留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cs3Bi2I9薄膜的制备及其太阳能电池的数值模拟

任雨轩 柏晨 丁伟 方栋 密保秀 高志强

任雨轩, 柏晨, 丁伟, 等. Cs3Bi2I9薄膜的制备及其太阳能电池的数值模拟[J]. 复合材料学报, 2025, 42(待排刊): 1-13.
引用本文: 任雨轩, 柏晨, 丁伟, 等. Cs3Bi2I9薄膜的制备及其太阳能电池的数值模拟[J]. 复合材料学报, 2025, 42(待排刊): 1-13.
REN Yuxuan, BAI Chen, DING Wei, et al. Thin-films preparation of Cs3Bi2I9 and numerical simulation of solar cells[J]. Acta Materiae Compositae Sinica.
Citation: REN Yuxuan, BAI Chen, DING Wei, et al. Thin-films preparation of Cs3Bi2I9 and numerical simulation of solar cells[J]. Acta Materiae Compositae Sinica.

Cs3Bi2I9薄膜的制备及其太阳能电池的数值模拟

基金项目: 南京邮电大学有机电子与信息显示国家重点实验室项目(2009DS690095)
详细信息
    通讯作者:

    密保秀,博士,教授,硕士生/博士生导师,研究方向为有机太阳能电池功能材料及器件 E-mail: iambxmi@njupt.edu.cn

  • 中图分类号: TM914.4+2; TB333

Thin-films preparation of Cs3Bi2I9 and numerical simulation of solar cells

Funds: State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications (2009DS690095).
  • 摘要: 近年来,人们致力于探索新型无铅无机钙钛矿材料,旨在追赶铅基钙钛矿太阳能电池的性能。在本工作中,首次使用分层交替蒸镀BiI3和CsI薄膜的方式成功制备了质量较好的无铅无机Cs3Bi2I9薄膜,并通过真空蒸镀将KI掺杂到Cs3Bi2I9薄膜中,获得的薄膜带隙减小、激子寿命增加。将上述两种薄膜作为活性层,制备了结构为ITO/CuPc/活性层/C60/Al的太阳能电池。为了提高这类太阳能电池的性能,使用SCAPS-1D太阳能电池模拟软件对上述结构的器件进行数值模拟,以获得最佳器件的参数。模拟器件各功能层的厚度经过优化且增加活性层供体掺杂浓度后,最大功率转换效率只有8.62%。然后,选取其他合适的空穴传输材料以及电子传输材料以优化器件结构,模拟出的最佳器件表现出25.66%的功率转换效率。这项工作为后续实验制备Cs3Bi2I9薄膜太阳能电池提供了理论指导。

     

  • 图  1  CBI和CBIK薄膜以及原料BiI3、CsI和KI粉末的XRD图谱

    Figure  1.  XRD patterns of CBI and CBIK films, raw materials BiI3, CsI, and KI powders

    图  2  (a) CBI和 (b) CBIK薄膜的俯视SEM图像

    Figure  2.  Top view SEM images of (a) CBI and (b) CBIK film

    图  3  (a) CBI和CBIK薄膜的紫外-可见光吸收光谱;(b) CBI薄膜和CBIK薄膜的光学吸收带隙图;(c) CBI和CBIK薄膜的PL光谱

    Figure  3.  (a) UV-vis absorption spectra of CBI and CBIK film; (b) Optical absorption bandgap diagram of CBI and CBIK film; (c) PL spectra of CBI and CBIK film

    图  4  器件结构为ITO/CuPc (50 nm)/CBIK(300 nm)/C60 (150 nm)/Al薄膜太阳能电池的

    (a) J-V曲线、(b) 器件照片以及 (c) 显微镜下器件表面

    Figure  4.  (a) J-V curve, (b) Device photograph, and (c) device surface under the microscope of the thin-film solar cell with structure of ITO/CuPc (50 nm)/CBIK(300 nm)/C60 (150 nm)/Al

    图  5  (a) 模拟器件的结构示意图;(b) 模拟器件的能级图

    Figure  5.  (a) Device structure and (b) energy level diagram of the simulated device

    图  6  活性层Cs3Bi2I9的厚度对(a) J-V曲线、(b) VOCJSCFFPCE以及 (c) 量子效率的影响

    Figure  6.  Effect of active-layer thickness (Cs3Bi2I9) on (a) J-V curves, (b) VOC, JSC, FF and PCE, and (c) quantum efficiency

    图  7  空穴传输层CuPc的厚度对(a) J-V曲线、(b) VOCJSCFFPCE以及 (c) 量子效率的影响

    Figure  7.  Effect of hole-transport-layer thickness (CuPc) on (a) J-V curves, (b) VOC, JSC, FF and PCE, and (c) quantum efficiency

    图  8  电子传输层C60的厚度对(a) J-V曲线、(b) VOCJSCFFPCE以及 (c) 量子效率的影响

    Figure  8.  Effect of electron-transport-layer thickness (C60) on (a) J-V curves, (b) VOC, JSC, FF and PCE, and (c) quantum efficiency

    图  9  (a) Cs3Bi2I9层、(b) CuPc/Cs3Bi2I9界面、(c) Cs3Bi2I9/C60界面的缺陷密度对器件性能的影响

    Figure  9.  Effect of defect density at (a) Cs3Bi2I9 layer, (b) CuPc/ Cs3Bi2I9 interface, and (c) Cs3Bi2I9/C60 interface, to device performance.

    图  10  Cs3Bi2I9层供体掺杂对 (a) VOCJSCFFPCE、(b) 生成率、(c) 复合率、(d) 电子密度、(e) 空穴密度以及(f) 总载流子密度的影响

    Figure  10.  Effect of donor-doping in Cs3Bi2I9 layer on (a) VOC, JSC, FF, and PCE, (b) generation rate, (c) recombination rate, (d) electron density, (e) hole density, and (f) total carrier density

    图  11  不同空穴传输层与电子传输层对 (a) J-V曲线、(b) VOCJSCFFPCE、(c) 量子效率、(d) 复合率、(e) 生成率以及(f) 总载流子密度的影响

    Figure  11.  Effect of different hole transport layer and electron transport layer on (a) J-V curves, (b) VOC, JSC, FF, and PCE, (c) quantum efficiency, (d) recombination rate, (e) generation rate, and (f) total carrier density

    表  1  空穴传输层、钙钛矿(活性层)和电子传输层的参数

    Table  1.   Parameters of hole transport layer, perovskite (active layer) and electron transport layer

    ParametersCuPcCs3Bi2I9C60
    Thickness/nm50500150
    Band gap, Eg/eV1.7*2.2*1.9*
    Electron affinity, X/eV3.503.554.50
    Dielectric permittivity (relative), εr10.3819.6805.000
    CB effective density of states, NC/cm−32.50 × 10204.98 × 10192.20 × 1018
    VB effective density of states, NV/cm−32.50 × 10202.11 × 10191.80 × 1019
    Electron thermal velocity/(cm·s−1)1 × 1071 × 1071 × 107
    Hole thermal velocity/(cm·s−1)1 × 1071 × 1071 × 107
    Electron mobility, μn/(cm2·V−1·s−1)0.3554.3000.010
    Hole mobility, μh/(cm2·V−1·s−1)1.6801.7000.010
    Shallow uniform acceptor density, NA/cm−31 × 10151 × 1090
    Shallow uniform donor density, ND/cm−301 × 1092 × 1018
    Defect density, Nt/cm−31 × 10131 × 10151 × 1014
    Notes: * Experimental data from this work; CuPc: Copper(II) phthalocyanine.
    下载: 导出CSV

    表  2  空穴传输层及电子传输层的参数

    Table  2.   Parameters for hole transport and electron transport layers

    ParametersPEDOT:PSSCuICuSCNZnOSnO2PCBM
    Thickness/nm50100505010050
    Band gap, Eg/eV1.63.13.63.53.62.0
    Electron affinity, X/eV3.42.11.74.04.03.9
    Dielectric permittivity (relative), εr3.06.510909.03.9
    CB effective density of states, NC/cm−32.2 × 10182.8 × 10192.2 × 10193.7 × 10182.2 × 10182.5 × 1021
    VB effective density of states, NV/cm−31.8 × 10191.0 × 10191.8 × 10181.8 × 10191.8 × 10192.5 × 1021
    Electron thermal velocity/(cm·s−1)1 × 1071 × 1071 × 1071 × 1071 × 1071 × 107
    Hole thermal velocity/(cm·s−1)1 × 1071 × 1071 × 1071 × 1071 × 1071 × 107
    Electron mobility, μn/(cm2·V−1·s−1)0.0451001001001000.200
    Hole mobility, μh/(cm2·V−1·s−1)0.04543.9002525250.200
    Shallow uniform acceptor density,
    NA/cm−3
    1 × 10181 × 10181 × 1018000
    Shallow uniform donor density, ND/cm−30001 × 10181 × 10172.9 × 1017
    Defect density, Nt/cm−31 × 10151 × 10151 × 10151 × 10151 × 10151 × 1015
    Notes: PEDOT: PSS: Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate); PCBM: Methyl [6,6]-phenyl-C61-butyrate.
    下载: 导出CSV
  • [1] BURSCHKA J, PELLET N, MOON S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013, 499(7458): 316-319. doi: 10.1038/nature12340
    [2] MEI A, LI X, LIU L, et al. A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science, 2014, 345(6194): 295-298. doi: 10.1126/science.1254763
    [3] TIAN R, ZHOU S, MENG Y, et al. Material and Device Design of Flexible Perovskite Solar Cells for Next-Generation Power Supplies[J]. Advanced Materials, 2024: 2311473.
    [4] ZHOU J, TAN L, LIU Y, et al. Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material[J]. Joule, 2024: S2542435124001028.
    [5] ZHOU Y, ZHAO Y. Chemical stability and instability of inorganic halide perovskites[J]. Energy & Environmental Science, 2019, 12(5): 1495-1511.
    [6] LI Y, CHEN J, CAI P, et al. An electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation[J]. Journal of Materials Chemistry A, 2018, 6(12): 4948-4954. doi: 10.1039/C7TA10374C
    [7] LEE L C, HUQ T N, MACMANUS-DRISCOLL J L, et al. Research Update: Bismuth-based perovskite-inspired photovoltaic materials[J]. APL Materials, 2018, 6(8): 084502. doi: 10.1063/1.5029484
    [8] HWANG T Y, CHOI Y, SONG Y, et al. A noble gas sensor platform: linear dense assemblies of single-walled carbon nanotubes (LACNTs) in a multi-layered ceramic/metal electrode system (MLES)[J]. Journal of Materials Chemistry C, 2018, 6(5): 972-979. doi: 10.1039/C7TC03576D
    [9] CHEN X, JIA M, XU W, et al. Recent Progress and Challenges of Bismuth-Based Halide Perovskites for Emerging Optoelectronic Applications[J]. Advanced Optical Materials, 2023, 11(3): 2202153. doi: 10.1002/adom.202202153
    [10] ZHANG L, WANG K, ZOU B. Bismuth Halide Perovskite-Like Materials: Current Opportunities and Challenges[J]. ChemSusChem, 2019, 12(8): 1612-1630. doi: 10.1002/cssc.201802930
    [11] YANG B, CHEN J, HONG F, et al. Lead-Free, Air-Stable All-Inorganic Cesium Bismuth Halide Perovskite Nanocrystals[J]. Angewandte Chemie International Edition, 2017, 56(41): 12471-12475. doi: 10.1002/anie.201704739
    [12] LI M Q, HU Y Q, BI L Y, et al. Structure Tunable Organic–Inorganic Bismuth Halides for an Enhanced Two-Dimensional Lead-Free Light-Harvesting Material[J]. Chemistry of Materials, 2017, 29(13): 5463-5467. doi: 10.1021/acs.chemmater.7b01017
    [13] WAYKAR R, BHORDE A, NAIR S, et al. Environmentally stable lead-free cesium bismuth iodide (Cs3Bi2I9) perovskite: Synthesis to solar cell application[J]. Journal of Physics and Chemistry of Solids, 2020, 146: 109608. doi: 10.1016/j.jpcs.2020.109608
    [14] HU W, HE X, FANG Z, et al. Bulk heterojunction gifts bismuth-based lead-free perovskite solar cells with record efficiency[J]. Nano Energy, 2020, 68: 104362. doi: 10.1016/j.nanoen.2019.104362
    [15] MCCALL K M, STOUMPOS C C, KOSTINA S S, et al. Strong Electron–Phonon Coupling and Self-Trapped Excitons in the Defect Halide Perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb)[J]. Chemistry of Materials, 2017, 29(9): 4129-4145. doi: 10.1021/acs.chemmater.7b01184
    [16] BU N, JIA S, XIAO Y, et al. Inch-size Cs3Bi2I9 polycrystalline wafers with near-intrinsic properties for ultralow-detection-limit X-ray detection[J]. Journal of Materials Chemistry C, 2022, 10(17): 6665-6672. doi: 10.1039/D2TC00599A
    [17] PARK B, PHILIPPE B, ZHANG X, et al. Bismuth Based Hybrid Perovskites A3Bi2I9 (A: Methylammonium or Cesium) for Solar Cell Application[J]. Advanced Materials, 2015, 27(43): 6806-6813. doi: 10.1002/adma.201501978
    [18] KHADKA D B, SHIRAI Y, YANAGIDA M, et al. Tailoring the film morphology and interface band offset of caesium bismuth iodide-based Pb-free perovskite solar cells[J]. Journal of Materials Chemistry C, 2019, 7(27): 8335-8343. doi: 10.1039/C9TC02181G
    [19] ATAEI M, ADELIFARD M, HOSSEINI S S. Physical Properties and Photovoltaic Performance of Perovskite Solar Cells Based on Lead-Free A3Bi2I9 (A = CH3NH3, Cs) Active Layers[J]. Journal of Electronic Materials, 2021, 50(2): 571-579. doi: 10.1007/s11664-020-08580-2
    [20] HAMUKWAYA S L, HAO H, MASHINGAIDZE M M, et al. Potassium Iodide-Modified Lead-Free Cs3Bi2I9 Perovskites for Enhanced High-Efficiency Solar Cells[J]. Nanomaterials, 2022, 12(21): 3751. doi: 10.3390/nano12213751
    [21] YUAN W, XU Y, DING T, et al. Environmental lead-free Cs3Bi2I9 films deposited by vapor transport deposition for stable all-inorganic solar cells[J]. Optical Materials, 2023, 139: 113815. doi: 10.1016/j.optmat.2023.113815
    [22] BAI F, HU Y, HU Y, et al. Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 184: 15-21. doi: 10.1016/j.solmat.2018.04.032
    [23] LIU M, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501(7467): 395-398. doi: 10.1038/nature12509
    [24] MALINKIEWICZ O, YELLA A, LEE Y H, et al. Perovskite solar cells employing organic charge-transport layers[J]. Nature Photonics, 2014, 8(2): 128-132. doi: 10.1038/nphoton.2013.341
    [25] KIM Y C, YANG T Y, JEON N J, et al. Engineering interface structures between lead halide perovskite and copper phthalocyanine for efficient and stable perovskite solar cells[J]. Energy Environ. Sci., 2017, 10(10): 2109-2116. doi: 10.1039/C7EE01931A
    [26] TORABI N, RAHNAMANIC A, AMROLLAHI H, et al. Performance enhancement of perovskite solar cell by controlling deposition temperature of copper phthalocyanine as a dopant-free hole transporting layer[J]. Organic Electronics, 2017, 48: 211-216. doi: 10.1016/j.orgel.2017.06.007
    [27] HAN J, TU Y, LIU Z, et al. Efficient and stable inverted planar perovskite solar cells using dopant-free CuPc as hole transport layer[J]. Electrochimica Acta, 2018, 273: 273-281. doi: 10.1016/j.electacta.2018.04.055
    [28] HU H, WONG K, KOLLEK T, et al. Highly Efficient Reproducible Perovskite Solar Cells Prepared by Low-Temperature Processing[J]. Molecules, 2016, 21(4): 542. doi: 10.3390/molecules21040542
    [29] SAID A A, AYDIN E, UGUR E, et al. Sublimed C60 for efficient and repeatable perovskite-based solar cells[J]. Nature Communications, 2024, 15(1): 708. doi: 10.1038/s41467-024-44974-0
    [30] BURGELMAN M, NOLLET P, DEGRAVE S. Modelling polycrystalline semiconductor solar cells[J]. Thin Solid Films, 2000, 361-362: 527-532. doi: 10.1016/S0040-6090(99)00825-1
    [31] BASAK A, SINGH U P. Numerical modelling and analysis of earth abundant Sb2S3 and Sb2Se3 based solar cells using SCAPS-1D[J]. Solar Energy Materials and Solar Cells, 2021, 230: 111184. doi: 10.1016/j.solmat.2021.111184
    [32] PINDOLIA G, PANDYA J, SHINDE S, et al. Fluorinated copper phthalocyanine as an electron transport material in perovskite solar cell[J]. International Journal of Energy Research, 2022, 46(11): 15127-15142. doi: 10.1002/er.8211
    [33] AHMAD K, KHAN M Q, KHAN R A, et al. Numerical simulation and fabrication of Pb-free perovskite solar cells (FTO/TiO2/Cs3Bi2I9/spiro-MeOTAD/Au)[J]. Optical Materials, 2022, 128: 112458. doi: 10.1016/j.optmat.2022.112458
    [34] QIRONG Z, BAO Z, YONGMAO H, et al. A study on numerical simulation optimization of perovskite solar cell based on CuI and C60[J]. Materials Research Express, 2022, 9(3): 036401. doi: 10.1088/2053-1591/ac5a34
    [35] DING J, ZHANG T, MEI H, et al. Effects of Negative Bias Voltage and Ratio of Nitrogen and Argon on the Structure and Properties of NbN Coatings Deposited by HiPIMS Deposition System[J]. Coatings, 2017, 8(1): 10. doi: 10.3390/coatings8010010
    [36] SERPONE N, LAWLESS D, KHAIRUTDINOV R. Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor?[J]. The Journal of Physical Chemistry, 1995, 99(45): 16646-16654. doi: 10.1021/j100045a026
    [37] HONG K H, KIM J, DEBBICHI L, et al. Band Gap Engineering of Cs3Bi2I9 Perovskites with Trivalent Atoms Using a Dual Metal Cation[J]. The Journal of Physical Chemistry C, 2017, 121(1): 969-974. doi: 10.1021/acs.jpcc.6b12426
    [38] DEVASIA S, SHAJI S, AVELLANEDA D A, et al. In situ crystallization of 0D perovskite derivative Cs3Bi2I9 thin films via ultrasonic spray[J]. Journal of Alloys and Compounds, 2022, 893: 162294. doi: 10.1016/j.jallcom.2021.162294
    [39] TEWARI N, SHIVARUDRAIAH S B, HALPERT J E. Photorechargeable Lead-Free Perovskite Lithium-Ion Batteries Using Hexagonal Cs3Bi2I9 Nanosheets[J]. Nano Letters, 2021, 21(13): 5578-5585. doi: 10.1021/acs.nanolett.1c01000
    [40] ALI R F, ANDREU I, GATES B D. Green solvent assisted synthesis of cesium bismuth halide perovskite nanocrystals and the influences of slow and fast anion exchange rates[J]. Nanoscale Advances, 2019, 1(11): 4442-4449. doi: 10.1039/C9NA00586B
    [41] DRAGUTA S, THAKUR S, MOROZOV Y V, et al. Spatially Non-uniform Trap State Densities in Solution-Processed Hybrid Perovskite Thin Films[J]. The Journal of Physical Chemistry Letters, 2016, 7(4): 715-721. doi: 10.1021/acs.jpclett.5b02888
    [42] BABAEV A A, SOKOLOVA A V, CHEREVKOV S A, et al. Beyond Charge Transfer: The Impact of Auger Recombination and FRET on PL Quenching in an rGO-QDs System[J]. Nanomaterials, 2021, 11(6): 1623. doi: 10.3390/nano11061623
    [43] ZHANG Y, LIU X, LI P, et al. Dopamine-crosslinked TiO2/perovskite layer for efficient and photostable perovskite solar cells under full spectral continuous illumination[J]. Nano Energy, 2019, 56: 733-740. doi: 10.1016/j.nanoen.2018.11.068
    [44] ISHII H, SUGIYAMA K, ITO E, et al. Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces[J]. Advanced Materials, 1999, 11(8): 605-625. doi: 10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q
    [45] LI X, CHEN Y, SANG J, et al. CuPc/C60 bulk heterojunction photovoltaic cells with evidence of phase segregation[J]. Organic Electronics, 2013, 14(1): 250-254. doi: 10.1016/j.orgel.2012.10.041
    [46] WU Z, YANG Z, XUE K, et al. Performance enhancement of single layer organic light-emitting diodes using chlorinated indium tin oxide as the anode[J]. RSC Advances, 2018, 8(20): 11255-11261. doi: 10.1039/C7RA13355C
    [47] KUMARI P, PUNIA U, SHARMA D, et al. Enhanced Photovoltaic Performance of PEDOT: PSS/Si Heterojunction Solar Cell with ZnO BSF Layer: A Simulation Study using SCAPS-1D[J]. Silicon, 2023, 15(5): 2099-2112. doi: 10.1007/s12633-022-02163-y
    [48] YUAN J, BAO H, LIU H, et al. Mixed solvent atmosphere induces the surface termination state transition of perovskite to achieve matched energy level alignment[J]. Chemical Engineering Journal, 2021, 424: 130508. doi: 10.1016/j.cej.2021.130508
    [49] 束倩文, 李一宵, 冯莱. 倒置结构全无机钙钛矿太阳能电池的界面层研究进展[J]. 复合材料学报, 2022, 39(5): 1859-1869.

    SHU Qianwen, LI Yixiao, FENG Lai. Research progress on the interface layer of all-inorganic perovskite solar cells with inverted structure[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1859-1869(in Chinese).
    [50] 周瑾璟, 钟敏. 铅卤钙钛矿太阳能电池界面工程的近期进展[J]. 复合材料学报, 2022, 39(5): 1937-1955.

    ZHOU Jinjing, ZHONG Min. Recent progress in interface engineering of lead halide perovskite solar cells[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1937-1955(in Chinese).
    [51] HOSSAIN M K, RUBEL M H K, TOKI G F I, et al. Effect of various electron and hole transport layers on the performance of CsPbI3-based perovskite solar cells: A numerical investigation in DFT, SCAPS-1D, and wxAMPS frameworks[J].
    [52] 鲍程鹏, 周亚杰, 董岚, 等. PEDOT: PSS及其纳米复合材料热电性质的研究进展[J]. 复合材料学报, 2023, 40(2): 649-664.

    BAO Chengpeng, ZHOU Yajie, DONG Lan, et al. Research progress on thermoelectric properties of PEDOT: PSS and its nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 649-664(in Chinese).
    [53] 孙北, 郑申申, 迟文晖, 等. CuxO用于调控全无机碳基CsPbI2Br钙钛矿太阳能电池的界面性能[J]. 复合材料学报, 2023, 40(5): 2818-2826.

    SUN Bei, ZHENG Shenshen, CHI Wenhui, et al. CuxO is used to regulate the interfacial properties of all-inorganic carbon-based CsPbI2Br perovskite solar cells[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2818-2826(in Chinese).
  • 加载中
计量
  • 文章访问数:  96
  • HTML全文浏览量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-08
  • 修回日期:  2024-05-08
  • 录用日期:  2024-05-18
  • 网络出版日期:  2024-06-18

目录

    /

    返回文章
    返回