Review on recent advances in nanocellulose aerogels for oil-water separation
-
摘要: 石油泄漏事件频繁发生,对环境和人类健康造成了极大的危害,因此亟需对含油废水进行有效的处理。目前的吸油材料存在局限性,如吸附量小、成本高和对环境有害等,而纳米纤维素气凝胶由于具有高孔隙度、高比表面积和低密度等特点,经疏水改性后能够吸附大量的油,在油水分离中有着显著优势。本文综述了纳米纤维素气凝胶的制备和疏水改性方法;介绍了纳米纤维素气凝胶结构特点及对其吸附性能的影响,综述了近年来纳米纤维素气凝胶在油和有机溶剂的吸附以及油水混合物分离中的应用;最后提出了纳米纤维素气凝胶的发展现状以及对未来的展望。Abstract: The frequent occurrence of oil spills has caused great threat to environment and human health, so it is urgent to treat oily wastewater effectively. Current oil absorbing materials have limitations, such as low absorption capacity, high cost and environmental harm. Nanocellulose aerogel can absorb a large amount of oil because of its high porosity, high specific surface area and low density. After hydrophobic modification, nanocellulose aerogel has a significant advantage in oil-water separation. The preparation and hydrophobic modification of nanocellulose aerogel are reviewed in this paper. The structural characteristics of nanocellulose aerogel and their influence on absorption performance were introduced. The application of nanocellulose aerogel in adsorption of oil and organic solvent and separation of oil-water mixture in recent years were reviewed. Finally, the development status and future prospects of nanocellulose aerogel are presented.
-
Key words:
- aerogels /
- nanocellulose /
- absorption /
- hydrophobicity /
- oil absorption /
- oil-water separation
-
图 3 (a) CVD改性BNC气凝胶示意图[39]; (b)改性前后BNC气凝胶的疏水性及相应水接触角[39]; (c)不同MTMS添加量下CNF气凝胶的水接触角[40]
Figure 3. (a)Illustration for the CVD process of BNC aerogel[39]; (b) Hydrophobicity and corresponding water contact Angle of BNC aerogel before and after modification[39]; (c) Water contact Angle of CNF aerogels at different MTMS supplemental levels[40]
图 4 (a)不同交联方式和不同前驱体浓度下纳米纤维素气凝胶的比表面积[46]; (b)不同NC/Al2O3质量比气凝胶的吸附能力[49]
Figure 4. (a)Specific surface area of nanocellulose aerogel under different crosslinking methods and different precursor concentrations[46]; (b) Adsorption capacity of aerogel for thiophene at different weight ratios of NC to Al2O3[49]
图 5 (a)通过冷冻干燥制备气凝胶的SEM图像[50]; (b)通过超临界CO2干燥制备气凝胶的SEM图像[50]; (c)不同MTES含量下气凝胶的孔隙结构及对应吸附能力[52]
Figure 5. (a) SEM images of the aerogels obtained by freeze drying[50]; (b) SEM images of typical aerogels obtained by supercritical CO2 drying[50]; (c) Pore structure and adsorption capacity of aerogel with different MTES content[52]
图 6 (a)不同干燥方法下气凝胶的应力应变曲线[50]; (b)不同PDA含量下CNF气凝胶的应力应变曲线[51]; (c) CNF/PVA定向冷冻干燥过程[54]; (d) 100次压缩-卸载循环下气凝胶的应力应变[54]; (e)40次吸附解吸循环下气凝胶的吸附能力[54]
Figure 6. (a) SEM images of the aerogels obtained by freeze drying[50]; (b) SEM images of typical aerogels obtained by supercritical CO2 drying[51]; (c) The directional freeze drying process of CNF/PVA aerogel[54]; (d) Stress-strain of aerogel under 100 compression-unload cycles[54]; (e) Adsorption capacity of aerogel after 40 adsorption and desorption cycles[54]
图 7 (a) 气凝胶油水分离机理[56];(b) CNC/CS复合气凝胶对油和有机溶剂的吸附能力[58]; (c) CNC/CS复合气凝胶吸附能力与溶剂密度关系[58]
Figure 7. (a) Oil-water separation mechanism of aerogel[56]; (b) The ability of CNC/CS composite aerogel to adsorb oils and organic solvents[58];(c) Relationship between adsorption capacity of CNC/CS composite aerogel and solvent density[58]
图 8 (a) CNF/PML气凝胶对机油、柴油和原油的吸附容量-时间曲线以及伪一阶模型和伪二阶模型[60]; (b) CNF/PML气凝胶对柴油的循环吸附测试[60]
Figure 8. (a) The adsorption capacity-time curve of CNF/PML aerogel on oil, diesel and crude oil: pseudo-first-order model and pseudo-second-order model[60]; (b) Cyclic adsorption test of CNF/PML aerogel on diesel oil[60]
图 9 (a) CNC/GO复合气凝胶快速吸附乙酸乙酯和四氯甲烷[64]; (b) CNC/GO复合气凝胶对各种油和有机溶剂的吸附能力[64]; (c) CNC/GO复合气凝胶的重复使用性能[64]
Figure 9. (a) CNC/GO composite aerogel quickly adsorbed ethyl acetate and tetrachloromethane[64]; (b) The ability of CNC/GO composite aerogel to adsorb oils and organic solvents[64]; (c) Reusable performance of CNC/GO composite aerogel[64]
图 10 (a) 气凝胶厚度与通量的关系[67]; (b) 泵驱动下的连续油水分离过程[68]; (c) CNF/PDMS气凝胶对正己烷、甲苯和甲基环己烷的分离通量[68]; (d)气凝胶分离乳液过程及分离前后液滴尺寸[70]; (e) 气凝胶分离乳液机理 [70]; (f)气凝胶初始分离通量、总分离量和分离效率[70];(g) 气凝胶对四种油包水乳液的分离效率[71]
Figure 10. (a) Relationship between aerogel thickness and flux[67]; (b) A continuous oil-water separation process driven by a pump; (c) Separation fluxes of CNF/PDMS aerogel for n-hexane, toluene and methylcyclohexane[68]; (d) Aerogel separation emulsion process and droplet size before and after separation[70]; (e) Mechanism of aerogels separating emulsion[70]; (f) Initial separation flux, total separation amount and separation efficiency of aerogel[70]; (g) Separation efficiency of aerogel for four water-in-oil emulsions[71]
表 1 不同原料和干燥方法下纳米纤维素气凝胶的基本性能
Table 1. Basic properties of nanocellulose aerogels under different raw materials and drying methods
Material Content/wt% Density/(mg·cm−3) Porosity/% Specific surface area/(m2·g−1) Drying Ref. BNC 1 90 93.6 660 Supercritical Drying [31] CNF 0.5 9.42 99.26 362.7 Freezing drying [33] CNF 1.5 58.82 / 22.4 Atmospheric Pressure Drying [36] BNC 0.4 46 97.7 / Freezing drying [41] CNC 0.5 5.6 99.6 / Freezing drying [42] CNC 2 21.7 98.6 250 Freezing drying [42] CNF 0.5 4 99.8 42 Freezing drying [43] CNF 0.6 8 99.5 30 Freezing drying [44] CNF 2 23 99 90 Freezing drying [45] Notes: BNC - Bacterial nanocellulose; CNF - cellulose nanofiber; CNC- cellulose nanocrystal. 表 2 不同纳米纤维素复合气凝胶的性能及油水分离性能比较
Table 2. Comparison of the properties and oil-water separation performances of different nanocellulose composite aerogel
Materials Density/
(mg·cm−3)Oil types Maximum
Absorption
capacity(g·g−1)WCA/(°) Porosity/% Specific surface
area/(m2·g−1)Reusability/
timesMaximum oil
flux /(L·m−2·h−1)Ref. CNF/CS 8.4 Trichloromethane 253 148 96 / 50 / [58] CNF/PML 5.1 Tetrachloromethane 160 129 / 9.8 15 [60] CNC\RGO 4.98 Tetrachloromethane 276 / 99.6 272.2 10 / [64] CNF/PEI/EGDE 53.8 Tetrachloromethane 28.03 130 95.73 / 10 5400 [67] CNF/PDMS 22.7 Toluene 48 163.5 98.4 / 20 145 [68] CNF/SiO2 6.43 / 168.4 129 99.6 108.6 20 1910 [70] CNF/TA/ICO 24 Dichloromethane 113.8 134.8 98.32 / / 4783.8 [71] BNC/PMSQ 5.74 Trichloromethane 203 168 99.59 / 10 473.8 [80] CNF/SA 24.2 Silicone Oil 88.91 144.5 97.85 149.64 20 / [81] CNF/CS/ZIF-8 15.87 Trichloromethane 74.55 132.6 99.01 5.51 20 13167.5 [82] Notes: CS—chitosan; PML—Premna microphylla leaves; RGO—Reduced graphene oxide; PEI—Polyethyleneimine; EGDE—Ethylene glycol diglycidyl ether; PDMS—polydimethylsiloxane; PMSQ—polymethylsilsesquioxane; SA—sodium alginate; WCA—Water contact angle;ZIF-8—Zeolitic Imidazolate Framework-8. -
[1] JERNELOV A. How to defend against future oil spills[J]. Nature, 2010, 466(7303): 182-183. doi: 10.1038/466182a [2] LI X, DONG G Q, LIU Z W et al. Polyimide Aerogel Fibers with Superior Flame Resistance, Strength, Hydrophobicity, and Flexibility Made via a Universal Sol-Gel Confined Transition Strategy[J]. Acs Nano, 2021, 15(3): 4759-4768. doi: 10.1021/acsnano.0c09391 [3] QIN H F, ZHANG Y F, JIANG J G, et al. Multifunctional Superelastic Cellulose Nanofibrils Aerogel by Dual Ice-Templating Assembly[J]. Advanced Functional Materials, 2021, 31(46): 2106269. doi: 10.1002/adfm.202106269 [4] LI Z, JIANG F, JIANG G J, et al. C-shaped porous polypropylene fibers for rapid oil absorption and effective on-line oil spillage monitoring[J]. Journal of hazardous materials, 2023, 452: 131332. doi: 10.1016/j.jhazmat.2023.131332 [5] PAVíA-SANDERS A, ZHANG S Y, FLORES J A, et al. Robust Magnetic/Polymer Hybrid Nanoparticles Designed for Crude Oil Entrapment and Recovery in Aqueous Environments[J]. ACS Nano, 2013, 7(9): 7552-7561. doi: 10.1021/nn401541e [6] WALLACE R L, GILBERT S, REYNOLDS J E. Improving the Integration of Restoration and Conservation in Marine and Coastal Ecosystems: Lessons from the Deepwater Horizon Disaster[J]. Bioscience, 2019, 69(11): 920-927. doi: 10.1093/biosci/biz103 [7] PING Z X, SUN Q Y, YI J Q, et al. Formulating Multiphase Medium Anti-wetting States in an Air–Water–Oil System: Engineering Defects for Interface Chemical Evolutions[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 49556-49566. [8] DA C G F, DOS S N, E V, MARSAIOLI A J. Petroleum degradation by aerobic microbiota from the Pampo Sul Oil Field, Campos Basin, Brazil[J]. Organic Geochemistry, 2008, 39(8): 1204-1209. doi: 10.1016/j.orggeochem.2008.04.010 [9] YI A N, ZHANG H M, Iop. Oil spill collection boom of ship based on negative pressure principle[C]//IOP. 5th International Conference on Advances in Energy Resources and Environment Engineering (ICAESEE) Chongqing, PEOPLES R CHINA: IOP Conference Series-Earth and Environmental Science, 2020: 052106. [10] 李晓玲. 船舶污水的处理现状[J]. 皮革制作与环保科技, 2021, 2(19): 93-94.Li Xiaoling. Status Quo of Marine sewage treatment[J]. Leather Making and Environmental Protection Technology, 2021, 2(19): 93-94(in Chinese). [11] HUANG Q X, MAO F Y, HAN Xu, et al. Migration of Emulsified Water Droplets in Petroleum Sludge during Centrifugation[J]. Energy & Fuels, 2014, 28(8): 4918-4924. [12] 赵云峰. 一种废水处理的新工艺: CN102161906A[P]. 2011-08-24.ZHAO Yunfeng. A new technology for wastewater treatment: CN102161906A[P]. 2011-08-24(in Chinese). [13] 徐诗琪, 周洲, 汤睿, 等. 高疏水纳米纤维素-壳聚糖/膨润土气凝胶的构建及其高效油水分离的应用[J]. 复合材料学报, 2024, 41(3): 1347-1355.XU Shiqi, ZHOU Zhou, TANG Rui, et al. Construction of highly hydrophobic nanocellulose-chitosan/bentonite aerogel and its application of efficient oil-water separation[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1347-1355(in Chinese). [14] ALAZAB A A, SALEH T A. Underwater superoleophobic cellulose/acrylamide-modified magnetic polyurethane foam for efficient oil/water separation[J]. Materials Chemistry and Physics, 2023, 302: 127609. doi: 10.1016/j.matchemphys.2023.127609 [15] 王琛, 张峰. 集中燃烧式原位热脱附技术装备研发与中试应用[J]. 节能与环保, 2022, (12): 54-56.Wang Chen, Zhang Feng. Development and pilot Application of Centralized Combustion in Situ thermal desorption Technology Equipment[J]. Energy Conservation and Environmental Protection, 2022, (12): 54-56(in Chinese). [16] TCHAMANGO S R, NGAYO Kevine Wandji, BELIBI Placide Désiré Belibi, et al. Treatment of a dairy effluent by classical electrocoagulation and indirect electrocoagulation with aluminum electrodes[J]. Separation Science and Technology, 2021, 56(6): 1128-1139. doi: 10.1080/01496395.2020.1748889 [17] PATOWARY R, DEVI A, MUKHERJEE A K. Advanced bioremediation by an amalgamation of nanotechnology and modern artificial intelligence for efficient restoration of crude petroleum oil-contaminated sites: a prospective study[J]. Environmental Science and Pollution Research, 2023, 30(30): 74459-74484. doi: 10.1007/s11356-023-27698-4 [18] WANG C Y, LI X, GUO J, et al. Biodegradation of marine oil spill residues using aboriginal bacterial consortium based on Penglai 19-3 oil spill accident, China[J]. Ecotoxicology and Environmental Safety, 2018, 159: 20-27. doi: 10.1016/j.ecoenv.2018.04.059 [19] XU C J, GAO M Y, YU X X, et al. Fibrous Aerogels with Tunable Superwettability for High-Performance Solar-Driven Interfacial Evaporation[J]. Nano-Micro Letters, 2023, 15(1): 64. doi: 10.1007/s40820-023-01034-4 [20] WU S Y, XIANG Y J, CAI Y Q, et al. Superhydrophobic magnetic Fe3O4 polyurethane sponges for oil–water separation and oil-spill recovery[J]. Journal of Environmental Sciences, 2024, 139: 160-169. doi: 10.1016/j.jes.2023.05.024 [21] 王百祥, 张惠宁, 彭耀清, 等. 气相吸附制备仿生超疏水棉织物及其油水分离性能[J]. 化工进展, 2023, 42(12): 6490-6497.Wang Baixiang, ZHANG Huining, PENG Yaoqing, et al. Preparation of biomimetic superhydrophobic cotton fabric by Gas phase adsorption and its oil-water separation performance[J]. Chemical Industry Progress, 2023, 42(12): 6490-6497(in Chinese). [22] JI N Y, CHEN H, YU M M, et al. Synthesis of high oil-absorption resins of poly(methyl methacrylate-butyl methacrylate) by suspended emulsion polymerization[J]. Polymers for Advanced Technologies, 2011, 22(12): 1898-1904. doi: 10.1002/pat.1689 [23] KISTLER S S. Coherent expanded aerogels and jellies[J]. Nature, 1931, 127: 741-741. [24] WU L Q, YANG M, YAO L F, et al. Polyaminophosphoric Acid-Modified Ion-Imprinted Chitosan Aerogel with Enhanced Antimicrobial Activity for Selective La(III) Recovery and Oil/Water Separation[J]. ACS Applied Materials & Interfaces, 2022, 14(48): 53947-53959. [25] GALLEGOS-CERDA S D, HERNáNDEZ-VARELA Josue David, PéREZ Jose Jorge Chanona, et al. Development of a low-cost photocatalytic aerogel based on cellulose, carbon nanotubes, and TiO2 nanoparticles for the degradation of organic dyes[J]. Carbohydrate Polymers, 2024, 324: 121476. doi: 10.1016/j.carbpol.2023.121476 [26] 任培永, 陈淼, 赵科, 等. 超蓬松掺杂石墨烯气凝胶复合材料的制备及其吸波性能[J]. 复合材料学报, 2024, 42: 1-14.REN Peiyong, CHEN Miao, ZHAO Ke, et al. Preparation and wave-absorbing properties of ultra-fluffy doped graphene aerogel composites[J]. Acta Materiae Compositae Sinica, 2024, 42: 1-14(in Chinese). [27] CHEN S W, HU Y H, GAO D F, et al. Superelastic bio-based polyimide aerogel with excellent oil/water separation performance and effective visible light photocatalytic activity[J]. Journal of Cleaner Production, 2023, 428: 139521. doi: 10.1016/j.jclepro.2023.139521 [28] SHAO H L, ZHAO S, FEI Z F, et al. Unidirectional infiltrated PI/SiO2 composite aerogels with a confined reinforcing strategy for integrated thermal and acoustic insulation[J]. Composites Part B-Engineering, 2023, 266: 111002. doi: 10.1016/j.compositesb.2023.111002 [29] HE Z W, WU H Q, SHI Z, et al. Mussel-Inspired Durable TiO2/PDA-Based Superhydrophobic Paper with Excellent Self-Cleaning, High Chemical Stability, and Efficient Oil/Water Separation Properties[J]. Langmuir, 2022, 38(19): 6086-6098. doi: 10.1021/acs.langmuir.2c00429 [30] BUCHTOVÁ N, BUDTOVA T. Cellulose aero-, cryo- and xerogels: towards understanding of morphology control[J]. Cellulose, 2016, (23): 258-295. [31] ZHANG J Y, CHENG Y H, TEBYETEKERWA M, et al. "Stiff-Soft" Binary Synergistic Aerogels with Superflexibility and High Thermal Insulation Performance[J]. Advanced Functional Materials, 2019, 29(15): 1806407. doi: 10.1002/adfm.201806407 [32] 林旭, 麦学妍, 王钧, 等. 各向异性纤维素纳米纤维/芳纶纳米纤维复合泡沫的制备与性能[J]. 复合材料学报, 2024, 41(6): 3037-3046.LIN Xu, MAI Xueyan, WANG Jun, et al. Preparation and properties of anisotropic cellulose nanofiber/aramid nanofiber composite foam[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3037-3046(in Chinese). [33] ZHANG M L, JIANG S, LI M M, et al. Superior stable, hydrophobic and multifunctional nanocellulose hybrid aerogel via rapid UV induced in-situ polymerization[J]. Carbohydrate Polymers, 2022, 288: 119370. doi: 10.1016/j.carbpol.2022.119370 [34] CIFTCI D, UBEYITOGULLARI A, HUERTA R R, et al. Lupin hull cellulose nanofiber aerogel preparation by supercritical CO2 and freeze drying[J]. The journal of Supercritical Fluids, 2017, 127: 137-145. doi: 10.1016/j.supflu.2017.04.002 [35] SLOSARCZYK A. Carbon Fiber-Silica Aerogel Composite with Enhanced Structural and Mechanical Properties Based on Water Glass and Ambient Pressure Drying[J]. Nanomaterials, 2021, 11(2): 258. doi: 10.3390/nano11020258 [36] LI Y Z, GRISHKEWICH N, LIU L L, et al. Construction of functional cellulose aerogels via atmospheric drying chemically cross-linked and solvent exchanged cellulose nanofibrils[J]. Chemical Engineering Journal, 2019, 366: 531-538. doi: 10.1016/j.cej.2019.02.111 [37] PENG X W, WU K Z, HU Y J, et al. A mechanically strong and sensitive CNT/rGO-CNF carbon aerogel for piezoresistive sensors[J]. Journal of Materials Chemistry A, 2018, 6(46): 23550-23559. doi: 10.1039/C8TA09322A [38] CHATTERJEE S, KE W T, LIAO Y C. Elastic nanocellulose/graphene aerogel with excellent shape retention and oil absorption selectivity[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111: 261-269. doi: 10.1016/j.jtice.2020.04.020 [39] KE W K, GE F, SHI X L, et al. Superelastic and superflexible cellulose aerogels for thermal insulation and oil/water separation[J]. International Journal of Biological Macromolecules, 2024, 260: 129245. doi: 10.1016/j.ijbiomac.2024.129245 [40] LIU T, CAI C C, MA R J, et al. Super-hydrophobic Cellulose Nanofiber Air Filter with Highly Efficient Filtration and Humidity Resistance[J]. Acs Applied Materials & Interfaces, 2021, 13(20): 24032-24041. [41] ZHANG X, ZHAO X Y, XUE T T, et al. Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation[J]. Chemical Engineering Journal, 2020, 385: 123963. doi: 10.1016/j.cej.2019.123963 [42] YANG X, E D CRANSTON. Chemically Cross-Linked Cellulose Nanocrystal Aerogels with Shape Recovery and Superabsorbent Properties[J]. Chemistry of Materials, 2014, 26(20): 6016-6025. doi: 10.1021/cm502873c [43] CERVIN N T, AULIN C, LARSSON P T, et al. Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids[J]. Cellulose, 2012, 19: 401-410. doi: 10.1007/s10570-011-9629-5 [44] JIANG F, HSIEH Y L. Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing–thawing[J]. Journal of materials chemistry A, 2014, 2: 350-359. doi: 10.1039/C3TA13629A [45] JIMENEZ-SAELICES C, SEANTIER B, CATHALA B, et al. Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties[J]. 2017, 157: 105-113. [46] WU T T, ZENG Z H, SIQUEIRA G, et al. Dual-porous cellulose nanofibril aerogels via modular drying and cross-linking[J]. Nanoscale, 2020, 12: 7383-7394. doi: 10.1039/D0NR00860E [47] SEHAQUI H, ZHOU Q, BERGLUND L. High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC)[J]. Composites Science and Technology, 2011, 13(71): 1593-1599. [48] ZU G Q, SHEN J, ZOU L P, et al. Nanocellulose-derived highly porous carbon aerogels for supercapacitors[J]. Carbon, 2016, 99: 203-211. doi: 10.1016/j.carbon.2015.11.079 [49] ZHOU X M, FU Q G, LIU H, et al. Solvent-free nanoalumina loaded nanocellulose aerogel for efficient oil and organic solvent adsorption[J]. Journal of Colloid and Interface Science, 2021, 581: 299-306. doi: 10.1016/j.jcis.2020.07.099 [50] CHEN W S, YU H P, LI Q, et al. Ultralight and highly flexible aerogels with long cellulose I nanofiber[J]. soft matter, 2011, 7: 10360-10368. doi: 10.1039/c1sm06179h [51] WANG J, ZHENG Y, WANG A. Coated kapok fiber for removal of spilled oil[J]. 2013, 69: 91-96. [52] ZHOU S K, LIU P P, WANG M, et al. Sustainable, Reusable, and Superhydrophobic Aerogels from Microfibrillated Cellulose for Highly Effective Oil/Water Separation[J]. ACS Sustainable Chemistry and Engineering, 2016, 4(12): 6409-6416. doi: 10.1021/acssuschemeng.6b01075 [53] HUO Y, LIU Y Y, YANG J, et al. Polydopamine-Modified Cellulose Nanofibril Composite Aerogel: An Effective Dye Adsorbent[J]. Langmuir, 2022, 38(14): 4164-4174. doi: 10.1021/acs.langmuir.1c02483 [54] CHEN B Y, ZHANG H, LI L J, et al. Preparation of a PVA/CNF/ETOS Elastic Aerogel by Directional Freezing and Its Application in Oil–Water Separation[J]. ACS Applied Polymer Materials, 2023, 5(5): 3554-3563. doi: 10.1021/acsapm.3c00188 [55] DU X S, QIU J H, DENG S, et al. Alkylated Nanofibrillated Cellulose/Carbon Nanotubes Aerogels Supported Form-Stable Phase Change Composites with Improved n-Alkanes Loading Capacity and Thermal Conductivity[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 5695-5703. [56] FAN B J, BAO X M, PAN S S, et al. High capillary effect and solar dual-drive nanofibrillated cellulose aerogels for efficient crude oil spill cleanup[J]. Chemical Engineering Journal, 2024, 480: 148149. doi: 10.1016/j.cej.2023.148149 [57] FAN B J, PAN S S, BAO X M, et al. Highly elastic photothermal nanofibrillated cellulose aerogels for solar-assisted efficient cleanup of viscous oil spill[J]. International Journal Of Biological Macromolecules, 2023, 256(Pt 1): 128327. [58] ZHANG M L, JIANG S, HAN F Y, et al. Anisotropic cellulose nanofiber/chitosan aerogel with thermal management and oil absorption properties[J]. Carbohydrate Polymers, 2021, 264: 118033. doi: 10.1016/j.carbpol.2021.118033 [59] LAITINEN O, SUOPAJÄRVI T, ÖSTERBERG M, et al. Hydrophobic Superabsorbing Aerogels from Choline Chloride-Based Deep Eutectic Solvent Pretreated and Silylated Cellulose Nanofibrils for Selective Oil Removal[J]. ACS Applied Materials & Interfaces, 2017, 9(29): 25029-25037. [60] YE R C, LI H S , LONG J Y, et al. Bio-aerogels derived from corn stalk and Premna Microphylla leaves as eco-friendly sorbents for oily water treatment: The role of microstructure in adsorption performance[J]. Journal of Cleaner Production, 2023, 403: 136720. [61] LI X C, YANG Z H, PENG Y, et al. Self-powered aligned porous superhydrophobic sponge for selective and efficient absorption of highly viscous spilled oil[J]. Journal of Hazardous Materials, 2022, 435: 129018. doi: 10.1016/j.jhazmat.2022.129018 [62] ZHANG J C, GUO W J, SHEN S Y, et al. High-Compressive, Elastic, and Wearable Cellulose Nanofiber-Based Carbon Aerogels for Efficient Electromagnetic Interference Shielding[J]. ACS Applied Materials & Interfaces, 2024, 16(13): 16612-16621. [63] CHEN W, ZHANG Q, UETANI K, et al. Sustainable Carbon Aerogels Derived from Nanofibrillated Cellulose as High-Performance Absorption Materials[J]. Adcanced Materials Interfaces, 2016, 3(10): 1600004. doi: 10.1002/admi.201600004 [64] DONG J R, ZENG J S, WANG B, et al. Mechanically Flexible Carbon Aerogel with Wavy Layers and Springboard Elastic Supporting Structure for Selective Oil/Organic Solvent Recovery[J]. ACS Applied Materials & Interfaces, 2021, 13(13): 15910-15924. [65] Zhan W, Yu S, Gao L, et al. Bioinspired Assembly of Carbon Nanotube into Graphene Aerogel with ″Cabbagelike″ Hierarchical Porous Structure for Highly Efficient Organic Pollutants Cleanup[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 1093-1103. [66] YIN X Y, WU J C, ZHAO H Y, et al. A microgel-structured cellulose nanofibril coating with robust antifouling performance for highly efficient oil/water and immiscible organic solvent separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 20(647): 128875. [67] FAN B J, WU L L, MING A X, et al. Highly compressible and hydrophobic nanofibrillated cellulose aerogels for cyclic oil/water separation[J]. International Journal of Biological Macromolecules, 2023, 3(242): 125066. [68] QIAO A H, HUANG R L, PENKOVA A, et al. Superhydrophobic, elastic and anisotropic cellulose nanofiber aerogels for highly effective oil/water separation[J]. Separation and Purification Technology, 2022, 295: 121266. doi: 10.1016/j.seppur.2022.121266 [69] TIAN N, WU S H, HAN G T, et al. Biomass-derived oriented neurovascular network-like superhydrophobic aerogel as robust and recyclable oil droplets captor for versatile oil/water separation[J]. Journal of Hazardous Materials, 2022, 424: 127393. doi: 10.1016/j.jhazmat.2021.127393 [70] ZGIY S K, YOU T T, ZHANG X M, et al. Superhydrophobic Cellulose Nanofiber-Assembled Aerogels for Highly Efficient Water-in-Oil Emulsions Separation[J]. Applied Nano Materials, 2018, 1(5): 2095-2103. doi: 10.1021/acsanm.8b00079 [71] SHANG Q Q, CHENG J W, HU L H, et al. Bio-inspired castor oil modified cellulose aerogels for oil recovery and emulsion separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: 128043. doi: 10.1016/j.colsurfa.2021.128043 [72] ZHOU L J, XU Z Y. Ultralight, highly compressible, hydrophobic and anisotropic lamellar carbon aerogels from graphene/polyvinyl alcohol/cellulose nanofiber aerogel as oil removing absorbents[J]. Journal of Hazardous Materials, 2020, 388: 121804. doi: 10.1016/j.jhazmat.2019.121804 [73] ZHU G, XU H, DUFRESNE A, et al. High-Adsorption, Self-Extinguishing, Thermal, and Acoustic-Resistance Aerogels Based on Organic and Inorganic Waste Valorization from Cellulose Nanocrystals and Red Mud[J]. ACS Sustainable Chem Eng, 2018, 6: 7168-7180. doi: 10.1021/acssuschemeng.8b01244 [74] GU H B, ZHOU X M, LLYU S Y, et al. Magnetic nanocellulose-magnetite aerogel for easy oil adsorption[J]. Journal Of Colloid and Interface Science, 2020, 560: 849-856. doi: 10.1016/j.jcis.2019.10.084 [75] XU Z Y, JIANG X D, ZHOU H, et al. Preparation of magnetic hydrophobic polyvinyl alcohol (PVA)–cellulose nanofiber (CNF) aerogels as effective oil absorbents[J]. Cellulose, 2018, 25(2): 1217-1227. doi: 10.1007/s10570-017-1619-9 [76] TANG R, JIANG L Y, YAN J Y, et al. Preparation of magnetic hydrophobic polyvinyl alcohol (PVA)–cellulose nanofiber (CNF) aerogels as effective oil absorbents[J]. Separation and Purification Technology, 2024, 339: 126580. doi: 10.1016/j.seppur.2024.126580 [77] LI Y Z, ZHU L Q, GRISHKEWICH N, et al. CO2-Responsive Cellulose Nanofibers Aerogels for Switchable Oil−Water Separation[J]. ACS Applied Materials & Interfaces, 2019, 11(9): 9367-9373. [78] FAN B, PAN S, BAO X, et al. Highly elastic photothermal nanofibrillated cellulose aerogels for solar-assisted efficient cleanup of viscous oil spill[J]. International journal of biological macromolecules, 2023, 256(Pt 1): 128327. [79] WANG S X, ZENG J S, LI P F, et al. Rechargeable nanofibrillated cellulose aerogel with excellent biocidal properties for efficient oil/water separation[J]. Separation and Purification Technology, 2022, 301: 121955. doi: 10.1016/j.seppur.2022.121955 [80] ZHANG J Y, CHENG Y H, XU C J, et al. Hierarchical Interface Engineering for Advanced Nanocellulosic Hybrid Aerogels with High Compressibility and Multifunctionality[J]. Advanced Functional Materials, 2021, 31(19): 2009349. doi: 10.1002/adfm.202009349 [81] LIU Q Y, LIU Y Q, FENG Q, et al. Preparation of antifouling and highly hydrophobic cellulose nanofibers/alginate aerogels by bidirectional freeze-drying for water-oil separation in the ocean environment[J]. Journal of Hazardous Materials, 2023, 441: 129965. doi: 10.1016/j.jhazmat.2022.129965 [82] SI R R, LUO H G, ZHANG T, et al. High hydrophobic ZIF-8 @ cellulose nanofibers/chitosan double network aerogel for oil adsorbent and oil/water separation[J]. International Journal of Biological Macromolecules, 2023, 238: 124008. doi: 10.1016/j.ijbiomac.2023.124008
计量
- 文章访问数: 70
- HTML全文浏览量: 20
- 被引次数: 0