留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同维度的ZnO对MMT-SiC/EP微纳米复合材料电学性能的影响

孙家明 郭宁 唐子凡 王玉龙 李丽丽 高俊国

孙家明, 郭宁, 唐子凡, 等. 不同维度的ZnO对MMT-SiC/EP微纳米复合材料电学性能的影响[J]. 复合材料学报, 2023, 40(9): 5035-5045. doi: 10.13801/j.cnki.fhclxb.20221117.001
引用本文: 孙家明, 郭宁, 唐子凡, 等. 不同维度的ZnO对MMT-SiC/EP微纳米复合材料电学性能的影响[J]. 复合材料学报, 2023, 40(9): 5035-5045. doi: 10.13801/j.cnki.fhclxb.20221117.001
SUN Jiaming, GUO Ning, TANG Zifan, et al. Effect of different dimensions of ZnO on the electrical properties of MMT-SiC/EP micro-nano composites[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5035-5045. doi: 10.13801/j.cnki.fhclxb.20221117.001
Citation: SUN Jiaming, GUO Ning, TANG Zifan, et al. Effect of different dimensions of ZnO on the electrical properties of MMT-SiC/EP micro-nano composites[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5035-5045. doi: 10.13801/j.cnki.fhclxb.20221117.001

不同维度的ZnO对MMT-SiC/EP微纳米复合材料电学性能的影响

doi: 10.13801/j.cnki.fhclxb.20221117.001
基金项目: 国家自然科学基金(51577045)
详细信息
    通讯作者:

    高俊国,博士,教授,硕士生导师,研究方向为高压绝缘介电强度及影响机制、阻燃材料阻燃特性、电缆状绝缘态评估与检测 E-mail: gaojunguo@hrbust.edu.cn

  • 中图分类号: TM215.92;TB332

Effect of different dimensions of ZnO on the electrical properties of MMT-SiC/EP micro-nano composites

Funds: National Natural Science Foundation of China (51577045)
  • 摘要: 具有非线性电导特性的电介质被广泛应用于解决许多领域的高能放电问题(如航天器充电和电机绝缘)。本文通过在含有SiC和蒙脱土(MMT)微纳米复合体系中继续添加零维或一维纳米材料来进一步优化复合材料的非线性电导特性及其他电学性能。通过X射线衍射仪对MMT有机化改性前后的层间距进行了表征;通过扫描电子显微镜对复合材料内部各填料的分散情况以及界面状态进行了表征;通过对复合材料进行电导、击穿和介电频谱测试来研究纳米填料的维度对电学性能的影响规律。实验结果表明,在MMT-SiC/EP复合体系中添加一维四针状氧化锌(T-ZnOw)比零维颗粒状ZnO,可以更加有效增加体系中界面重合率,更加容易在复合材料内部构成良好的载流通路,能够在有效降低复合材料的阈值场强,提高复合材料的电导率和非线性系数,使得复合材料具备优越非线性电导特性的同时,不仅可以保证击穿场强不会太低,还可以降低复合材料的相对介电常数和介质损耗角正切值。

     

  • 图  1  试样制备的工艺过程

    Figure  1.  Process of specimen preparation

    MMT—Montmorillonoid; T-ZnOw—One-dimensional four-needle zinc oxide

    图  2  直流体积电导电流测试系统

    Figure  2.  DC volumetric conductivity current test system

    图  3  交流击穿测试系统

    Figure  3.  AC breakdown test system

    图  4  蒙脱土(MMT)有机化处理前后的XRD图谱

    Figure  4.  XRD patterns of montmorillonite (MMT) before and after organic treatment

    图  5  MMT-SiC/EP复合材料断面的SEM图像

    Figure  5.  SEM cross-sectional images of MMT-SiC/EP composite

    图  6  ZnO-MMT-SiC/EP试样的断面SEM图像 (a) 和EDS元素能谱图 ((b), (c))

    Figure  6.  SEM cross-sectional images (a) and EDS elemental mapping ((b), (c)) of ZnO-MMT-SiC/EP specimens

    图  7  T-ZnOw-MMT-SiC/EP试样的断面SEM图像 (a) 和EDS元素能谱图 ((b), (c))

    Figure  7.  SEM cross-sectional images (a) and EDS elemental mapping ((b),(c)) of T-ZnOw-MMT-SiC/EP specimens

    图  8  微纳米复合材料载流子的传输通道示意图

    Figure  8.  Schematic diagram of the carrier transport path of micro-nano composites

    E—Voltage

    图  9  不同类型微纳米复合材料的非线性电导特性

    Figure  9.  Nonlinear conductivity properties of different types of micro-nano composites

    图  10  不同微纳米复合材料击穿场强的Weibull曲线

    Figure  10.  Weibull curves of the breakdown field strength of different micro-nano composites

    β—Shape parameter; E0—Breakdown field strength

    图  11  复合材料的相对介电常数 (a) 与介电损耗(tanδ) (b) 随频率的变化

    Figure  11.  Distribution of relative permittivity (a) and dielectric loss (tanδ) (b) of composite materials with frequency

    表  1  复合材料试样的编号和配比

    Table  1.   Numbering and proportioning of composite specimens

    SpecimenProportion/g
    SiC/EP100/100
    MMT-SiC/EP1/100/100
    ZnO-MMT-SiC/EP9/1/100/100
    T-ZnOw-MMT-SiC/EP9/1/100/100
    Note: EP—Epoxy.
    下载: 导出CSV
  • [1] YANG J M, WANG X, ZHAO H, et al. Influence of moisture absorption on the DC conduction and space charge property of MgO/LDPE nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2014,21(4):1957-1964. doi: 10.1109/TDEI.2014.004334
    [2] LIU C Y, ZHENG Y, ZHANG B, et al. Review of nonlinear conductivity theory research of modified composite materials[J]. IEEE Access,2019,7:50536-50548.
    [3] KAWASAKI T, HOSODA S, KIM J, et al. Charge neutralization via arcing on a large solar array in the GEO plasma environment[J]. IEEE Transactions on Plasma Science,2006,34(5):1979-1985. doi: 10.1109/TPS.2006.881932
    [4] ROBERTSON J, VARLOW B R. The use of nonlinear permittivity fillers for the purposes of stress grading within cables[C]//IEEE International Conference on Properties & Applications of Dielectric Materials. Ottawa: IEEE, 2003: 1210-1213.
    [5] DONNELLY K, VARLOW B R. AC conductivity effects of non-linear fillers in electrical insulation[C]//IEEE 2000 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. Victoria: IEEE, 2000: 132-135.
    [6] HAN B, GUO W, LI Z. Research on the non-linear conductivity characteristics of NANO-SiC silicone rubber composites[J]. Journal of Functional Materials, 2008, 39(9): 1490-1493.
    [7] CAN-ORTIZ A, LAUDEBAT L, VALDEZ-NAVA Z, et al. Nonlinear electrical conduction in polymer composites for field grading in high-voltage applications: A review[J]. Polymers,2021,13(9):1370.
    [8] 韩永森, 孙健, 张昕, 等. 微纳米SiC/环氧树脂复合材料的界面和非线性电导特性[J]. 复合材料学报, 2020, 37(7):1562-1570.

    HAN Yongsen, SUN Jian, ZHANG Xin, et al. Interface and nonlinear conduction characteristics of micro-nano SiC/epoxy composites[J]. Acta Materiae Compositae Sinica,2020,37(7):1562-1570(in Chinese).
    [9] TAKADA T, HAYASE Y, TANAKA Y, et al. Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(1):152-160. doi: 10.1109/T-DEI.2008.4446746
    [10] ZHANG B Y, GAO W Q, CHU P F, et al. Trap-modulated carrier transport tailors the dielectric properties of alumina/epoxy nanocomposites[J]. Journal of Materials Science: Materials in Electronics,2018,29(3):1964-1974. doi: 10.1007/s10854-017-8107-8
    [11] DU B X, ZHANG J W, GAO Y. Effects of TiO2 particles on surface charge of epoxy nanocomposites[J]. IEEE Transactions on Dielectricsand Electrical Insulation,2012,19(3):755-762.
    [12] TIAN F Q, LEI Q Q, WANG X, et al. Investigation of electrical properties of LDPE/ZnO nanocomposite dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2012,19(3):763-769.
    [13] LI S T, YIN G L, CHEN G, et al. Short-term breakdown and long-term failure in nanodielectrics: A review[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2010,17(5):1523-1535.
    [14] CASTELLON J, NGUYEN H N, AGNEL S, et al. Electrical properties analysis of micro and nanocomposite epoxy resin materials[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2011,18(3):651-658.
    [15] RAMU T S, NAGAMANI H N. Alumina and silica based epoxy nano-composites for electrical insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2014,21(1):236-243.
    [16] TANAKA T, MONTANARI G C, MULHAUPT R. Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2004,11(5):763-784.
    [17] TANAKA T. Dielectric nanocomposites with insulating properties[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(5):914-928.
    [18] ROY M, NELSON J K, MACCRONE R K, et al. Polymer nanocomposite dielectrics-the role of the interface[J]. IEEE Transactions on Dielectrics andElectrical Insulation,2005,12(4):629-643.
    [19] SCHMIDT D, SHAH D, GIANNELIS E P. New advances in polymer/layered silicate nanocomposites[J]. Current Opinion in Solid State and Materials Science,2002,6(3):205-212. doi: 10.1016/S1359-0286(02)00049-9
    [20] 王乾宝. MMT/SiC/EP微-纳米复合材料介电性能及热学性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2021.

    WANG Qianbao. Dielectric and thermal properties of MMT/SiC/EP micro/nano composite[D]. Harbin: Harbin University of Science and Technology, 2021(in Chinese).
    [21] 王雅芸. SiC/ZnO/EP微-纳米复合材料介电性能与热学性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2019.

    WANG Yayun. Study of dielectric and thermal properties of SiC/ZnO/EP micro-nanocomposites[D]. Harbin: Harbin University of Science and Technology, 2019(in Chinese).
    [22] DISSADO L A, FOTHERGILL J C, WOLFE S V, et al. Weibull statistics in dielectric breakdown; theoretical basis, applications and implications[J]. IEEE Transactions on Electrical Insulation,1984(3):227-233.
    [23] 郭宁. 蒙脱土/环氧树脂纳米复合材料结构形态与介电性能机理研究[D]. 哈尔滨: 哈尔滨理工大学, 2014.

    GUO Ning. Study on the structural morphology and dielectric properties mechanism of montmorillonite/epoxy resin nanocomposites[D]. Harbin: Harbin University of Science and Technology, 2014(in Chinese).
    [24] SINGHA S, THOMAS M J. Dielectric properties of epoxy-Al2O3 nanocomposite system for packaging applications[J]. IEEE Transactions on Components and Packaging Technologies,2010,33(2):373-385. doi: 10.1109/TCAPT.2009.2033665
    [25] TANAKA T, KOZAKO M, FUSE N, et al. Proposal of a multi-core model for polymer nanocomposite dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(4):669-681. doi: 10.1109/TDEI.2005.1511092
    [26] TANAKA T. Interpretation of several key phenomena peculiar to nano dielectrics in terms of a multi-core model[C]//2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena. Kansas: IEEE, 2006: 298-301.
    [27] JIN L I, ZHANG C, DU B, et al. Electrical field simulation of epoxy spacer with nonlinear conductivity for DC GIL[J]. High Voltage Engineering,2020,451:48-53.
    [28] 吕晓玉. 不同维度无机填料/SiC/EP复合材料的电学特性研究[D]. 哈尔滨: 哈尔滨理工大学, 2022.

    LV Xiaoyu. Dielectric properties of inorganic fillers/SiC/EP composites with different dimensions[D]. Harbin: Harbin University of Science and Technology, 2022(in Chinese).
    [29] MONIRUZZAMAN M, WINEY K I. Polymer nanocomposites containing carbon nanotubes[J]. Macromolecules,2006,39(16):5194-5205. doi: 10.1021/ma060733p
    [30] MUEISO R M, WINEY K I. Electrical properties of polymer nanocomposites containing rod-like nanofilles[J]. Progress in Polymer Science,2015,40:63-84. doi: 10.1016/j.progpolymsci.2014.06.002
    [31] XIA Y, YANG P, SUN Y, et al. One-dimensional nanostructures: Synthesis, characterization, and applications[J]. Advanced Materials,2003,15(5):353-389. doi: 10.1002/adma.200390087
    [32] 张吴欣, 李志恒, 周梅琳, 等. T-ZnOw/硅橡胶复合材料的非线性电导特性研究[J]. 材料导报, 2020, 34(12):12169-12172, 12177.

    ZHANG Wuxin, LI Zhiheng, ZHOU Meilin, et al. Investigation on the nonlinear conductance characteristics of silicone rubber composites[J]. Materials Reports,2020,34(12):12169-12172, 12177(in Chinese).
    [33] VOLCKER O, KOCH H. Closure to discussion of "Insulation coordination for gas-insulatedtransmission lines (GIL)" [J]. IEEE Transactions on Power Delivery,2001,16(4):823-824.
    [34] POLIZOS G, TUNCER E, SAUERS I, et al. Properties of a nanodielectric cryogenic resin[J]. Applied Physics Letters,2010,96(15):338-586.
    [35] LIU C Y, CHANG Z T, ZHANG X Q. Preparation and nonlinear conductivity modification of doped ZnO/EP composite materials[C]//IEEE International Conference on the Properties and Applications of Dielectric Materials. Xi'an: IEEE, 2018: 275-278.
    [36] 谢茜. 不同形状纳米二氧化钛-环氧复合材料的制备及电热性能研究[D]. 西安: 西安交通大学, 2017.

    XIE Qian. Study on preparation and properties of epoxy resin containing nano-sized titanium dioxide with different shapes[D]. Xi'an: Xi'an Jiaotong University, 2017(in Chinese).
    [37] ALAPATI S, JOY THOMAS M. Influence of nano-fillers on electrical treeing in epoxy insulation[J]. IET Science, Measurement and Technology,2012,6(1):21-28. doi: 10.1049/iet-smt.2011.0046
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  704
  • HTML全文浏览量:  357
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-10
  • 修回日期:  2022-10-31
  • 录用日期:  2022-11-08
  • 网络出版日期:  2022-11-18
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回