Preparation and upconversion luminescence properties of SiO2@Gd2O3:Yb3+, Ln3+ (Ln=Er, Tm, Ho) core-shell microspheres
-
摘要: 为了解决稀土掺杂上转换发光材料价格昂贵且粒径可控性差的问题,采用简单的化学沉淀法以价格低廉且易制备的SiO2微球为核,在其表面均匀包覆了Gd2O3:Yb3+, Ln3+ (Ln=Er, Tm, Ho)壳层,成功合成了球形SiO2@Gd2O3:Yb3+, Ln3+ (Ln=Er, Tm, Ho) 核壳上转换发光材料。XRD结果表明,尿素作为沉淀剂优先与稀土离子反应得到SiO2@Gd(OH)CO3:Yb3+, Ln3+前驱体,经800℃煅烧后壳层进一步转化成结晶性良好的立方相Gd2O3:Yb3+, Ln3+。SEM和尺寸分布图表明,所制备样品为理想的核壳微球形貌,尺寸均匀,平均粒径约为580 nm。在980 nm激光激发下,SiO2@Gd2O3:Yb3+, Ln3+ (Ln=Er, Tm, Ho)核壳微球分别表现出红光、蓝光、绿光发射,对应于Er3+的4F9/2→4I15/2跃迁、Tm3+的1G4→3H6跃迁以及Ho3+的5S2→5I8跃迁,与CIE色坐标发光颜色区域相一致,说明通过简单的调节SiO2@Gd2O3:Yb3+, Ln3+核壳微球中壳层掺杂的稀土离子种类,成功实现了三色上转换发光。Abstract: In order to solve the problem of high price and poor size controllability of rare earth doped upconversion luminescent materials, spherical SiO2@Gd2O3:Yb3+, Ln3+ (Ln=Er, Tm, Ho) core-shell upconversion luminescent materials were successfully synthesized by simple chemical precipitation method using low cost and easy to prepare SiO2 microspheres as cores and uniformly coated with Gd2O3:Yb3+, Ln3+ (Ln=Er, Tm, Ho) shells. XRD results show that the SiO2@Gd(OH)CO3:Yb3+, Ln3+ precursor is firstly obtained by the reaction of urea with rare earth ions, then the Gd(OH)CO3:Yb3+, Ln3+ shell is further transformed into cubic phase Gd2O3:Yb3+, Ln3+ with good crystallinity after calcination at 800℃. SEM and size distribution images show that the prepared samples are ideal core-shell microspheres with uniform size, and the average diameter is about 580 nm. Under the excitation of 980 nm, SiO2@Gd2O3:Yb3+, Ln3+ (Ln=Er, Tm, Ho) core-shell microspheres exhibit red, blue and green emissions respectively, corresponding to the 4F9/2→4I15/2 transition of Er3+, the 1G4→3H6 transition of Tm3+, and the 5S2→5I8 transition of Ho3+, which are consistent with the luminescence color region of CIE color coordinates, indicating that three color upconversion luminescence is successfully achieved by simply adjusting the doped rare-earth ion species in the shell of SiO2@Gd2O3:Yb3+, Ln3+ core-shell microspheres.
-
Key words:
- upconversion /
- three color luminescence /
- SiO2@Gd2O3:Yb3+ /
- Ln3+ /
- core-shell microspheres /
- rare earth doped
-
图 2 SiO2(a), SiO2@Gd(OH)CO3:10%Yb3+, 1%Ho3+(b), SiO2@Gd2O3:10%Yb3+, 1%Ho3+(c), SiO2@Gd2O3:10%Yb3+, 1%Tm3+ (d), SiO2@Gd2O3:10%Yb3+, 1%Er3+ (e)的SEM图片, SiO2@Gd2O3:10%Yb3+, 1%Ho3+ (f)的尺寸分布图
Figure 2. SEM images of SiO2(a), SiO2@Gd(OH)CO3:10%Yb3+, 1%Ho3+(b), SiO2@Gd2O3:10%Yb3+, 1%Ho3+(c), SiO2@Gd2O3:10%Yb3+, 1%Tm3+ (d), SiO2@Gd2O3:10%Yb3+, 1%Er3+ (e), Size distribution of SiO2@Gd2O3:10%Yb3+, 1%Ho3+ (f)
图 10 980 nm激发下SiO2@Gd2O3:10%Yb3+, 1%Er3+(a), SiO2@Gd2O3:10%Yb3+, 1%Tm3+ (b) , SiO2@Gd2O3:10%Yb3+, 1%Ho3+ (c)的CIE色度图。内插图:发光照片及色坐标
Figure 10. CIE chromaticity diagram of SiO2@Gd2O3:10%Yb3+, 1%Er3+ (a), SiO2@Gd2O3:10%Yb3+, 1%Tm3+ (b) , SiO2@Gd2O3:10%Yb3+, 1%Ho3+ (c) under 980 nm excitation. Inset: luminescent photographs and color coordinates
-
[1] XU M, GE W, ZHANG X, et al. Bi-functional NaBiF4: Er3+, Tm3+ nanoparticles for optical thermometry and anti-counterfeiting applications[J]. Optics & Laser Technology,2022,145:107529. [2] ZHOU Y, CHENG Y, HUANG Q, et al. Abnormal Thermal-Enhanced Upconversion Luminescence for the Lanthanide-doped Phosphors: Proposed Mechanisms and Potential Applications[J]. Journal of Materials Chemistry C,2021,9:2220-2230. doi: 10.1039/D0TC05759B [3] YAMINI S, GUNASEELAN M, GANGADHARAN A, et al. Upconversion, MRI imaging and optical trapping studies of silver nanoparticle decorated multifunctional NaGdF4: Yb, Er nanocomposite[J]. Nanotechnology,2022,33(8):085202. doi: 10.1088/1361-6528/ac37e4 [4] WANG K, WU H, PAN G H, et al. Enhanced upconversion luminescence and optical thermometry in Er3+/Yb3+ heavily doped ZrO2 by stabilizing in the monoclinic phase[J]. Materials Chemistry Frontiers,2021,5:5142-5149. doi: 10.1039/D1QM00440A [5] 栾丹, 刘桂霞, 王进贤, 等. Ag-SiO2-CeF3: Tb3+复合纳米粒子的制备与发光性质[J]. 复合材料学报, 2014, 31(2):402-407.LUAN D, LIU G X, WANG J X, et al. Preparation and luminescent properties of Ag-SiO2-CeF3: Tb3+ composite nanoparticles[J]. Acta Materiae Compositae Sinica,2014,31(2):402-407(in Chinese). [6] TATIANA A P, TATIANA Y P, NATALIA V K, et al. Synthesis, crystal structure, and liquid exfoliation of layered lanthanide sulfides KLn2CuS6 (Ln = La, Ce, Pr, Nd, Sm)[J]. Inorganic Chemistry,2018,57(21):13594-13605. doi: 10.1021/acs.inorgchem.8b02213 [7] HAZARIKA S, SUCHISMITABEHERA P, MOHANTA D, et al. Magnetocaloric effect of Gd2O3 nanorods with 5% Eu-substitution[J]. Applied Surface Science,2019,491:779-783. doi: 10.1016/j.apsusc.2019.05.266 [8] MADAN M U, SHWETABH K, SACHIN K, et al. Intense blue upconversion emission in Tm3+/Yb3+ codoped Gd2O3 phosphor[J]. Materials Today:Proceedings,2021,46(16):6429-6432. [9] ZHENG W, SUN B, LI Y, et al. Low Power High Purity Red Upconversion Emission and Multiple Temperature Sensing Behaviors in Yb3+, Er3+ Codoped Gd2O3 Porous Nanorods[J]. ACS Sustainable Chemistry & Engineering,2020,8(25):9578-9588. [10] YANG H, LI X, ZHANG R, et al. Preparation and properties of Nd3+ doped Gd2O3 near-infrared phosphor[J]. Ceramics International,2021,47(6):8510-8517. doi: 10.1016/j.ceramint.2020.11.218 [11] WANG H, LIU Y B, KONG L W. Synthesis and Characterization of Monodisperse Spherical SiO2@Y2O3: Tb3+ Particles with Core-Shell Structure[J]. Advanced Materials Research,2014,997:317-320. doi: 10.4028/www.scientific.net/AMR.997.317 [12] SYED M H, YOSHITAKA K. Synthesis and characterization of sub-micrometer SiO2@NaYF4: Yb/Er beads and NaYF4: Yb/Er capsules for biomedical applications[J]. Electrochimica Acta,2015,183:160-164. doi: 10.1016/j.electacta.2015.04.051 [13] 陈杰, 姜海峰, 高忆欣, 等. SiO2@Gd2O3: Tb3+核壳微球的可控合成及发光性能研究[J]. 人工晶体学报, 2020, 49(7):1201-1207. doi: 10.3969/j.issn.1000-985X.2020.07.009CHEN J, JIANG H F, GAO Y X, et al. Controllable synthesis and luminescent properties of SiO2@Gd2O3: Tb3+ core-shell microspheres[J]. Journal of Synthetic Crystals,2020,49(7):1201-1207(in Chinese). doi: 10.3969/j.issn.1000-985X.2020.07.009 [14] WANG H. Synthesis and Photoluminescence Properties of Monodisperse Spherical SiO2@Lu2O3: Eu3+ Particles with Core-Shell Structure[J]. Advanced Materials Research,2014,1004:398-392. [15] 李国超, 戴 洁, 吕 蒙, 等. SiO2@Yb2O3: Eu3+核壳纳米粒子的合成及发光性能研究[J]. 青岛科技大学学报(自然科学版), 2016, 37(3):270-274.LI G C, DAI J, LV M, et al. Synthesis of SiO2@Yb2O3: Eu3+ core-shell structured particles and its luminescence properties[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition),2016,37(3):270-274(in Chinese). [16] CHEN J, GAO Y, JIANG H, et al. Multicolor tunable luminescence and energy transfer of core-shell structured SiO2@Gd2O3 microspheres co-activated with Dy3+/Eu3+ under single UV excitation[J]. Dalton Transactions,2020,49:7397. doi: 10.1039/D0DT00735H [17] WERNER S, ARTHUR F, ERNST B. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science,1968,26(1):62-69. doi: 10.1016/0021-9797(68)90272-5 [18] 纪跃成, 李晓雷, 于慧君, 等. Al2O3-SiO2复合气凝胶的制备及改性剂对其结构与隔热性能的影响[J]. 复合材料学报, 2020, 37(3):635-641.JI Y C, LI X L, YU H J, et al. Preparation of Al2O3-SiO2 composite aerogel and the influence of modifier on its structure and thermal insulation properties[J]. Acta Materiae Compositae Sinica,2020,37(3):635-641(in Chinese). [19] NARESH G, BORAH J P, BORGOHAIN C, et al. Synthesis, characterization and effect of dopant on magnetic hyperthermic efficacy of Gd2O3 nanoparticles[J]. Materials Research Express,2021,8:115014. doi: 10.1088/2053-1591/ac3b14 [20] LIU G, HONG G, SUN D. Synthesis and characterization of SiO2/Gd2O3: Eu core–shell luminescent materials[J]. Journal of Colloid and Interface Science,2004,278:133-138. doi: 10.1016/j.jcis.2004.05.013 [21] GONG J, MENG F, YANG X, et al. Controlled hydrothermal synthesis of triangular CeO2 nanosheets and their formation mechanism and optical properties[J]. Journal of Alloys & Compounds,2016,689:606-616. [22] 梅燕, 韩业斌, 聂祚仁. 用尿素作沉淀剂制备不同CeO2前驱体[J]. 化工学报, 2006, 57(9):2241-2244. doi: 10.3321/j.issn:0438-1157.2006.09.044MEI Y, HAN Y B, NIE Z R. Preparation of different CeO2 precipitator urea[J]. Journal of Chemical Industry and Engineering,2006,57(9):2241-2244(in Chinese). doi: 10.3321/j.issn:0438-1157.2006.09.044 [23] LIU H, LIU M, WANG K, et al. Efficient upconversion emission and high-sensitivity thermometry of BaIn2O4: Yb3+/Tm3+/RE3+ (RE = Er3+, Ho3+) phosphor[J]. Dalton Transactions,2021,50:12107-12117. doi: 10.1039/D1DT01854J [24] ZHAO X, SUO H, ZHANG Z, et al. Spectral Pure RGB Up-conversion Emissions in Self-assembled Gd2O3: Yb3+, Er3+/Ho3+/Tm3+ 3 D Hierarchical Architectures[J]. Ceramics International,2017,44(3):2911-2918. [25] TAN C, MA B, JIE Z, et al. Pure red upconversion photoluminescence and paramagnetic properties of Gd2O3: Yb3+, Er3+ nanotubes prepared via a facile hydrothermal process[J]. Materials Letters,2012,73:147-149. doi: 10.1016/j.matlet.2012.01.043 [26] YANG L, SHI G. Luminescence Properties of Gd2O3: Er/Yb Nanowires[J]. Hans Journal of Nanotechnology,2017,07(2):40-46. doi: 10.12677/NAT.2017.72005 [27] HUANG X. Synthesis, multicolour tuning, and emission enhancement of ultrasmall LaF3: Yb3+/Ln3+ (Ln =Er, Tm, and Ho) upconversion nanoparticles[J]. Journal of Materials Science,2016,51:3490-3499. doi: 10.1007/s10853-015-9667-8 [28] YU Y, LI Y. Enhanced ultraviolet upconversion emission in Ho3+/Yb3+-codoped NaYF4 microcrystals induced by tridoping with Gd3+ ions[J]. Journal of Luminescence,2022,243:118619. doi: 10.1016/j.jlumin.2021.118619 [29] LIU S, LIU S, HONG M, et al. Tunable multicolor and bright white upconversion luminescence in Er3+/Tm3+/Yb3+ tri-doped SrLu2O4 phosphors[J]. Journal of Materials Science,2018,53:14469-14484. doi: 10.1007/s10853-018-2632-6 [30] SANG H J, YUWARAJ K K, SEUNG H K, et al. Microstructure investigation and multicolor upconversion in Yb3+/Ln3+(Ln=Er/Tm/Ho) ions doped α-Sialon[J]. Progress in Natural Science:Materials International,2019,29(5):549-555. doi: 10.1016/j.pnsc.2019.08.013 [31] LIU Z, CHEN D. Color tunable upconversion luminescence and optical thermometry properties of mixed Gd2O3: Yb3+/Ho3+/Er3+ nanoparticles prepared via laser ablation in liquid[J]. Journal of Materials Science:Materials in Electronics,2020,31:9321-9327. doi: 10.1007/s10854-020-03471-y -