Effect of different dimensions of ZnO on the electrical properties of MMT-SiC/EP micro-nano composites
-
摘要: 具有非线性电导特性的电介质被广泛应用于解决许多领域的高能放电问题(如航天器充电和电机绝缘)。本文通过在含有SiC和蒙脱土(MMT)微纳米复合体系中继续添加零维或一维纳米材料来进一步优化复合材料的非线性电导特性及其他电学性能。通过X射线衍射仪对MMT有机化改性前后的层间距进行了表征;通过扫描电子显微镜对复合材料内部各填料的分散情况以及界面状态进行了表征;通过对复合材料进行电导、击穿和介电频谱测试来研究纳米填料的维度对电学性能的影响规律。实验结果表明,在MMT-SiC/EP复合体系中添加一维四针状氧化锌(T-ZnOw)比零维颗粒状ZnO,可以更加有效增加体系中界面重合率,更加容易在复合材料内部构成良好的载流通路,能够在有效降低复合材料的阈值场强,提高复合材料的电导率和非线性系数,使得复合材料具备优越非线性电导特性的同时,不仅可以保证击穿场强不会太低,还可以降低复合材料的相对介电常数和介质损耗角正切值。Abstract: Nonlinear conductivity dielectric is widely used today to solve high energy discharge problems in many fields (such as spacecraft charging and motor insulation). In this paper, we optimize the nonlinear conductivity properties and other electrical properties of the composites by continuing the addition of zero- or one-dimensional ZnO to the micro-nano composite systems containing micron SiC and montmorillonite (MMT). The layer spacing before and after the organic modification of MMT was characterized by X-ray diffractometry. The dispersion of each filler inside the composite and the interfacial state were characterized by scanning electron microscopy. Conductivity, breakdown, and dielectric spectroscopy tests were performed on the composites to investigate the pattern of influence of the dimensionality of the nanofillers on the electrical properties. The experimental results showed that the addition of one-dimensional four-needle zincoxide (T-ZnOw) was more effective than zero-dimensional granular ZnO in the MMT-SiC/EP composite system. Thus, the same content of T-ZnOw can increase the interfacial recombination rate in the composite system and constitute the conductive pathway more effectively. Improved nonlinear conductivity properties of the composite. Moreover, T-ZnOw also ensures stable breakdown field strength of the composite material and reduces the relative permittivity and dielectric loss angle tangent values.
-
表 1 复合材料试样的编号和配比
Table 1. Numbering and proportioning of composite specimens
Specimen Proportion/g SiC/EP 100/100 MMT-SiC/EP 1/100/100 ZnO-MMT-SiC/EP 9/1/100/100 T-ZnOw-MMT-SiC/EP 9/1/100/100 Note: EP—Epoxy. -
[1] YANG J M, WANG X, ZHAO H, et al. Influence of moisture absorption on the DC conduction and space charge property of MgO/LDPE nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2014,21(4):1957-1964. doi: 10.1109/TDEI.2014.004334 [2] LIU C Y, ZHENG Y, ZHANG B, et al. Review of nonlinear conductivity theory research of modified composite materials[J]. IEEE Access,2019,7:50536-50548. [3] KAWASAKI T, HOSODA S, KIM J, et al. Charge neutralization via arcing on a large solar array in the GEO plasma environment[J]. IEEE Transactions on Plasma Science,2006,34(5):1979-1985. doi: 10.1109/TPS.2006.881932 [4] ROBERTSON J, VARLOW B R. The use of nonlinear permittivity fillers for the purposes of stress grading within cables[C]//IEEE International Conference on Properties & Applications of Dielectric Materials. Ottawa: IEEE, 2003: 1210-1213. [5] DONNELLY K, VARLOW B R. AC conductivity effects of non-linear fillers in electrical insulation[C]//IEEE 2000 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. Victoria: IEEE, 2000: 132-135. [6] HAN B, GUO W, LI Z. Research on the non-linear conductivity characteristics of NANO-SiC silicone rubber composites[J]. Journal of Functional Materials, 2008, 39(9): 1490-1493. [7] CAN-ORTIZ A, LAUDEBAT L, VALDEZ-NAVA Z, et al. Nonlinear electrical conduction in polymer composites for field grading in high-voltage applications: A review[J]. Polymers,2021,13(9):1370. [8] 韩永森, 孙健, 张昕, 等. 微纳米SiC/环氧树脂复合材料的界面和非线性电导特性[J]. 复合材料学报, 2020, 37(7):1562-1570.HAN Yongsen, SUN Jian, ZHANG Xin, et al. Interface and nonlinear conduction characteristics of micro-nano SiC/epoxy composites[J]. Acta Materiae Compositae Sinica,2020,37(7):1562-1570(in Chinese). [9] TAKADA T, HAYASE Y, TANAKA Y, et al. Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(1):152-160. doi: 10.1109/T-DEI.2008.4446746 [10] ZHANG B Y, GAO W Q, CHU P F, et al. Trap-modulated carrier transport tailors the dielectric properties of alumina/epoxy nanocomposites[J]. Journal of Materials Science: Materials in Electronics,2018,29(3):1964-1974. doi: 10.1007/s10854-017-8107-8 [11] DU B X, ZHANG J W, GAO Y. Effects of TiO2 particles on surface charge of epoxy nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2012,19(3):755-762. [12] TIAN F Q, LEI Q Q, WANG X, et al. Investigation of electrical properties of LDPE/ZnO nanocomposite dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2012,19(3):763-769. [13] LI S T, YIN G L, CHEN G, et al. Short-term breakdown and long-term failure in nanodielectrics: A review[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2010,17(5):1523-1535. [14] CASTELLON J, NGUYEN H N, AGNEL S, et al. Electrical properties analysis of micro and nanocomposite epoxy resin materials[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2011,18(3):651-658. [15] RAMU T S, NAGAMANI H N. Alumina and silica based epoxy nano-composites for electrical insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2014,21(1):236-243. [16] TANAKA T, MONTANARI G C, MULHAUPT R. Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2004,11(5):763-784. [17] TANAKA T. Dielectric nanocomposites with insulating properties[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(5):914-928. [18] ROY M, NELSON J K, MACCRONE R K, et al. Polymer nanocomposite dielectrics-the role of the interface[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(4):629-643. [19] SCHMIDT D, SHAH D, GIANNELIS E P. New advances in polymer/layered silicate nanocomposites[J]. Current Opinion in Solid State and Materials Science,2002,6(3):205-212. doi: 10.1016/S1359-0286(02)00049-9 [20] 王乾宝. MMT/SiC/EP微-纳米复合材料介电性能及热学性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2021.WANG Qianbao. Dielectric and thermal properties of MMT/SiC/EP micro/nano composite[D]. Harbin: Harbin University of Science and Technology, 2021(in Chinese). [21] 王雅芸. SiC/ZnO/EP微-纳米复合材料介电性能与热学性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2019.WANG Yayun. Study of dielectric and thermal properties of SiC/ZnO/EP micro-nanocomposites[D]. Harbin: Harbin University of Science and Technology, 2019(in Chinese). [22] DISSADO L A, FOTHERGILL J C, WOLFE S V, et al. Weibull statistics in dielectric breakdown; theoretical basis, applications and implications[J]. IEEE Transactions on Electrical Insulation,1984(3):227-233. [23] 郭宁. 蒙脱土/环氧树脂纳米复合材料结构形态与介电性能机理研究[D]. 哈尔滨: 哈尔滨理工大学, 2014.GUO Ning. Study on the structural morphology and dielectric properties mechanism of montmorillonite/epoxy resin nanocomposites[D]. Harbin: Harbin University of Science and Technology, 2014(in Chinese). [24] SINGHA S, THOMAS M J. Dielectric properties of epoxy-Al2O3 nanocomposite system for packaging applications[J]. IEEE Transactions on Components and Packaging Technologies,2010,33(2):373-385. doi: 10.1109/TCAPT.2009.2033665 [25] TANAKA T, KOZAKO M, FUSE N, et al. Proposal of a multi-core model for polymer nanocomposite dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(4):669-681. doi: 10.1109/TDEI.2005.1511092 [26] TANAKA T. Interpretation of several key phenomena peculiar to nano dielectrics in terms of a multi-core model[C]//2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena. Kansas: IEEE, 2006: 298-301. [27] JIN L I, ZHANG C, DU B, et al. Electrical field simulation of epoxy spacer with nonlinear conductivity for DC GIL[J]. High Voltage Engineering,2020,451:48-53. [28] 吕晓玉. 不同维度无机填料/SiC/EP复合材料的电学特性研究[D]. 哈尔滨: 哈尔滨理工大学, 2022.LV Xiaoyu. Dielectric properties of inorganic fillers/SiC/EP composites with different dimensions[D]. Harbin: Harbin University of Science and Technology, 2022(in Chinese). [29] MONIRUZZAMAN M, WINEY K I. Polymer nanocomposites containing carbon nanotubes[J]. Macromolecules,2006,39(16):5194-5205. doi: 10.1021/ma060733p [30] MUEISO R M, WINEY K I. Electrical properties of polymer nanocomposites containing rod-like nanofilles[J]. Progress in Polymer Science,2015,40:63-84. doi: 10.1016/j.progpolymsci.2014.06.002 [31] XIA Y, YANG P, SUN Y, et al. One-dimensional nanostructures: Synthesis, characterization, and applications[J]. Advanced Materials,2003,15(5):353-389. doi: 10.1002/adma.200390087 [32] 张吴欣, 李志恒, 周梅琳, 等. T-ZnOw/硅橡胶复合材料的非线性电导特性研究[J]. 材料导报, 2020, 34(12):12169-12172, 12177.ZHANG Wuxin, LI Zhiheng, ZHOU Meilin, et al. Investigation on the nonlinear conductance characteristics of silicone rubber composites[J]. Materials Reports,2020,34(12):12169-12172, 12177(in Chinese). [33] VOLCKER O, KOCH H. Closure to discussion of "Insulation coordination for gas-insulatedtransmission lines (GIL)" [J]. IEEE Transactions on Power Delivery,2001,16(4):823-824. [34] POLIZOS G, TUNCER E, SAUERS I, et al. Properties of a nanodielectric cryogenic resin[J]. Applied Physics Letters,2010,96(15):338-586. [35] LIU C Y, CHANG Z T, ZHANG X Q. Preparation and nonlinear conductivity modification of doped ZnO/EP composite materials[C]//IEEE International Conference on the Properties and Applications of Dielectric Materials. Xi'an: IEEE, 2018: 275-278. [36] 谢茜. 不同形状纳米二氧化钛-环氧复合材料的制备及电热性能研究[D]. 西安: 西安交通大学, 2017.XIE Qian. Study on preparation and properties of epoxy resin containing nano-sized titanium dioxide with different shapes[D]. Xi'an: Xi'an Jiaotong University, 2017(in Chinese). [37] ALAPATI S, JOY THOMAS M. Influence of nano-fillers on electrical treeing in epoxy insulation[J]. IET Science, Measurement and Technology,2012,6(1):21-28. doi: 10.1049/iet-smt.2011.0046