Acta Materiae Compositae Sinica,2018,35(4):866-875(in Chinese).
    [11] 卫宇璇, 张明, 刘佳, 等. 基于自动铺放技术的高精度变刚度复合材料层合板屈曲性能[J]. 复合材料学报, 2020, 37(11):2807-2815.

    WEI Yuxuan, ZHANG Ming, LIU Jia, et al. Buckling performance of high-precision variable stiffness composites laminate based on automatic placement technology[J]. Acta Materiae Compositae Sinica,2020,37(11):2807-2815(in Chinese).
    [12] 牛春匀. 实用飞机结构工程设计 [M]. 北京: 航空工业出版社, 2008.

    NIU Chunyun. Airframe structural design [M]. Beijing: Aviation Industry Press, 2008 (in Chinese).
    [13] 尹凯军, 苏雁飞, 张引利. 民用飞机机身开口区优化分析研究[J]. 力学与实践, 2020, 42(3):289-293. doi: 10.6052/1000-0879-19-342

    YIN Kaijun, SU Yanfei, ZHANG Yinli. Optimization of fuselage opening zone of civil aircraft[J]. Mechanics in Engineering,2020,42(3):289-293(in Chinese). doi: 10.6052/1000-0879-19-342
    [14] HYER M W, LEE H H. The use of curvilinear fiber format to improve buckling resistance of composite plates with central circular holes[J]. Composite Structures,1991,18(3):239-261. doi: 10.1016/0263-8223(91)90035-W
    [15] SHAFIGHFARD T, DEMIR E, YILDIZ M. Design of fiber-reinforced variable-stiffness composites for different open-hole geometries with fiber continuity and curvature constraints[J]. Composite Structures,2019,226:111280. doi: 10.1016/j.compstruct.2019.111280
    [16] LOPES C S. Damage and failure of non-conventional composite laminates [D]. Delft: Technische Universiteit Delft, 2009.
    [17] Lozano G G, Tiwari A, Turner C, et al. A review on design for manufacture of variable stiffness composite laminates[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2016,230(6):981-992. doi: 10.1177/0954405415600012
    [18] HAO P, LIU D C, WANG Y, et al. Design of manufacturable fiber path for variable-stiffness panels based on lamination parameters[J]. Composite Structures,2019,219:158-169. doi: 10.1016/j.compstruct.2019.03.075
    [19] Rashed A, Demir E. Design of variable stiffness composites for maximum fundamental frequency considering manufacturing constraints of tow steering[J]. Composite Structures,2022,284:115151. doi: 10.1016/j.compstruct.2021.115151
    [20] XU Y J, ZHU J H, WU Z, et al. A review on the design of laminated composite structures: constant and variable stiffness design and topology optimization[J]. Advanced Composites and Hybrid Materials,2018,1:460-477. doi: 10.1007/s42114-018-0032-7
    [21] HOUMAT A. Optimal lay-up design of variable stiffness laminated composite plates by a layer-wise optimization technique[J]. Engineering Optimization,2018,50(2):205-217. doi: 10.1080/0305215X.2017.1307978
    [22] ANILKUMAR P M, HALDAR A, JANSEN E, et al. Design optimization of multistable variable-stiffness laminates [J]. Mechanics of Advanced Materials and Structures, 2019, 26(1).
    [23] WEAVER P M, POTTER K D, HAZRA K, et al. Buckling of variable angle tow plates: from concept to experiment [C]. 50 th AIAA Structures, Structural Dynamics, and Materials Conference, 2009.
    [24] MAROUENE A, BOUKHILI R, CHEN J, et al. Effects of gaps and overlaps on the buckling behavior of an optimally designed variable-stiffness composite laminates – A numerical and experimental study[J]. Composite Structures,2016,140:556-566. doi: 10.1016/j.compstruct.2016.01.012
    [25] JEGLEY D C, TATTING B F, GÜRDAL Z. Optimization of elastically tailored tow-placed plates with holes [C]. 44 th AIAA Structures, Structural Dynamics, and Materials Conference, 2003.
    [26] 赵丽滨, 徐吉峰. 先进复合材料连接结构分析方法 [M]. 北京: 北京航空航天大学出版社, 2015.

    ZHAO Libin, XU Jifeng. Analysis methods of advanced composite connection structures [M]. Beijing: Beihang University Press, 2015 (in Chinese).
    [27] GÜRDAL Z, TATTING B F, WU K C. Tow-placement technology and fabrication issues for laminated composite structures [C]. 46 th AIAA Structures, Structural Dynamics, and Materials Conference, 2005.
    [28] CHEN Z, QUAN C, ZHU F, et al. A method to transfer speckle patterns for digital image correlation [J]. Measurement Science and Technology, 2015, 26(9).
  • 加载中
计量
  • 文章访问数:  87
  • HTML全文浏览量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 录用日期:  2022-05-03
  • 修回日期:  2022-04-25
  • 网络出版日期:  2022-05-21

目录

    /

    返回文章
    返回