留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玻璃纤维增强聚酰胺复合材料用阻燃剂的研究进展

章建忠 许升 樊家澍 王堃 黄建 费振宇 赵星宇 王继辉

章建忠, 许升, 樊家澍, 等. 玻璃纤维增强聚酰胺复合材料用阻燃剂的研究进展[J]. 复合材料学报, 2024, 42(0): 1-16.
引用本文: 章建忠, 许升, 樊家澍, 等. 玻璃纤维增强聚酰胺复合材料用阻燃剂的研究进展[J]. 复合材料学报, 2024, 42(0): 1-16.
ZHANG Jianzhong, XU Sheng, FAN Jiashu, et al. Research progress in flame retardants for glass fiber reinforced polyamide composites[J]. Acta Materiae Compositae Sinica.
Citation: ZHANG Jianzhong, XU Sheng, FAN Jiashu, et al. Research progress in flame retardants for glass fiber reinforced polyamide composites[J]. Acta Materiae Compositae Sinica.

玻璃纤维增强聚酰胺复合材料用阻燃剂的研究进展

详细信息
    通讯作者:

    许升,博士,高级工程师,研究方向为纤维表面复合涂层与功能性纤维;纤维增强复合材料设计与界面研究 E-mail: vivid1224@163.com; sheng.xu@jushi.com

  • 中图分类号: TQ322.3; TB332

Research progress in flame retardants for glass fiber reinforced polyamide composites

  • 摘要: 玻璃纤维增强聚酰胺(GF/PA)复合材料因其优异独特的性能特点,在众多领域展示出巨大的应用潜力。然而,GF/PA复合材料固有的易燃属性限制了其在接触火源或高温环境的应用。因此,开发阻燃GF/PA复合材料对于确保其在关键应用中的安全性和可靠性至关重要。在GF/PA中添加阻燃剂是提高复合材料阻燃性能操作最为简单且工业上应用最广泛的一种方法,随着环保要求的提高与相关法律法规的逐步完善, GF/PA用阻燃剂的发展越来越注重无卤、低挥发性有机物(VOC)和低毒性的特性。基于此,本文综述了近年来阻燃GF/PA复合材料所使用阻燃剂的研究进展,并通过典型研究案例探讨了阻燃剂的阻燃机制与阻燃效果。此外,本文总结了GF/PA复合材料用阻燃剂的现状,并对其发展方向进行了展望,为无卤阻燃复合材料领域的研究者提供参考。

     

  • 图  1  聚合物的燃烧机制与燃烧四面体示意图

    Figure  1.  Schematic illustration of the polymer combustion mechanism and the typical fire tetrahedron

    图  2  卤系阻燃剂在GF/PA中的阻燃机制

    Figure  2.  Flame retardant mechanism of halogenated flame retardant (HX) in GF/PA

    图  3  阻燃剂AHP (a)和APP (b)的分子结构

    Figure  3.  Molecular structures of AHP (a) and APP (b) flame retardants

    图  4  阻燃剂MPP (a)和MCA (b)的分子结构

    Figure  4.  Molecular structures of MPP (a) and MCA(b) flame retardants

    图  5  超支化成炭-发泡剂HCFA(a)[24]与支链聚硅氧烷包覆聚磷酸铵SP-APP(b)[25]的结构示意图

    Figure  5.  Molecular structures of HCFA (a) [24]and SP-APP (b)[25] flame retardants

    图  6  PI/MPP阻燃剂在GF/PA66中的协同成炭示意图[26]

    Figure  6.  Synergistic charring of PI/MPP flame retardant in GF/PA66[26]

    图  7  HCCP (a)和阻燃剂HPCTP(b)[28]的分子结构

    Figure  7.  Molecular structures of HCCP (a) and HPCTP (b) [28] flame retardants.

    图  8  改性次磷酸铝MAHP的合成路线图[31]

    Figure  8.  Preparation route of modified aluminum hypophosphite (MAHP)[31]

    图  9  ADP/PEI的协同增强与阻燃机制示意图[32]

    Figure  9.  Schematic illustration of ADP/PEI alloy’s strengthening and synergistic flame retardant mechanism[32]

    图  10  DOPO (a)及其衍生物DOPO-SiO2(b)、DOPO-HQ(c)、DOPO-Zn(d)的分子结构

    Figure  10.  Molecular structures of DOPO(a) and its derivatives including DOPO-SiO2(b), DOPO-HQ(c), DOPO-Zn(d)

    图  11  CN-DOPO的制备过程[38]

    Figure  11.  Preparation process of CN-DOPO[38]

    图  12  MCA的阻燃机制示意图[44]

    Figure  12.  Flame-retardant mechanism of MCA[44]

    图  13  BPGA的分子结构(a)与BPGA/MCA的阻燃机制(b)[46]

    Figure  13.  Molecular Structure of BPGA (a) and flame retardant mechanism of BPGA/MCA (b)[46]

    图  14  芳香族聚酰亚胺API的分子结构[49]

    Figure  14.  Molecular structures of aromatic polyimide (API) [49]

    图  15  基于DPS协效剂与APP、ADP的膨胀型阻燃剂[51]

    Figure  15.  Intumescent flame retardants based DPS as synergist combing with APP and ADP[51]

    图  16  DOPO-MWCNTs阻燃剂的制备过程[56]

    Figure  16.  Preparation process of DOPO-MWCNTs flame retardant[56]

    图  17  ABPA/OMMT/CNTs阻燃剂的作用机制[57]

    Figure  17.  Mechanism of ABPA/OMMT/CNTs flame retardant [57]

  • [1] FRANCISCO D L, PAIVA L B, ALDEIA W. Advances in polyamide nanocomposites: A review[J]. Polymer Composites, 2019, 40(3): 851-870. doi: 10.1002/pc.24837
    [2] AKKAPEDDI M K. Glass fiber reinforced polyamide-6 nanocomposites[J]. Polymer Composites, 2000, 21(4): 576-585. doi: 10.1002/pc.10213
    [3] 李双庆, 汤溢融, 杨永波. 阻燃尼龙研究进展[J]. 工程塑料应用, 2020, 48(2): 132-138.

    LI Shuangqing, TANG Rongyi, YANG Yongbo. Research progress on fire retarded nylon[J]. Engineering Plastics Application, 2020, 48(2): 132-138(in Chinese).
    [4] 王振华, 杨正, 鲁世科, 等. 玻璃纤维增强聚合物基复合材料阻燃改性研究进展[J]. 塑料工业, 2022, 50(12): 8-15. doi: 10.3969/j.issn.1005-5770.2022.12.002

    WANG Zhenhua, YANG Zheng, LU Shike, et al. Research progresses on fire-retardant modification of glass fiber reinforced polymer composites[J]. China Plastics Industry, 2022, 50(12): 8-15(in Chinese). doi: 10.3969/j.issn.1005-5770.2022.12.002
    [5] LAZAR S T, KOLIBABA T J, Grunlan J C. Flame-retardant surface treatments[J]. Nature Reviews Materials, 2020, 5(4): 259-275. doi: 10.1038/s41578-019-0164-6
    [6] 苗月珍, 王昕彤, 谢梦舒, 等. 尼龙66及其复合材料的热分解动力学[J]. 材料研究学报, 2020, 34(8): 599-604.

    MIAO Yuezhen, WANG Xintong, XIE Mengshu , et al. Thermal decomposition dynamics of nylon 66 and its composites[J]. Chinese Journal of Materials Research [J], 2020, 34(8): 599-604. (in Chinese)
    [7] SHI X H, LI X L, LI Y M, et al. Flame-retardant strategy and mechanism of fiber reinforced polymeric composite: a review[J]. Composites Part B: Engineering, 2022, 233: 109663. doi: 10.1016/j.compositesb.2022.109663
    [8] CHEN L, WANG Y Z. A review on flame retardant technology in China. Part I: development of flame retardants[J]. Polymers for Advanced Technologies, 2010, 21(1): 1-26. doi: 10.1002/pat.1550
    [9] 种云胜, 王立岩, 别致, 等. 无卤阻燃玻纤增强尼龙复合材料研究进展[J]. 橡塑技术与装备, 2023, 49(1): 6-11.

    ZHONG Yunsheng, WANG Liyan, BIE Zhi, et al. Research progress of halogen-free flame retardant glass fiber reinforced nylon composites[J]. China Rubber/Plastics Technology and Equipment, 2023, 49(1): 6-11(in Chinese).
    [10] 朱云燕, 郭荣辉. 阻燃剂阻燃机制的研究进展[J]. 纺织科学与工程学报, 2023, 40(4): 115-122.

    ZHU Yunyan, GUO Ronghui. Research progress of retarding mechanism of flame retardants[J]. Journal of Textile Science and Engineering, 2023, 40(4): 115-122(in Chinese).
    [11] KUMAR U, SINGH D N. Electronic waste: Concerns & hazardous threats[J]. International Journal of Current Engineering and Technology, 2014, 4: 802-811.
    [12] MOCHANE M J, MOKHOTHU T H, Mokhena T C. Synthesis, mechanical, and flammability properties of metal hydroxide reinforced polymer composites: A review[J]. Polymer Engineering & Science, 2022, 62(1): 44-65.
    [13] XIAO J, HOBSON J, GHOSH A, et al. Flame retardant properties of metal hydroxide-based polymer composites: A machine learning approach[J]. Composites Communications, 2023, 40: 101593. doi: 10.1016/j.coco.2023.101593
    [14] WANG H, ZHOU X, ABRO M, et al. Mussel-inspired general interface modification method and its application in polymer reinforcement and as a flame retardant[J]. ACS Omega, 2018, 3(5): 4891-4898. doi: 10.1021/acsomega.8b00182
    [15] VELENCOSO M M, BATTIG A, MARKWART J C, et al. Molecular firefighting—how modern phosphorus chemistry can help solve the challenge of flame retardancy[J]. Angewandte Chemie International Edition, 2018, 57(33): 10450-10467. doi: 10.1002/anie.201711735
    [16] 王益文. 磷/氮协效阻燃剂对PA66的阻燃改性及性能研究[D]. 浙江理工大学, 2022.

    WANG Yiwen. Study on flame retardant modification and properties of PA66 with P/N synergistic flame retardant [D]. Zhejiang Sci-Tech University, 2022. (in Chinese)
    [17] 邵路山, 姚忠樱, 冯秀艳, 等. 有机磷系阻燃剂阻燃热塑性聚酯的研究进展[J]. 工程塑料应用, 2024, 52(5): 171-180.

    SHAO Lushan, YAO Zhongying, FENG Xiuyan, et al. Research progress of organophosphorus flame retardant thermoplastic polyester[J]. Engineering Plastics Application, 2024, 52(5): 171-180(in Chinese).
    [18] LEVCHIK S V, WEIL E D. A review of recent progress in phosphorus-based flame retardants[J]. Journal of fire sciences, 2006, 24(5): 345-364. doi: 10.1177/0734904106068426
    [19] CAO Z J, DONG X, FU T, et al. Coated vs. naked red phosphorus: A comparative study on their fire retardancy and smoke suppression for rigid polyurethane foams[J]. Polymer Degradation and Stability, 2017, 136: 103-111. doi: 10.1016/j.polymdegradstab.2016.12.004
    [20] 张东山, 赵状, 杨福兴, 等. 红磷的微胶囊化及其在尼龙6中的应用[J]. 能源化工, 2017, 38(5): 4.

    ZHANG Dongshan, ZHAO Zhuang, YANG Fuxing, et al. Preparation of microencapsulated red phosphorus and its flame-retardant application in PA6 composites[J]. Energy Chemical Industry, 2017, 38(5): 4(in Chinese).
    [21] LU S, LIU J, ZENG L, et al. Preparation and characterization of cyclodextrin coated red phosphorus double-shell microcapsules and its application in flame retardant polyamide 6[J]. Polymers, 2022, 14(19): 4101. doi: 10.3390/polym14194101
    [22] 付晓婷, 李谦, 朱凯, 等. 包覆红磷阻燃增强 PA66 的性能研究[J]. 塑料工业, 2021, 49(9): 130-133.

    FU Xiaoting, LI Qian, ZHU Kai, et al. Properties of Encapsulated Red Phosphorus Flame Retardant Reinforced PA66[J]. China Plastics Industry, 2021, 49(9): 130-133(in Chinese).
    [23] SUN Y, YUAN B, SHANG S, et al. Surface modification of ammonium polyphosphate by supramolecular assembly for enhancing fire safety properties of polypropylene[J]. Composites Part B Engineering, 2019, 181: 107588.
    [24] KE C, LI J, FANG K, et al. Enhancement of a hyperbranched charring and foaming agent on flame retardancy of polyamide 6[J]. Polymers for Advanced Technologies, 2011, 22(12): 2237-2243. doi: 10.1002/pat.1751
    [25] FAN S, SUN Y, WANG X, et al. A novel organic-inorganic flame retardant of ammonium polyphosphate chemically coated by Schiff base-containing branched polysiloxane for polyamide 6[J]. Polymers for Advanced Technologies, 2020, 31(11): 2763-2774. doi: 10.1002/pat.5003
    [26] TANG W, CAO Y, QIAN L, et al. Synergistic charring flame-retardant behavior of polyimide and melamine polyphosphate in glass fiber-reinforced polyamide 66[J]. Polymers, 2019, 11(11): 1851. doi: 10.3390/polym11111851
    [27] XU B, WEI S, LIU Y, et al. Preparation of an organometallic complex based on phosphonitrile and its flame retardant application in epoxy resin[J]. Journal of Materials Research and Technology, 2022, 21: 4921-4939. doi: 10.1016/j.jmrt.2022.11.099
    [28] YAN C, YAN P, XU H, et al. Preparation of continuous glass fiber/polyamide 6 composites containing hexaphenoxycyclotriphosphazene: Mechanical properties, thermal stability, and flame retardancy[J]. Polymer Composites, 2022, 43(2): 1022-1037. doi: 10.1002/pc.26431
    [29] YAO Q, CAO W, ZHAO Y, et al. Synthesis and application of hybrid aluminum dialkylphosphinates as highly efficient flame retardants for polyamides[J]. Polymers, 2023, 15(23): 4612. doi: 10.3390/polym15234612
    [30] SAVAS ATABEK L, TAYFUN U, HANCER M, et al. The flame-retardant effect of calcium hypophosphite in various thermoplastic polymers[J]. Fire and Materials, 2019, 43(3): 294-302. doi: 10.1002/fam.2700
    [31] XU M J, LIU C, MA K, et al. Effect of surface chemical modification for aluminum hypophosphite with hexa-(4-aldehyde-phenoxy)-cyclotriphosphazene on the fire retardancy, water resistance, and thermal properties for polyamide 6[J]. Polymers for Advanced Technologies, 2017, 28(11): 1382-1395. doi: 10.1002/pat.4015
    [32] LI J, QIAN L, XI W, et al. Alloying synergistic flame retardant effect improving fire resistance and mechanical properties of polyamide 6[J]. Journal of Applied Polymer Science, 2022, 139(48): e53226. doi: 10.1002/app.53226
    [33] 叶岗, 陈锐, 徐星驰等. 低软化点空心玻璃微珠协效ADP阻燃PA66/GF复合材料的制备与性能[J]. 合成材料老化与应用, 2023, 52(3): 11-13+84.

    YE Gang, CHEN Rui, XU Xingchi, et al. Preparation and properties on aluminium diethyl phosphate flame retarded PA66/GF composites with synergist of low softening point hollow glass spheres[J]. Synthetic Materials Aging and Application, 2023, 52(3): 11-13+84(in Chinese).
    [34] SALMEIA K A, GAAN S. An overview of some recent advances in DOPO-derivatives: Chemistry and flame retardant applications[J]. Polymer Degradation and Stability, 2015, 113: 119-134. doi: 10.1016/j.polymdegradstab.2014.12.014
    [35] LI M, ZHONG Y, WANG Z, et al. Flame retarding mechanism of polyamide 6 with phosphorus-nitrogen flame retardant and DOPO derivatives[J]. Journal of Applied Polymer Science, 2016, 133(6): 42932. doi: 10.1002/app.42932
    [36] CAO Y, QIAN L, CHEN Y, et al. Synergistic flame-retardant effect of phosphaphenanthrene derivative and aluminum diethylphosphinate in glass fiber reinforced polyamide 66[J]. Journal of Applied Polymer Science, 2017, 134(30): 45126. doi: 10.1002/app.45126
    [37] GAO J, HUANG W, HE W, et al. Superior flame retardancy of glass fiber-reinforced polyamide 6T composites by synergism between DOPO-based derivative and carbon nanotube[J]. Journal of Thermal Analysis and Calorimetry, 2022: 1-10.
    [38] ZHENG T, WANG W, LIU Y. A novel phosphorus-nitrogen flame retardant for improving the flame retardancy of polyamide 6: Preparation, properties, and flame retardancy mechanism[J]. Polymers for Advanced Technologies, 2021, 32(6): 2508-2516. doi: 10.1002/pat.5281
    [39] HUANG W, YAN W, HE W, et al. Synergistic flame-retardant effect of DOPO-based derivative and organo-montmorillonite on glass-fiber-reinforced polyamide 6T[J]. Polymers for Advanced Technologies, 2020, 31(9): 2083-2093. doi: 10.1002/pat.4931
    [40] MORGAN A B, KLATT M. Nitrogen-based flame retardants[J]. Non-Halogenated Flame Retardant Handbook, 2021: 236-270.
    [41] SIMPSON C, HE Q, KUEPFERT M. Nitrogen-Based Flame Retardants[M]. Fire Retardancy of Polymeric Materials. CRC Press, 2024: 178-195.
    [42] TAO W, LI J. Melamine cyanurate tailored by base and its multi effects on flame retardancy of polyamide 6[J]. Applied Surface Science, 2018, 456: 751-762. doi: 10.1016/j.apsusc.2018.06.215
    [43] HAN S, YANG F, LI Q, et al. Synergetic effect of α-ZrP nanosheets and nitrogen-based flame retardants on thermoplastic polyurethane[J]. ACS Applied Materials & Interfaces, 2023, 15(13): 17054-17069.
    [44] LEVINṬA N, VULUGA Z, TEODORESCU M, et al. Halogen-free flame retardants for application in thermoplastics based on condensation polymers[J]. SN Applied Sciences, 2019, 1: 1-19.
    [45] LIU Y, WANG Q. Melamine cyanurate-microencapsulated red phosphorus flame retardant unreinforced and glass fiber reinforced polyamide 66[J]. Polymer Degradation and Stability, 2006, 91(12): 3103-3109. doi: 10.1016/j.polymdegradstab.2006.07.026
    [46] SHAN H, YAN L, XU B, et al. Polyphosphamide containing triazine and melamine cyanurate for flame-retardant PA6[J]. ACS Applied Polymer Materials, 2023, 5(7): 5322-5333. doi: 10.1021/acsapm.3c00732
    [47] 张伟. 基于DOPO的多元阻燃剂的合成及其对尼龙6阻燃性能和机制的研究[D]. 江西理工大学, 2023.

    ZHANG Wei. Synthesis of DOPO-based multi-flame retardant and its study on the flame retardant performance and mechanism of polyamide 6 [D]. Jiangxi University of Science and Technology, 2023. (in Chinese)
    [48] LU Y, FENG J, YI D, et al. Strong synergistic effects between P/N-containing supramolecular microplates and aluminum diethylphosphinate for fire-retardant PA6[J]. Composites Part A: Applied Science and Manufacturing, 2024, 176: 107834. doi: 10.1016/j.compositesa.2023.107834
    [49] FENG H, QIU Y, QIAN L, et al. Flame inhibition and charring effect of aromatic polyimide and aluminum diethylphosphinate in polyamide 6[J]. Polymers, 2019, 11(1): 74. doi: 10.3390/polym11010074
    [50] LIM K S, BEE S T, SIN L T, et al. A review of application of ammonium polyphosphate as intumescent flame retardant in thermoplastic composites[J]. Composites Part B: Engineering, 2016, 84: 155-174. doi: 10.1016/j.compositesb.2015.08.066
    [51] WANG S, LIM Q F, TOH J P W, et al. A versatile, highly effective intumescent flame-retardant synergist for polypropylene and polyamide 6 composites[J]. Composites Communications, 2023, 42: 101699. doi: 10.1016/j.coco.2023.101699
    [52] QIU X, WAN X, WANG Z, et al. A simple and universal strategy for construction and application of silica-based flame-retardant nanostructure[J]. Composites Part B: Engineering, 2022, 238: 109887. doi: 10.1016/j.compositesb.2022.109887
    [53] WANG X, GUO W, CAI W, et al. Recent advances in construction of hybrid nano-structures for flame retardant polymers application[J]. Applied Materials Today, 2020, 20: 100762. doi: 10.1016/j.apmt.2020.100762
    [54] RAWTANI D, SATISH S, RAO P. Flame retardancy of nanocomposites with emphasis on Halloysite nanotubes[J]. Journal of Industrial and Engineering Chemistry, 2023, 125: 1-13. doi: 10.1016/j.jiec.2023.04.036
    [55] BEYER G. Carbon nanotubes as flame retardants for polymers[J]. Fire and materials, 2002, 26(6): 291-293. doi: 10.1002/fam.805
    [56] XUE B, LI Y, GUO J, et al. Enhancing flame retardant and antistatic properties of polyamide 6 by a grafted multiwall carbon nanotubes[J]. Journal of Applied Polymer Science, 2020, 138(11): 50015.
    [57] GAO J, LIAO S, WANG X, et al. A facile method to improve thermal stability and flame retardancy of polyamide 6[J]. Composites Communications, 2019, 13: 143-150. doi: 10.1016/j.coco.2019.04.010
    [58] CHEN Y, BAI Z, XU X, et al. Phosphonitrile decorating expandable graphite as a high-efficient flame retardant for rigid polyurethane foams[J]. Polymer, 2023, 283: 126268. doi: 10.1016/j.polymer.2023.126268
    [59] ZHAO C S, JIANG Y S, LIU Z Y, et al. Synergistic action of expandable graphite on fire safety of a self-intumescent flame retardant epoxy resin[J]. Journal of Applied Polymer Science, 2023, 140(5): e53425. doi: 10.1002/app.53425
    [60] BAI Z, WANG N, CHEN S, et al. Influence of nano silica hybrid expandable graphite on flammability, thermal stability, and mechanical property of polypropylene/polyamide 6 blends[J]. Journal of Applied Polymer Science, 2021, 138(28): 50682. doi: 10.1002/app.50682
    [61] TOMIAK F, SCHOEFFEL A, RATHBERGER K, et al. A synergistic flame retardant system based on expandable graphite, aluminum (diethyl-) polyphospinate and melamine polyphosphate for polyamide 6[J]. Polymers, 2021, 13(16): 2712. doi: 10.3390/polym13162712
    [62] TOMIAK F, ZITZMANN M, DRUMMER D. A multi-material flame-retarding system based on expandable graphite for glass-fiber-reinforced PA6[J]. Polymers, 2023, 15(20): 4100. doi: 10.3390/polym15204100
    [63] ZHAO S, CHEN X, ZHOU Y, et al. Molecular design of reactive flame retardant for preparing biobased flame retardant polyamide 56[J]. Polymer Degradation and Stability, 2023, 207: 110212. doi: 10.1016/j.polymdegradstab.2022.110212
    [64] GAO J, WU Y, LI J, et al. A review of the recent developments in flame-retardant nylon composites[J]. Composites Part C: Open Access, 2022, 9: 100297. doi: 10.1016/j.jcomc.2022.100297
    [65] MANDLEKAR N, CAYLA A, RAULT F, et al. Influence of char-forming lignin in combination with aluminium phosphinate on thermal stability and combustion properties of polyamide 11 blends[J]. Fire and Materials, 2024, 48(3): 367-379. doi: 10.1002/fam.3189
    [66] 徐建林, 王涛, 康成虎等. 阻燃剂研究与应用进展及问题思考[J]. 材料导报, 2022, 36(10): 235-243. doi: 10.11896/cldb.20110227

    XU Jianlin, WANG Tao, KANG Chenghu, et al. Research and applications of flame retardants: a review and thoughts[J]. Materials Reports, 2022, 36(10): 235-243(in Chinese). doi: 10.11896/cldb.20110227
    [67] YUAN Z, WEN H, LIU Y, et al. Synergistic effect between piperazine pyrophosphate and melamine polyphosphate in flame retarded glass fiber reinforced polypropylene[J]. Polymer Degradation and Stability, 2021, 184: 109477. doi: 10.1016/j.polymdegradstab.2020.109477
    [68] 祝焕, 何文涛, 于杰等. 有机次膦酸铝复配型阻燃剂/MMT协同阻燃LGFPA6的阻燃性能[J]. 塑料, 2014, 43(6): 1-4.

    ZHU Huan, HE Wentao, YU Jie, et al. Flame retardancy of LGFPA6 synergistic flame retarded by novel organophosphinate complex flame retardant/MMT[J]. Plastics, 2014, 43(6): 1-4(in Chinese).
    [69] 周贵阳, 贾艳宇, 邓杭军等. 勃姆石/二乙基次膦酸铝在玻纤增强尼龙6T-66中的协效阻燃研究[J]. 化工新型材料, 2020, 48(9): 123-127.

    ZHOU Guiyang, JIA Yanyu, DENG Hangjun, et al. Synergistic effect of BM/AlPi on the flame retardant property of GFR polyamide 6T-66[J]. New Chemical Materials, 2020, 48(9): 123-127(in Chinese).
    [70] OKOLIE O, KUMAR A, EDWARDS C, et al. Bio-based sustainable polymers and materials: From processing to biodegradation[J]. Journal of Composites Science, 2023, 7(6): 213. doi: 10.3390/jcs7060213
    [71] ZHAO S, CHEN X, ZHOU Y, et al. Molecular design of reactive flame retardant for preparing biobased flame retardant polyamide 56[J]. Polymer Degradation and Stability, 2023, 207: 110212. doi: 10.1016/j.polymdegradstab.2022.110212
    [72] TÜRKER Y S, ÖZTÜRK F, ÖZ Y. Review of recycling methods of thermoplastic composite materials[J]. Polymer-Plastics Technology and Materials, 2024, 63(12): 1693-1713. doi: 10.1080/25740881.2024.2352148
    [73] BIFULCO A, CHEN J, SEKAR A, et al. Recycling of flame-retardant polymeric materials: state of the art and future perspectives[J]. Fire Retardancy of Polymeric Materials, 2024: 584-606.
    [74] ALBITRES G A V, GARCIA E E, SOARES C M F, et al. Post-consumer high density polyethylene/zirconium phosphate and aluminum hydroxide composites: Assessment of physico-mechanical and flame retardancy properties[J]. Journal of Composite Materials, 2024, 58(4): 489-503. doi: 10.1177/00219983231226278
    [75] ZHANG Q, ZHU G R, XIAO X X, et al. Room-temperature hydrogen bonding and high-temperature rearrangement towards high-performance flame-retardant aliphatic polyamide[J]. Polymer, 2024, 295: 126780. doi: 10.1016/j.polymer.2024.126780
  • 加载中
计量
  • 文章访问数:  60
  • HTML全文浏览量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-11
  • 修回日期:  2024-07-15
  • 录用日期:  2024-07-26
  • 网络出版日期:  2024-08-19

目录

    /

    返回文章
    返回