留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涂层初始缺陷诱导的C/SiC材料氧化损伤行为预测

孟繁夫 于明星 谭志勇 王一凡 张宏宇

孟繁夫, 于明星, 谭志勇, 等. 涂层初始缺陷诱导的C/SiC材料氧化损伤行为预测[J]. 复合材料学报, 2022, 41(0): 1-10
引用本文: 孟繁夫, 于明星, 谭志勇, 等. 涂层初始缺陷诱导的C/SiC材料氧化损伤行为预测[J]. 复合材料学报, 2022, 41(0): 1-10
Fanfu MENG, Mingxing YU, Zhiyong TAN, Yifan WANG, Hongyu ZHANG. Prediction for oxidation and damage behavior of C/SiC composites induced by initial coating defects[J]. Acta Materiae Compositae Sinica.
Citation: Fanfu MENG, Mingxing YU, Zhiyong TAN, Yifan WANG, Hongyu ZHANG. Prediction for oxidation and damage behavior of C/SiC composites induced by initial coating defects[J]. Acta Materiae Compositae Sinica.

涂层初始缺陷诱导的C/SiC材料氧化损伤行为预测

基金项目: 国家自然科学基金(U20 B2002); 国防技术基础科研项目(JSZL2019203 B003; 2021-JCJQ-ZD-054-11)
详细信息
    通讯作者:

    于明星, 博士, 研究员, 主要从事飞行器总体设计 E-mail: ymxchyh@qq.com

  • 中图分类号: TB332;V414.8

Prediction for oxidation and damage behavior of C/SiC composites induced by initial coating defects

Funds: National Natural Science Foundation of China (U20 B2002); Basic Scientific Research Program of National Defense Technology (JSZL2019203 B003; 2021-JCJQ-ZD-054-11)
  • 摘要: C/SiC复合材料因其优异的力学性能和耐高温性能而在航空航天领域得到广泛应用。但由于纤维与基体间的热失配以及加工工艺的局限性,材料表面的抗氧化涂层缺陷为氧化性气体向材料内部扩散提供了通道,导致碳纤维发生氧化损伤,显著降低材料的力学性能或引起结构破坏。本文根据C/SiC材料无应力氧化实验结果,依据材料的氧化状态划分不同的空间区域,基于700℃-900℃条件下扩散控制型的氧化反应机制,提出了基于氧化反应界面演化的氧化损伤形貌和剩余弹性性能的预测方法,建立了包含表面涂层、纤维束铺层结构和SiC基体的材料细观模型,通过数值仿真研究了不同几何特征、空间分布的涂层缺陷对损伤形貌和剩余模量的影响规律,实现了同一统计尺度下不同类型涂层缺陷对材料性能影响的对比分析。基于氧化反应界面演化的预测方法适用于大尺度、跨铺层的细观分析模型,可有效表征涂层缺陷诱导的材料氧化损伤行为。材料发生氧化损伤引起的质量损失与模量衰减规律具有一致性,且二者均与缺陷的具体形状无关,均可用于材料氧化程度的评价。相同分布尺度下,开裂型涂层缺陷的特征尺寸远大于剥落型缺陷,前者诱导的被氧化区域内部应力集中区域范围显著大于后者,更易造成材料发生损伤,对结构部件的承载能力具有更大的危害性,因此评估热结构部件性能需重点关注开裂型缺陷的数量、分布以及几何尺寸。材料拉伸模量-时间和质量-时间曲线开裂取向角对拉伸模量和应力集中系数的影响

     

  • 图  1  平纹编织C/SiC材料试件

    Figure  1.  Plain woven C/SiC composite specimen

    图  2  C/SiC材料试件表面涂层形貌SEM图像

    Figure  2.  SEM image of coating topography on C/SiC specimen

    图  3  C/SiC材料试件涂层缺陷统计结果

    Figure  3.  Statistics of coating defects on C/SiC specimen

    图  4  C/SiC材料试件氧化形貌SEM图像

    Figure  4.  Oxidation topography SEM image of C/SiC specimen

    图  5  实验后C/SiC试件内部区域EDS分析结果

    Figure  5.  EDS results of the inner section of C/SiC specimen after experiment

    图  6  C/SiC材料氧化损伤演化模式示意图

    Figure  6.  Oxidation damage evolution mode of C/SiC specimen

    图  7  含平纹编织结构的C/SiC材料TexGen模型

    Figure  7.  C/SiC composite TexGen model with plain-woven structures

    图  8  含涂层缺陷的C/SiC材料有限元模型组分划分

    Figure  8.  Components of FEM models of C/SiC specimen with initial coating defects

    图  9  C/SiC材料有限元模型涂层缺陷位置

    Figure  9.  Positions of coating defects in C/SiC specimen FEM models

    图  10  纤维束氧化损伤形貌

    Figure  10.  Oxidation topography of fiber

    图  11  有限元结果与SEM观测结果对比

    Figure  11.  Comparison of FEM results and SEM results

    图  12  氧化6 h后C/SiC控制体ΩC和ΩS拉伸应力云图

    Figure  12.  Tensile stress of C/SiC control volumes ΩC and ΩS after 6 h-oxidation

    图  13  ΩC拉伸模量-时间和质量-时间曲线

    Figure  13.  Tensile modulus-time and weight-time curves of ΩC

    图  14  取向角对ΩC拉伸模量和应力集中系数的影响

    Figure  14.  Effect of the orientation angle on tensile modulus and stress concentration factor of ΩC

    图  15  离心率对ΩS拉伸模量和应力集中系数的影响

    Figure  15.  Effect of the eccentricity on tensile modulus and stress concentration factor of ΩS

    表  1  平纹编织C/SiC材料各组分力学性能参数[26]

    Table  1.   Mechanical properties of the plain-woven C/SiC component materials[26]

    PropertyFiberMatrix
    E1/GPa 200.154 181.237
    E2/GPa 45.862 181.237
    G12/GPa 25.957 35.217
    G23/GPa 16.865 35.217
    ν12 0.234 0.15
    Volume fraction/% 42 48
    Notes: E1 and E2—axial and radial tensile modulus; G12 and G23—Transverse and longitudinal shear modulus; ν12—Transverse Poisson ratio.
    下载: 导出CSV
  • [1] 梁伟, 金华, 孟松鹤, 等. 高超声速飞行器新型热防护机制研究进展[J]. 宇航学报, 2021, 42(4):409-424. doi: 10.3873/j.issn.1000-1328.2021.04.002

    LIANG Wei, JIN Hua, MENG Songhe, et al. Research progress on new thermal protection mecha-nism of hypersonic vehicles[J]. Journal of Astro-nautics,2021,42(4):409-424(in Chinese). doi: 10.3873/j.issn.1000-1328.2021.04.002
    [2] ZHU Y, CHENG L F, MA B S, et al. Effect of CVD ZrB2 coating thickness on anti-ablation performance of C/SiC composites[J]. Ceramics International,2018,44:8166-8175. doi: 10.1016/j.ceramint.2018.01.264
    [3] XIANG Y, CAO F, PENG Z H, et al. Evolution of micro-structure and mechanical properties of PIP-C/SiC composites after high-temperature oxidation [J/OL]. Journal of Asian Ceramic Societies, 2017, http://dx.doi.org/10.1016/j.jascer.2017.07.001.
    [4] MEI H, TAN Y F, PENG C, et al. Simplified approach to study oxidative damage of C/SiC composites induced from notch defects[J]. Ceramics International,2019(45):22464-22470.
    [5] 李建章, 张立同, 成来飞, 等. 高温氧化气氛下3 D C/SiC质量变化率与剩余强度的相关性[J]. 复合材料学报, 2007, 24(4):101-105. doi: 10.3321/j.issn:1000-3851.2007.04.018

    LI Jianzhang, ZHANG Litong, CHENG Laifei, et al. Relationship between mass variation and residual strength change with temperature on 3 D C/SiC composites in oxidizing atmosphere[J]. Acta Materiae Compositae Sinica,2007,24(4):101-105(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.04.018
    [6] 孙志刚, 王振剑, 宋迎东. 无应力氧化下C/SiC复合材料弹性性能模拟及验证[J]. 复合材料学报, 2013, 30(1):172-179. doi: 10.13801/j.cnki.fhclxb.2013.01.035

    SUN Zhigang, WANG Zhenjian, SONG Yingdong. Varification and prediction of elastic modulus of C/SiC composites under non-stress oxidation[J]. Acta Materiae Compositae Sinica,2013,30(1):172-179(in Chinese). doi: 10.13801/j.cnki.fhclxb.2013.01.035
    [7] 王德文, 曹旭, 唐伟, 等. 碳/碳-碳化硅复合材料制备及性能研究[J]. 真空科学与技术学报, 2019, 39(6):508-512. doi: 10.13922/j.cnki.cjovst.2019.06.11

    WANG Dewen, CAO Xu, TANG Wei, et al. Synthesis and ablation resistance of C/C-SiC composite material: An experimental study[J]. Chinese Journal of Vacuum Science and Technology,2019,39(6):508-512(in Chinese). doi: 10.13922/j.cnki.cjovst.2019.06.11
    [8] 周述光, 曾磊, 国义军, 等. 碳/碳化硅复合材料静止环境下氧化行为模拟[J]. 气体物理, 2021, 6(4):29-36. doi: 10.19527/j.cnki.2096-1642.0909

    ZHOU Shuguang, ZENG Lei, GUO Yijun, et al. Simulation of C/SiC composite oxidation behavior in static environment[J]. Physics of Gases,2021,6(4):29-36(in Chinese). doi: 10.19527/j.cnki.2096-1642.0909
    [9] 张红军, 康宏琳. C/SiC材料主被动氧化烧蚀机理及计算方法研究[J]. 宇航学报, 2019, 40(2):223-230. doi: 10.3873/j.issn.1000-1328.2019.02.012

    ZHANG Hongjun, KANG Honglin. Investigation on thermochemical ablation model for active /passive oxidation transition mechanism of C/SiC composite[J]. Journal of Astronautics,2019,40(2):223-230(in Chinese). doi: 10.3873/j.issn.1000-1328.2019.02.012
    [10] CHEN P, NIU X M, CHEN X H, et al. Modeling the failure time and residual strength of C/SiC composites under stress-oxidation environment[J]. Transactions of the Indian Ceramic Society,2020,79(4):212-220. doi: 10.1080/0371750X.2020.1808078
    [11] LUAN X G, WANG L, ZOU Y, et al. Oxidation behavior of C/SiC-SiBCN composites at high temperature[J]. Journal of the European Ceramic Society,2019(39):3003-3012.
    [12] 赵雨浓. 先进热结构材料高温氧化模型及热-力-氧耦合行为研究[D]. 北京: 北京大学, 2020.

    ZHAO Yunong. High-temperature oxidation models and thermo-mechanical-oxygenic cou-pling behavior studies for advanced thermo-structure materials [D]. Beijing: Peking Univer-sity, 2020(in Chinese).
    [13] FAN X Z, HUANG W Z, MAO W G, et al. Preparation and characterization of monolayer oxidation resistant coating on C/SiC composites[J]. Ceramics International,2022(48):23731-23739.
    [14] 曹素, 刘永胜, 左新章, 等. 涂敷含硼硅玻璃SiC涂层的C/SiC复合材料空气氧化行为[J]. 复合材料学报, 2011, 28(2):142-148. doi: 10.13801/j.cnki.fhclxb.2011.02.034

    CAO Su, LIU Yongsheng, ZUO Xinzhang, et al. Oxidation behaviors of C/SiC composites coated with SiC coatings containing borosilicate glass[J]. Acta Materiae Compositae Sinica,2011,28(2):142-148(in Chinese). doi: 10.13801/j.cnki.fhclxb.2011.02.034
    [15] 马正青, 曾波伟. C/SiC复合材料表面抗氧化涂层的制备与性能表征[J]. 矿冶工程, 2017, 37(2):121-124. doi: 10.3969/j.issn.0253-6099.2017.02.030

    MA Zhengqing, ZENG Bowei. Preparation and characterization of anti-oxidation coating on C/SiC composite surface[J]. Mining and Metallurgical Engineering,2017,37(2):121-124(in Chinese). doi: 10.3969/j.issn.0253-6099.2017.02.030
    [16] 周帆. C/C-SiC复合材料高温防护涂层的制备及其氧化行为的研究[D]. 长沙: 国防科技大学, 2016.

    ZHOU Fan. Preparation and oxidation behavior of C/C-SiC composites coated with high-temperature protective coatings [D]. Changsha: National University of Defense Technology, 2016 (in Chinese).
    [17] XIAO J, ZHANG H Y, GONG S K, et al. High-temperature oxidation resistance of Si-coated C/SiC composites[J]. Rare Metals, 2019. DOI: 10.1007/s12598-019-01209-2.
    [18] Dong X L, Fang X F, Feng X, et al. Defussion and stress coupling effect during oxidation at high temperature[J]. American Ceramic Society,2013,96(1):44-46. doi: 10.1111/jace.12105
    [19] 王芙愿, 王毅, 杨晓辉, 等. C/SiC复合材料在1700℃下氧化机制研究[J]. 火箭推进, 2017, 43(6):82-87. doi: 10.3969/j.issn.1672-9374.2017.06.013

    WANG Fuyuan, WANG Yi, YANG Xiaohui, et al. High-temperature oxidation of C/SiC composites at 1700℃[J]. Journal of Rocket Propulsion,2017,43(6):82-87(in Chinese). doi: 10.3969/j.issn.1672-9374.2017.06.013
    [20] 谭志勇, 王捷冰, 张毅, 等. C/SiC材料在模拟空天往返条件下的可重复使用性能评估[J]. 宇航学报, 2021, 42(12):1590-1599. doi: 10.3873/j.issn.1000-1328.2021.12.012

    TAN Zhiyong, WANG Jiebing, ZHANG Yi, et al. Assessment on repeatable mechanical character of C/SiC material under the condition of simulated space shuttle[J]. Journal of Astronautics,2021,42(12):1590-1599(in Chinese). doi: 10.3873/j.issn.1000-1328.2021.12.012
    [21] GOULMY J P, CATY O, REBILLAT F, Characterization of the oxidation of C/C/SiC composites by Xray microtomography[J/OL]. Journal of the European Ceramic Society, https://doi.org/10.1016/j.jeurceramsoc.2020.06.042.
    [22] 刘宝瑞, 李尧, 侯传涛, 等. 陶瓷基复合材料氧化行为与剩余强度数值分析[J]. 强度与环境, 2021, 48(6):1-8. doi: 10.19447/j.cnki.11-1773/v.2021.06.001

    LIU Baorui, LI Yao, HOU Chuantao, et al. Numerical analysis method of oxidation behavior and residual strength for ceramic matrix composite[J]. Structure and Environment Engineering,2021,48(6):1-8(in Chinese). doi: 10.19447/j.cnki.11-1773/v.2021.06.001
    [23] 李锦涛, 王波, 杨扬, 等. 考虑氧化损伤的陶瓷基复合材料弹性模量多尺度预测模型[J]. 复合材料学报, 2021, 38(10):3432-3442. doi: 10.13801/j.cnki.fhclxb.20210629.002

    LI Jintao, WANG Bo, YANG Yang, et al. A multi-scale prediction model of elastic modulus for ceramic matrix composites considering oxidation damage[J]. Acta Materiae Compositae Sinica,2021,38(10):3432-3442(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210629.002
    [24] 相华, 成来飞, 魏玺, 等. 基于因素分析的C/SiC复合材料氧化动力学模拟[J]. 硅酸盐学报, 2004, 32(11):1335-1340. doi: 10.3321/j.issn:0454-5648.2004.11.004

    XIANG Hua, CHENG Laifei, WEI Xi, et al. Modelling of oxidation kinetics of C/SiC composites based on factorization method[J]. Journal of the Chinese Ceramic Society,2004,32(11):1335-1340(in Chinese). doi: 10.3321/j.issn:0454-5648.2004.11.004
    [25] 糜利栋, 姜汉桥, 李俊键, 等. 基于有限元分析的页岩气扩散数值模拟[J]. 2014, 14(21): 70-75.

    MI Lidong, JIANG Hanqiao, LI Junjian, et al. Shale gas diffusion simulations in porous organic kerogen media using finite element analyses [J]. Science Technology and Engineering, 2014, 14(21): 70-75. (in Chinese).
    [26] 钱逸星, 卢子兴, 杨振宇. 含缺陷缎纹编织复合材料力学性能的多尺度模拟// 中国力学大会论文集(CCTAM2019)[J]. 杭州, 2019:2262-2275.

    QIAN Yixing, LU Zixing, YANG Zhenyu. Multi-scale simulation of mechanical properties of satin braid composites with defects// Chinese Congress of Theoretical and Applied Mechanics[J]. Hangzhou,2019:2262-2275(in Chinese).
  • 加载中
计量
  • 文章访问数:  195
  • HTML全文浏览量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-25
  • 修回日期:  2022-12-12
  • 录用日期:  2022-12-19
  • 网络出版日期:  2023-01-03

目录

    /

    返回文章
    返回