留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤焦油沥青对SiO界面改性增强锂离子电池循环稳定性

赵方正 张海永 栗彧君 栾晨晖 张玉坤 李刚 王永刚

赵方正, 张海永, 栗彧君, 等. 煤焦油沥青对SiO界面改性增强锂离子电池循环稳定性[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 赵方正, 张海永, 栗彧君, 等. 煤焦油沥青对SiO界面改性增强锂离子电池循环稳定性[J]. 复合材料学报, 2024, 42(0): 1-13.
ZHAO Fangzheng, ZHANG Haiyong, LI Yujun, et al. Coal tar pitch pitch modification of the SiO interface enhances the cycling stability of lithium-ion batteries[J]. Acta Materiae Compositae Sinica.
Citation: ZHAO Fangzheng, ZHANG Haiyong, LI Yujun, et al. Coal tar pitch pitch modification of the SiO interface enhances the cycling stability of lithium-ion batteries[J]. Acta Materiae Compositae Sinica.

煤焦油沥青对SiO界面改性增强锂离子电池循环稳定性

基金项目: 国家自然科学基金(21506251)
详细信息
    通讯作者:

    王永刚,博士,教授,博士生导师,研究方向为煤炭化学加工和新型碳材料制备E-mali address: wyg1960@126.com

  • 中图分类号: TB332

Coal tar pitch pitch modification of the SiO interface enhances the cycling stability of lithium-ion batteries

Funds: National Natural Science Foundation of China(21506251)
  • 摘要: 煤焦油沥青具有高碳含量、可调控性和经济性等优点,在制备碳材料和碳复合材料中具有广泛的应用前景。采用沥青对一氧化硅界面改性是抑制一氧化硅自身的膨胀、提升首次库伦效率和循环稳定性的有效策略。为改善沥青与基体材料间的结合性能,本研究采用添加黏结剂的方式制备负极材料。首先,通过空气交联低温条件下制备高软化点、高结焦值的改性沥青。以聚乙烯吡咯烷酮(PVP)为黏结剂,浸润结合一氧化硅和改性沥青,制备得到前驱体(SiO@PVP@pitch)。通过原位聚合,将改性沥青转化为中间相沥青,然后高温炭化得到SiO/C复合材料,使碳涂层有一定的机械强度又具备导电性。偏光显微镜结果表明碳涂层良好的流线型结构,纤维更加细腻。高分辨透射电子显微镜( HRTEM )结果表明,SiO表面存在厚度约为90 - 100 nm的含有石墨晶格的碳包覆层。SiO和改性沥青按照5∶3比例下在400 ℃和900 ℃的温度条件下聚合和炭化,复合材料表现出优异的电化学性能,在0.5 A/g电流密度下具有550 mA·h/g的高比容量,可逆比容量660 mA·h/g,200次循环后比容量保持率为83.33 %,在1.5 A/g电流密度下的比容量为472.8 mA·h/g。电化学阻抗谱( EIS )结果也证明了碳包覆层可以有效提高复合材料的导电性,从而增强SiO电极的循环稳定性。

     

  • 图  1  改性沥青偏光显微镜图像

    Figure  1.  Polarizing microscope image of modified pitch

    图  2  SiO/C复合材料的制备过程和微观结构特征示意图。

    Figure  2.  The schematic diagram of the preparation process and microstructure characteristics of SiO/C composites.

    图  3  复合材料的XRD图和拉曼光谱图: (a) XRD 图, (b) 拉曼光谱图

    Figure  3.  XRD and Raman spectra of the composites: (a) XRD, (b) Raman spectra

    图  4  复合材料的偏光显微图像: (a) SiO/C - 5∶3 - 0 h复合材料偏光显微镜图像(b) SiO/C - 5∶3 - 4 h复合材料偏光显微镜图像

    Figure  4.  Polarizing microscope images of SiO/C-5∶3 - 0 h composites: (a) Polarizing microscope images of SiO/C -5∶3 - 0 h composites (b) Polarizing microscope images of SiO/C-5∶3 - 4 h composites

    图  5  SiO/C - 5∶3 - 4 h的高分辨透射电镜(HRTEM)图像(a)、(b)和(c)为不同放大倍数下的高分辨透射电镜(HRTEM)图像(d)、(e)和(f)为碳涂层的厚度 (g) TEM - Mapping图像

    Figure  5.  High-resolution transmission electron microscopy (HRTEM) images (a), (b), and (c) are high-resolution transmission electron microscopy (HRTEM) images at different magnifications (d), (e) and (f) are the thickness of the carbon coating (g) TEM-Mapping images of SiO/C - 5∶3 - 4 h

    图  6  SiO/C的XPS 图样:(a)元素组成 (b) O 1s、(c) N 1s、(d) C 1s和 (e) Si 2p 高分辨率图样

    Figure  6.  XPS patterns of SiO /C (a) elemental composition (b) O 1s, (c) N 1s, (d) C 1s, and (e) Si 2p high-resolution patterns

    图  7  SiO/C复合材料热重分析图

    Figure  7.  Thermogravimetric analysis of SiO/C composite materials

    图  8  复合材料电化学性能图 (a)-(b) SiO/C - 5∶3 - 4 h复合材料和SiO CV曲线,电压范围为0.01 - 1.8 V,扫描速率为0.1 mV·s−1;(c) - (d) SiO/C - 5∶3 - 4 h复合材料和SiO在第1个、第2个、第3个、第100个和第200个循环的充放电电压曲线。

    Figure  8.  Electrochemical performance of SiO/C-5∶3-4 h composite material. (a) CV curve of SiO/C - 5∶3 - 4 h composite material, the voltage range is 0.01-1.8 V, and the scanning rate is 0.1 mV·s−1. The charge and discharge voltage curves of (c) - (d) SiO/C - 5∶3 - 4 h composites and SiO at the 1st, 2 nd, 3 rd, 100 th and 200 th cycles.

    图  9  复合材料电化学性能图 (a)SiO/C复合材料在 0.5 A/g电流密度下的循环性能(b)SiO/C复合材料在不同电流密度下的倍率性能。

    Figure  9.  (a) Cycle performance of SiO/C composites at 0.5 A/g current density (b) Rate performance of SiO/C composites at different current densities.

    图  10  SiO/C - 5∶3 - 4 h和SiO/C - 5∶3 - 0 h复合材料的长循环性能图。

    Figure  10.  The long cycle performance of SiO/C-5∶3 - 4 h and SiO/C-5∶3-0 h composites.

    图  11  奈奎斯特图和相应的等效电路模型EIS图谱(a) SiO/C复合材料阻抗(b) SiO循环前后阻抗(c) SiO/C - 5∶3 - 4 h循环前后阻抗

    Figure  11.  Nyquist diagram and EIS diagram of the corresponding equivalent circuit model (a) Impedance of SiO/C composites (b) Impedance before and after SiO cycling (c) Impedance before and after SiO/C - 5∶3 - 4 h cycling

    图  12  SiO和SiO/C - 5∶3 - 4 h复合材料循环前和200个循环后的电极的体积变化的SEM图像(a) SiO循环前(b) SiO循环后(c) SiO/C - 5∶3 - 4 h循环前(d) SiO/C - 5∶3 - 4 h循环后

    Figure  12.  SEM images of volume change of SiO and SiO/C-5∶3 - 4 h composite electrode before and after 200 cycles (a) before SiO cycle (b) after SiO cycle (c) before SiO/C-5∶3 - 4 h cycle (d) after SiO/C-5∶3 - 4 h cycle

    表  1  改性沥青的制备条件

    Table  1.   Preparation conditions of modified pitch

    Air purge air volume/(L min−1) soaking time/h The heating rate of different temperature stages/(℃min−1)
    25℃ - 100℃ 100℃- 290℃ 290℃ - 320℃
    1 10 5 3 1
    下载: 导出CSV

    表  2  原料沥青与改性煤沥青的特性和元素分析对比表

    Table  2.   Characteristics and elemental analysis comparison table of raw pitch and modified coal tar pitch

    Sp/℃ CV/% pitch analysis/% elementary analysis/%
    HS HI-TS TI-QS QI N C H S O
    Pitch 31 32 30.98 53.03 18.55 0.031 1.145 92.474 4.979 0.356 1.046
    Modified pitch 240 80 10.77 12.37 63.85 13 1.21 92.671 4.303 0.145 2.04
    Note:(1) Organic element analysis was based on air drying, and O content was calculated by subtraction method.(2) Softening point (SP) was measured by thermal mechanical analyzer;(3) Coking value (CV) was determined by ' GB/T 8727-2008 determination method of the coking value of coal tar pitch products ';(4) HS and HI-TS were measured by soxhlet extraction, where HS is n-hexane soluble, HI-TS is n-hexane insoluble-toluene soluble;(5) TI-QS is toluene insoluble-quinoline soluble, its content is the percentage minus HS, HI-TS, QI content;(6) QI content is determined by the national standard GB/T 2293-2019 quinoline insoluble test method for coking pitch products.
    下载: 导出CSV

    表  3  SiO/C复合材料中SiO和pitch的百分比及炭化条件

    Table  3.   Percentages of SiO and pitch in SiO/C composites and carbonization conditions

    composites materials pitch:SiO SiO content pitch content Polymerization Temperature/℃
    SiO/C -5∶3 - 4 h 5∶3 37.5 % 62.5 % 400℃-4 h 900℃ - 3 h
    SiO/C -5∶2 - 4 h 5∶2 28.5 % 71.5 % 400℃-4 h 900℃ - 3 h
    SiO/C - 5∶4 - 4 h 5∶4 44.4 % 55.56 % 400℃-4 h 900℃ - 3 h
    SiO/C -5∶3 - 0 h 5∶3 37.5 % 62.5 % 400℃-900℃ - 3 h
    下载: 导出CSV
  • [1] ESCAMILLA-PÉREZ A M, AUDE R, SOPHIE G, et al. Pitch-based carbon/nano-silicon composite, an efficient anode for Li-ion batteries[J]. RSC Advances, 2019, 9(19): 10546-10553. doi: 10.1039/C9RA00437H
    [2] HUANG Ben, CHU Binbin, HUANG Tao, et al. Nitrogen-Doped Carbon-Coating Disproportionated SiO Materials as Long Cycling Stable Anode for Lithium-Ion Batteries[J]. Molecules, 2021, 26(6): 1536. doi: 10.3390/molecules26061536
    [3] SUN Wenhao, SUN Xiaogang, PENG Qifan, et al. Nano-MgO/AB decorated separator to suppress shuttle effect of lithium-sulfur battery[J]. Nanoscale Advances, 2019, 1(4): 1589-1597. doi: 10.1039/C8NA00420J
    [4] GUO Chenfeng, MAN Jingxuan, and WANG Dianlong. Nitrogen-doped carbon-coated SiO nanoparticles Co-modified with nitrogen-doped graphene as a superior anode material for lithium-ion batteries[J]. RSC Adv, 2014, 4(67): 35717-35725. doi: 10.1039/C4RA06678B
    [5] YU B C, YOON H, KIM J H, et al. A New Approach to Synthesis of Porous SiOx Anode for Li-ion Batteries via Chemical Etching of Si Crystallites[J]. Electrochimica Acta, 2014, 117: 426-430. doi: 10.1016/j.electacta.2013.11.158
    [6] . YU B C, YOON H, PARK C M, et al. "Reaction mechanism and enhancement of cyclability of SiO anodes by surface etching with NaOH for Li-ion batteries[J]. " Journal of Materials Chemistry A 1.15(2013): 4820.
    [7] . YOON H, PARK C M and SOHN, Modified SiO as a high-performance anode for Li-ion batteries[J]. Journal of Power Sources, 2013, 222: 129-134.
    [8] DOH C H, PARK C W, SHIN H M, et al. A new SiO/C anode composition for lithium-ion battery[J]. Journal of Power Sources, 2008, 179(1): 367-370. doi: 10.1016/j.jpowsour.2007.12.074
    [9] . ZHANG Xiangwu, JI Liwen, TOPRAKCI O, et al. Electrospun Nanofiber-Based Anodes, Cathodes, and Separators for Advanced Lithium-Ion Batteries[J]. Polymer reviews, 2011, 51(3): 239-264: 239-264.
    [10] . GUO Juchen, YANG Zichao and ARCHER L A, Mesoporous silicon@carbon composites via nanoparticle-seeded dispersion polymerization and their application as lithium-ion battery anode materials[J]. Journal of Materials Chemistry A, 2013, 1(18): 5709.
    [11] JEONG J H, KIM K H, JUNG D W, et al. High-performance characteristics of silicon inverse opal synthesized by the simple magnesium reduction as anodes for lithium-ion batteries[J]. Journal of Power Sources, 2015, 300: 182-189. doi: 10.1016/j.jpowsour.2015.09.064
    [12] . CHEN Bingjie, CHEN Lu, FENG Yutong, et al. Zero-strain high-capacity Silicon/Carbon Anode Enabled by a MOF-Derived Space-Confined Single-Atom Catalytic Strategy for Lithium-Ion Batteries[J]. Advanced Materials, 2022, 34(21).
    [13] RU Ziwei, ZHANG Xin, ZHANG Man, et al. Bimetallic-MOF-Derived ZnxCo3-xO4/Carbon Nanofiber Composited Sorbents for High-Temperature Coal Gas Desulfurization[J]. Environmental Science & Technology, 2022, 56(23): 17288-17297.
    [14] MAJEED M K, MA Guangyao, CAO Yanxiu, et al. Metal-Organic Frameworks-Derived Mesoporous Si/SiOx@NC Nanospheres as a Long-Lifespan Anode Material for Lithium-Ion Batteries[J]. Chemistry-A European Journal, 2019, 25(51): 11991-11997. doi: 10.1002/chem.201903043
    [15] YANG Hongxun, XIE Yue, ZHU Miaomiao, et al. Hierarchical porous MnCo2O4 yolk-shell micro-spheres from MOFs as secondary nanomaterials for high-power lithium-ion batteries[J]. Dalton Transactions, 2019, 48: 9205-9213. doi: 10.1039/C9DT00613C
    [16] MASTROPIETRO T F. Metal-organic frameworks and plastic: an emerging synergic partnership[J]. Science and technology of advanced materials, 2023, 24(1): 2189890-2189890. doi: 10.1080/14686996.2023.2189890
    [17] LIN Yangfan, CHEN Yifan, ZHANG Yaguang, et al. Wet-chemical synthesized MCMB@Si@C microspheres for high-performance lithium-ion battery anodes[J]. Chemical Communications (Cambridge, England), 2018, 54(68): 9466-9469. doi: 10.1039/C8CC04797A
    [18] CHENG Xianglin, ZHAQ ingfang, LI Xuejun, et al. Modified characteristics of mesophase pitch prepared from coal tar pitch by adding waste polystyrene[J]. Fuel Processing Technology, 2008, 89(12): 1436-1441. doi: 10.1016/j.fuproc.2008.07.003
    [19] LIN J H, KO T H, KUO W S, et al. Mesophase Pitch Carbon Coated with Phenolic Resin for the Anode of Lithium-Ion Batteries[J]. Energy & Fuels, 2010, 24(7): 4090-4094.
    [20] HUANG Zhihao, DANG Guoju, JIANG Wenping, et al. A Low-Cost and Scalable Carbon Coated SiO-Based Anode Material for Lithium-Ion Batteries[J]. ChemistryOpen, 2021, 10(3): 380-386. doi: 10.1002/open.202000341
    [21] SIRIWACHIRACHAL C and PONGJANYAKUL T. Particle Agglomeration of Acid-Modified Tapioca Starches: Characterization and Use as Direct Compression Fillers in Tablets[J]. Pharmaceutics, 2022, 14(6): 1245. doi: 10.3390/pharmaceutics14061245
    [22] MAMIYA M, KIKUCHI M, TAKEI H. Crystallization of fine silicon particles from silicon monoxide[J]. Journal of Crystal Growth, 2002, 237-239: 1909-1914. doi: 10.1016/S0022-0248(01)02244-8
    [23] LI Dechang, XU Wanfei, CHENG Huiyuan, et al. One-Step Thermochemical Conversion of Biomass Waste into Superhydrophobic Carbon Material by Catalytic Pyrolysis[J]. Global Challenges, 2020, 4(4): 1900085. doi: 10.1002/gch2.201900085
    [24] MORISSET A, FAMPROKIS T, HAUG F J, et al. In Situ Reflectometry and Diffraction Investigation of the Multiscale Structure of p-Type Polysilicon Passivating Contacts for c-Si Solar Cells[J]. ACS Applied Materials & Interfaces, 2022, 14(14): 16413-16423.
    [25] . QIAN Guanghan, RAHMAN S A, GOH B T. Controlled growth of Si-based heterostructure nanowires and their structural and electrical properties[J]. Nanoscale Research Letters, 2015, 10(1).
    [26] NETOR D E T, DAVID H L, FRANCISCO J F J, JOSE A L L, et al. Evaluation of optical and electronic properties of silicon nano-agglomerates embedded in SRO: applying density functional theory[J]. Nanoscale research letters, 2014, 9(1): 507-507. doi: 10.1186/1556-276X-9-507
    [27] LEE G, SCHWEIZER S L, WEHRSPOHN R B. Wehrspohn, CMOS-compatible metal-stabilized nanostructured Si as anodes for lithium-ion micro batteries[J]. Nanoscale research letters, 2014, 9(1): 613-613. doi: 10.1186/1556-276X-9-613
    [28] SHANG Huishan, PAN Kecheng, ZHANG Lu, et al. , Enhanced Activity of Supported Ni Catalysts Promoted by Pt for Rapid Reduction of Aromatic Nitro Compounds[J]. Nanomaterials, 2016, 6(6): 103. doi: 10.3390/nano6060103
    [29] JEONG S Y, CHO J S. Porous Hybrid Nanofibers Comprising ZnSe/CoSe₂/Carbon with Uniformly Distributed Pores as Anodes for High-Performance Sodium-Ion Batteries[J]. Nanomaterials, 2019, 9(10): 1362. doi: 10.3390/nano9101362
    [30] HINSTSHO N, SHAIKJEE A, MASENDA H, et al. Direct synthesis of carbon nanofibers from South African coal fly ash[J]. Nanoscale research letters, 2014, 9(1): 387-387. doi: 10.1186/1556-276X-9-387
    [31] LEE S E, KIM J H, LEE Y S, et al. Effect of coke orientation on the electrochemical properties of lithium-ion battery anode[J]. Journal of Applied Electrochemistry, 2021, 51(10): 1407-1418. doi: 10.1007/s10800-021-01581-x
    [32] MOCHIDA S, FEI Youqing, OYAMA T, et al. Carbonization of coal-tar pitch into lump needle coke in a tube bomb[J]. Journal of Materials Science, 1987, 22(11): 3989-3994. doi: 10.1007/BF01133349
    [33] LI Dechang, XU Wanfei, CHENG Huiyuan, XI Kunfang, et al. One-Step Thermochemical Conversion of Biomass Waste into Superhydrophobic Carbon Material by Catalytic Pyrolysis[J]. Glob Chall, 2020, 4(4): 1900085. doi: 10.1002/gch2.201900085
    [34] PENG Guiming, ELLIS J E, XU Xueqing, et al. In Situ Grown TiO2 Nano-spindles Facilitate the Formation of Holey Reduced Graphene Oxide by Photodegradation[J]. ACS Applied Materials & Interfaces, 2016, 8(11): 7403-7410.
    [35] . GUO Jiangyi, ZHANG Weilin. CHEN Datong, et al. Control over Electrochemical CO2 Reduction Selectivity by Coordination Engineering of Tin Single-Atom Catalysts[J]. Advanced Science, 2021, 8(23).
    [36] WANG Bing, HE Quanguo, LI Guangli, et al. Sensitive Determination of Trace 4-Nitrophenol in Ambient Environment Using a Glassy Carbon Electrode Modified with Formamide-Converted Nitrogen-Doped Carbon Materials[J]. International Journal of Molecular Sciences, 2022, 23(20): 12182. doi: 10.3390/ijms232012182
    [37] JEONG M G, ISLAM M, DU H L, et al. Nitrogen-doped Carbon Coated Porous Silicon as High-Performance Anode Material for Lithium-Ion Batteries[J]. Electrochimica Acta, 2016, 209: 299-307. doi: 10.1016/j.electacta.2016.05.080
    [38] ZHENG, Zhiming, ZAO Yi, ZHANG Qiaobao, et al. Robust erythrocyte-like Fe2O3@carbon with yolk-shell structures as high-performance anode for lithium-ion batteries[J]. Chemical Engineering Journal, 2018, 347: 563-573. doi: 10.1016/j.cej.2018.04.119
    [39] LI Qiongguang, WANG Yanhong, LU Bin, et al. Hollow core-shell structured Si@NiAl-LDH composite as high-performance anode material in lithium-ion batteries[J]. Electrochimica Acta, 2020, 331: 135331. doi: 10.1016/j.electacta.2019.135331
    [40] 石永刚, 张志勇, 陈彬, 等. 硅化镁还原CO2一步原位合成Si/C复合负极[J]. 复合材料学报. 2021, 38(10): 3522.

    SHENG Yonggang, ZHANG Zhiyong, CHEN Bin, et al. In-situ synthesis of Si/C composites anode by one-step reduction of CO2 with magnesium silicide[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3522. (in Chinese).
  • 加载中
计量
  • 文章访问数:  34
  • HTML全文浏览量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-29
  • 修回日期:  2024-04-16
  • 录用日期:  2024-04-20
  • 网络出版日期:  2024-05-17

目录

    /

    返回文章
    返回