留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高掺量硅灰石纤维对偏高岭土基地聚物性能和微结构的影响

张全超 黄大建 张小鹏 强小虎 路旭斌 林龙沅

张全超, 黄大建, 张小鹏, 等. 高掺量硅灰石纤维对偏高岭土基地聚物性能和微结构的影响[J]. 复合材料学报, 2023, 40(8): 4699-4707
引用本文: 张全超, 黄大建, 张小鹏, 等. 高掺量硅灰石纤维对偏高岭土基地聚物性能和微结构的影响[J]. 复合材料学报, 2023, 40(8): 4699-4707
ZHANG Quanchao, HUANG Dajian, ZHANG Xiaopeng, QIANG Xiaohu, LU Xubin, LIN Longyuan. Effect of high wollastonite fiber incorporation on metakaolin base geopolymers' properties and microstructure[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4699-4707.
Citation: ZHANG Quanchao, HUANG Dajian, ZHANG Xiaopeng, QIANG Xiaohu, LU Xubin, LIN Longyuan. Effect of high wollastonite fiber incorporation on metakaolin base geopolymers' properties and microstructure[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4699-4707.

高掺量硅灰石纤维对偏高岭土基地聚物性能和微结构的影响

基金项目: 甘肃省自然科学基金 (20JR5RA426)
详细信息
    通讯作者:

    黄大建,博士,副教授,硕士生导师,研究方向为建筑材料、地质聚合物、生物材料、矿物材料 E-mail: huangdj2015@yeah.net

  • 中图分类号: TB321

Effect of high wollastonite fiber incorporation on metakaolin base geopolymers' properties and microstructure

Funds: National Natural Science Foundation of Gansu Province(20 JR5 RA426)
  • 摘要: 地聚物以其在绿色低碳、力学特性、耐腐蚀和耐高温等方面比较突出,而且具有早高强和长寿命等优越性能,被认为是绿色环保的水泥替代品。在新型建筑材料、固废处理等领域吸引了越来越多的研究。相较于粉煤灰地聚物而言,偏高岭土地聚物的干缩率较大,并且通过掺杂其他矿物原料改善地聚物的收缩开裂相对乏力,严重阻碍了它的实际应用。本文通过将高达40wt%的硅灰石纤维替代偏高岭土制备出一系列地聚物试件,它不仅可以极大的优化地聚物孔隙结构,促进凝胶的致密化形成了更紧凑的N-A-S-H凝胶相,限制了水分从孔隙网络中蒸发,改善干缩开裂情况,同时对地聚物力学性能有较大改善,相较于偏高岭土原样力学性能最大提升36%。本文创新点在于使用超细硅灰石纤维可以提高地聚物的力学性能;硅灰石纤维大剂量的加入可以有效遏制宏观裂缝的产生;WS小剂量的添加会促进地聚过程,大剂量下对地聚物孔隙结构有劣化影响。硅灰石纤维的加入对地聚物(a)孔隙结构和(b)干缩开裂的对比

     

  • 图  1  硅灰石(WS)的扫描电镜照片

    Figure  1.  Scanning electron microscopy images of wollastonite (WS)

    图  2  地聚物样品的XRD图谱

    Figure  2.  XRD patterns of geopolymer samples

    图  3  不同掺杂比例的地聚物的FT-IR图谱

    Figure  3.  FT-IR patterns of geopolymers with different doping ratios

    图  4  28天龄期的地聚物试样的宏观裂缝

    Figure  4.  Macroscopic cracks in geopolymer samples at 28 days of age

    图  5  28天龄期的地聚物试样的SEM图像

    Figure  5.  SEM images of geopolymer samples kept for 28 days

    图  6  地聚物试件的LF-NMR T2弛豫时间分布曲线

    Figure  6.  LF-NMR T2 relaxation time distribution curves of geopolymer samples

    图  7  地聚物试件的热重分析

    Figure  7.  Thermogravimetric analyses of geopolymer samples

    图  8  地聚物试件的TG和DSC曲线

    Figure  8.  TG and DSC curves of geopolymer samples

    图  9  3天、7天和28天固化的地聚物样品的抗压强度

    Figure  9.  Compressive strengths of 3-days, 7-days and 28-days cured geopolymer samples

    表  1  原料的主要成分及含量

    Table  1.   Main compositions and content of materials (wt%)

    MaterialSiO2Al2O3Fe2O3MgOCaO
    Metakaolin (MK)47.8343.543.5500.68
    Slag (GGBFS)31.2613.631.136.3440.20
    Wollastonite (WS)41.840.320.311.7754.89
    下载: 导出CSV

    表  2  原料的混合比例

    Table  2.   Geopolymer mixture proportion

    No.MK/gGGBFS/gWS/gAA/g
    M10000100
    M9-G90100100
    W/M8-G801010100
    W2/M7-G701020100
    W3/M6-G601030100
    W4/M5-G501040100
    MK and GGBFS were used as the matrix phase and WS as the reinforcing phase. They are denoted by M, G and W in the specimen numbering. As an example, 100 g AA, 50 g MK, 10 g GGBFS and 40 g WS are required to prepare W4/M5-G.
    下载: 导出CSV

    表  3  LF-NMR测得的地聚物孔隙度

    Table  3.   LF-NMR porosity of geopolymer samples

    No.MM9-GW/M8-GW2/M7-GW3/M6-GW4/M5-G
    Porosity/%31.0527.9127.292828.2928.48
    下载: 导出CSV
  • [1] 张超, 邓智聪, 马蕾, 等. 3 D打印混凝土研究进展及其应用[J]. 硅酸盐通报, 2021, 40(6):1769-1795.

    ZHANG C, DENG Z C, MA L, et al. Research Progress and Application of 3 D Printing Concrete[J]. Bulletin Of The Chinese Ceramic Society,2021,40(6):1769-1795(in Chinese).
    [2] 孙杰, 陈国珍, 吕康琪, 等. 橡胶地聚物混凝土力学性能及阻尼特性试验研究[J]. 复合材料学报, 2022, 39(11):5321-5332. doi: 10.13801/j.cnki.fhclxb.20211201.002

    SUN J, CHEN G Z, LV K Q, et al. Experimental study on mechanical properties and damping characteristics of rubber geopolymer concrete[J]. Acta Materiae Compositae Sinica,2022,39(11):5321-5332(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211201.002
    [3] 张佳康, 苏岳威, 姚耿, 等. 地聚物泡沫混凝土的研究与应用[J]. 硅酸盐通报, 2020, 39(5):1371-1376.

    ZHANG J K, SU Y W, YAO G, et al. Research and Application of Geopolymer Foamed Concrete[J]. Bulletin Of The Chinese Ceramic Society,2020,39(5):1371-1376(in Chinese).
    [4] 金宇, 冯伟鹏, 董志君, 等. 辅助胶凝材料玻璃体结构与胶凝活性的研究进展[J]. 材料导报, 2021, 35(3):3016-3020. doi: 10.11896/cldb.19100052

    JIN Y, FENG W P, DONG Z P, et al. Research Progress on the Glass Structure of Supplementary Cementitious Materials with Relation to Their Hydraulic Reactivity[J]. Materials Reports,2021,35(3):3016-3020(in Chinese). doi: 10.11896/cldb.19100052
    [5] 乔宏霞, 路承功, 师莹莹, 等. 多因素下地铁混凝土耐久性试验[J]. 重庆大学学报, 2018, 41(3):32-41. doi: 10.11835/j.issn.1000-582X.2018.03.004

    QIAO H X, LU C G, SHI Y Y, et al. Experiments on the dura-bility of subway concrete under multi-factors[J]. Journal of Chongqing University,2018,41(3):32-41(in Chinese). doi: 10.11835/j.issn.1000-582X.2018.03.004
    [6] 葛洁雅, 朱红光, 李宗徽, 等. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(z2):218-223.

    GE J Y, ZHU H G, LI Z H, et al. Study on Mechanics and Durability of Coal Gangue Coarse Aggregate-Geopolymer Concrete[J]. Materials Re-ports,2021,35(z2):218-223(in Chinese).
    [7] 季韬, 梁咏宁, 詹建伟, 等. MgO和CaO对碱矿渣混凝土抗碳化性能的影响[J]. 硅酸盐通报, 2021, 40(8):2564-2573.

    ZHENG H, LIANG Y G, ZHAN J W, et al. Effects of MgO and CaO on the Carbonization Resistance of Alkali-Activated Slag Concrete[J]. Bulletin of The Chinese Ceramic Socity,2021,40(8):2564-2573(in Chinese).
    [8] 杨世玉, 赵人达, 曾宪帅, 等. 用自然纤维增强地聚物材料: 综述[J]. 材料导报, 2021, 35(7):7107-7113. doi: 10.11896/cldb.19100048

    YANG S Y, ZHAO R D, ZENG X S, et al. Reinforced Geopolymer Materials with Natural Fibers: A Review[J]. Materials Reports,2021,35(7):7107-7113(in Chinese). doi: 10.11896/cldb.19100048
    [9] RANJBAR N, MEHRALI M, MEHRALI M, et al. High tensile strength fly ash based geopolymer composite using copper coated micro steel fiber[J]. Construction and Building Materials,2016,112:629-638. doi: 10.1016/j.conbuildmat.2016.02.228
    [10] ZHANG B, FENG Y, XIE J, et al. Effects of fibres on ultra-lightweight high strength concrete: Dynamic behaviour and microstructures[J]. Cement and Concrete Composites,2022,128:104417-104438. doi: 10.1016/j.cemconcomp.2022.104417
    [11] WANG J, XIE J, HE J, et al. Combined use of silica fume and steel fibre to improve fracture properties of recycled aggregate concrete exposed to elevated temperature[J]. Journal of Material Cycles and Waste Management,2020,22(3):862-877. doi: 10.1007/s10163-020-00990-y
    [12] SU Z, GUO L, ZHANG Z, et al. Influence of different fibers on properties of thermal insulation composites based on geopolymer blended with glazed hollow bead[J]. Construction and Building Materials,2019,203:525-540. doi: 10.1016/j.conbuildmat.2019.01.121
    [13] PUNURAI W, KROEHONG W, SAPTAMONGKOL A, et al. Mechanical properties, microstructure and drying shrinkage of hybrid fly ash-basalt fiber geopolymer paste[J]. Construction and Building Materials,2018,186:62-70. doi: 10.1016/j.conbuildmat.2018.07.115
    [14] HE Z, SHEN A, LYU Z, et al. Effect of wollastonite microfibers as cement replacement on the properties of cementitious composites: A review[J]. Construction and Building Materials,2020,261:119920-119933. doi: 10.1016/j.conbuildmat.2020.119920
    [15] LIU K, LONG Y, CHEN L, et al. Mechanisms of autogenous shrinkage for Ultra-High Performance Concrete (UHPC) prepared with pre-wet porous fine aggregate (PFA)[J]. Journal of Building Engineering,2022,54:104622-104642. doi: 10.1016/j.jobe.2022.104622
    [16] YüCEL H E, ÖZ H Ö, GüNEŞ M, et al. Rheological properties, strength characteristics and flexural performances of engineered cementitious composites incorporating synthetic wollastonite microfibers with two different high aspect ratios[J]. Construction and Building Materials,2021,306:124921-124946. doi: 10.1016/j.conbuildmat.2021.124921
    [17] ARCHEZ J, TEXIER-MANDOKI N, BOURBON X, et al. Influence of the wollastonite and glass fibers on geopolymer composites workability and mechanical properties[J]. Construction and Building Materials,2020,257:119511-119521. doi: 10.1016/j.conbuildmat.2020.119511
    [18] GUO L, WU Y, XU F, et al. Sulfate resistance of hybrid fiber reinforced metakaolin geopolymer composites[J]. Composites Part B:Engineering,2020,183:107689-107699. doi: 10.1016/j.compositesb.2019.107689
    [19] 张耀君, 张叶, 韩智超, 等. 地质聚合物原位转化沸石分子筛的研究进展[J]. 材料导报, 2020, 34(23):23033-23041. doi: 10.11896/cldb.19080095

    ZHANG Y J, ZHANG Y, HAN Z C, et al. Research Progresses on In-situ Conversion of Geopolymer into Zeolite[J]. Materials Reports,2020,34(23):23033-23041(in Chinese). doi: 10.11896/cldb.19080095
    [20] LIU J, LI X, LU Y, et al. Effects of Na/Al ratio on mechanical properties and microstructure of red mud-coal metakaolin geopolymer[J]. Construction and Building Materials,2020,263:120653-120663. doi: 10.1016/j.conbuildmat.2020.120653
    [21] PROVIS J L, LUKEY G C, VAN DEVENTER J S J. Do Geopolymers Actually Contain Nanocrystalline Zeolites? A Reexamination of Existing Results[J]. Chemistry of Materials,2005,17(12):3075-3085. doi: 10.1021/cm050230i
    [22] TCHAKOUTé H K, RüSCHER C H, KONG S, et al. Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study[J]. Construction and Building Materials,2016,114:276-289. doi: 10.1016/j.conbuildmat.2016.03.184
    [23] ASSAEDI H, SHAIKH F U A, LOW I M. Characterizations of flax fabric reinforced nanoclay-geopolymer composites[J]. Composites Part B:Engineering,2016,95:412-422. doi: 10.1016/j.compositesb.2016.04.007
    [24] ZHANG S, GONG K, LU J. Novel modification method for inorganic geopolymer by using water soluble organic polymers[J]. Materials Letters,2004,58(7):1292-1296.
    [25] KAZE R C, BELEUK à MOUNGAM L M, FONKWE DJOUKA M L, et al. The corrosion of kaolinite by iron minerals and the effects on geopolymerization[J]. Applied Clay Science,2017,138:48-62. doi: 10.1016/j.clay.2016.12.040
    [26] ZHANG B, FENG Y, XIE J, et al. Rubberized geopolymer concrete: Dependence of mechanical properties and freeze-thaw resistance on replacement ratio of crumb rubber[J]. Construction and Building Materials,2021,310:125248-125262. doi: 10.1016/j.conbuildmat.2021.125248
    [27] GUO H, YUAN P, ZHANG B, et al. Realization of high-percentage addition of fly ash in the materials for the preparation of geopolymer derived from acid-activated metakaolin[J]. Journal of Cleaner Production,2021,285:125430-125440. doi: 10.1016/j.jclepro.2020.125430
    [28] LOUATI S, BAKLOUTI S, SAMET B. Geopolymers Based on Phosphoric Acid and Illito-Kaolinitic Clay[J]. Advances in Materials Science and Engineering,2016,2016:2359759-2359767.
    [29] OZER I, SOYER-UZUN S. Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with different molar Si/Al ratios[J]. Ceramics International,2015,41(8):10192-10198. doi: 10.1016/j.ceramint.2015.04.125
    [30] LECOMTE I, LIéGEOIS M, RULMONT A, et al. Synthesis and characterization of new inorganic polymeric composites based on kaolin or white clay and on ground-granulated blast furnace slag[J]. Journal of Materials Research,2003,18(11):2571-2579. doi: 10.1557/JMR.2003.0360
    [31] TCHAKOUTé H K, RüSCHER C H, KAMSEU E, et al. The influence of gibbsite in kaolin and the formation of berlinite on the properties of metakaolin-phosphate-based geopolymer cements[J]. Materials Chemistry and Physics,2017,199:280-288. doi: 10.1016/j.matchemphys.2017.07.020
    [32] ÁLVAREZ-AYUSO E, QUEROL X, PLANA F, et al. Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes[J]. Journal of Hazardous Materials,2008,154(1):175-183.
    [33] ZULKIFLY K, CHENG-YONG H, YUN-MING L, et al. Effect of phosphate addition on room-temperature-cured fly ash-metakaolin blend geopolymers[J]. Construction and Building Materials,2021,270:121486-121499. doi: 10.1016/j.conbuildmat.2020.121486
    [34] 李浩, 王洪江. 复合外加剂对充填浆体固化前后性能的影响规律[J]. 复合材料学报, 2022, 39(8):3940-3949. doi: 10.13801/j.cnki.fhclxb.20210902.003

    LI H, WANG H J. Influence law of compound admixture on the mechanical properties of filling slurry before and after curing[J]. Acta Materiae Compositae Sinica,2022,39(8):3940-3949(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210902.003
    [35] WANG A, LIU H, HAO X, et al. Geopolymer Synthesis Using Garnet Tailings from Molybdenum Mines[J]. Minerals,2019,9:48-60.
    [36] ARAVIND N, NAGAJOTHI S, ELAVENIL S. Machine learning model for predicting the crack detection and pattern recognition of geopolymer concrete beams[J]. Construction and Building Materials,2021,297:123785-123796. doi: 10.1016/j.conbuildmat.2021.123785
    [37] BONG S H, NEMATOLLAHI B, XIA M, et al. Properties of additively manufactured geopolymer incorporating mineral wollastonite microfibers[J]. Construction and Building Materials,2022,331:127282-127292. doi: 10.1016/j.conbuildmat.2022.127282
    [38] SASANO H, MARUYAMA I. Mechanism of drying-induced change in the physical properties of concrete: A mesoscale simulation study[J]. Cement and Concrete Research,2021,143:106401-106425. doi: 10.1016/j.cemconres.2021.106401
    [39] MARUYAMA I, SAKAMOTO N, MATSUI K, et al. Microstructural changes in white Portland cement paste under the first drying process evaluated by WAXS, SAXS, and USAXS[J]. Cement and Concrete Research,2017,91:24-32. doi: 10.1016/j.cemconres.2016.10.002
    [40] ZHU F L, CHEN M, FENG Q Q. Water distribution within wetted porous fabric exposed to a thermal radiation characterized by low-field nuclear magnetic resonance[J]. Heat and Mass Transfer,2019,55(4):1239-1253. doi: 10.1007/s00231-018-2463-7
    [41] KAZE C R, TCHAKOUTE H K, MBAKOP T T, et al. Synthesis and properties of inorganic polymers (geopolymers) derived from Cameroon-meta-halloysite[J]. Ceramics International,2018,44(15):18499-18508. doi: 10.1016/j.ceramint.2018.07.070
    [42] RIBAS R G, CAMPOS T M B, SCHATKOSKI V M, et al. α-wollastonite crystallization at low temperature[J]. Ceramics International,2020,46(5):6575-6580. doi: 10.1016/j.ceramint.2019.11.143
    [43] WANG J, JIN L, ZHOU Y, et al. Effect of Ca(NO3)2 addition in coal on properties of activated carbon for methane decomposition to hydrogen[J]. Fuel Processing Technology,2018,176:85-90. doi: 10.1016/j.fuproc.2018.03.012
    [44] XIE J, WANG J, RAO R, et al. Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate[J]. Composites Part B:Engineering,2019,164:179-190. doi: 10.1016/j.compositesb.2018.11.067
    [45] 崔潮, 肖斌, 张建仁, 等. 偏高岭土-矿渣基地聚物与花岗岩骨料界面的分布特性及影响因素[J]. 复合材料学报, 2017, 34(11):2605-2613.

    CUI C, XIAO B, ZHANG J R, et al. Distribution and factors of interfacial transition zone between metakaolin-slag-based geopolymer and granite aggregate[J]. Acta Materiae Compositae Sinica,2017,34(11):2605-2613(in Chinese).
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  126
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-31
  • 修回日期:  2022-10-25
  • 录用日期:  2022-11-03
  • 网络出版日期:  2022-11-12
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回