留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti掺杂核壳结构晶态@非晶WO3纳米线复合薄膜的制备与电致变色性能

汤凯 管康威 刘淑婧 史英迪 叶祥桔 张雨露 汪徐春

汤凯, 管康威, 刘淑婧, 等. Ti掺杂核壳结构晶态@非晶WO3纳米线复合薄膜的制备与电致变色性能[J]. 复合材料学报, 2023, 40(6): 3539-3552. doi: 10.13801/j.cnki.fhclxb.20220817.001
引用本文: 汤凯, 管康威, 刘淑婧, 等. Ti掺杂核壳结构晶态@非晶WO3纳米线复合薄膜的制备与电致变色性能[J]. 复合材料学报, 2023, 40(6): 3539-3552. doi: 10.13801/j.cnki.fhclxb.20220817.001
TANG Kai, GUAN Kangwei, LIU Shujing, et al. Synthesis and electrochromic properties of Ti-doped core-shell crystalline@amorphous WO3 nanowire composite films[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3539-3552. doi: 10.13801/j.cnki.fhclxb.20220817.001
Citation: TANG Kai, GUAN Kangwei, LIU Shujing, et al. Synthesis and electrochromic properties of Ti-doped core-shell crystalline@amorphous WO3 nanowire composite films[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3539-3552. doi: 10.13801/j.cnki.fhclxb.20220817.001

Ti掺杂核壳结构晶态@非晶WO3纳米线复合薄膜的制备与电致变色性能

doi: 10.13801/j.cnki.fhclxb.20220817.001
基金项目: 大学生创新创业训练计划项目(S202010879133;X202110879025;202210879032);安徽省高校协同创新基金(GXXT2019023);安徽省高等学校自然科学研究项目(KJ2021A0875);科研发展基金项目(FZ220172)
详细信息
    通讯作者:

    张雨露,博士,讲师,研究方向为先进薄膜材料 E-mail: zhangyl@ahstu.edu.en

    汪徐春,博士,教授,硕士生导师,研究方向为光电功能薄膜材料 E-mail: wangxc@ahstu.edu.cn

  • 中图分类号: O646;O614;TB331

Synthesis and electrochromic properties of Ti-doped core-shell crystalline@amorphous WO3 nanowire composite films

Funds: College Student Innovation and Entrepreneurship Training Program (S202010879133; X202110879025; 202210879032); Anhui Province University Collaborative Innovation Fund (GXXT2019023); Anhui Province Higher Education Natural Science Research Project (KJ2021A0875); Research and Development Fund Project (FZ220172)
  • 摘要: WO3的结晶程度对其电致变色特性有很大影响,本研究首先使用溶剂热法制备晶态WO3垂直纳米线阵列,随后采用磁控溅射技术在其表面包裹一层Ti掺杂氧化钨(WO3-Ti)非晶态薄膜,从而得到晶态WO3@非晶态WO3-Ti核壳复合阵列结构。通过SEM与TEM可以观察到非晶态薄膜的厚度约为3~7 nm,并且非晶层的沉积并不破坏纳米线阵列结构。相比于纯WO3纳米线,核壳纳米线的吸收峰发生了轻微红移,且XPS检测到复合前后W4f与Ti2p特征峰产生了明显的峰位移动,显示出核壳之间存在着界面交互作用。优化后WO3@WO3-Ti核壳纳米线的响应速度和着色效率分别是纯WO3纳米线的2倍与1.8倍,在可见光和近红外区域都显示出良好的光学对比度,并且具有优异的循环稳定性,经过3000圈循环后对比度保持率可达95.8%。

     

  • 图  1  WO3@WO3-Ti核壳纳米线的形成过程示意图

    Figure  1.  Schematic illustration of the formation process of the WO3@WO3-Ti core-shell nanowire

    FTO—F doped SnO2 conductive glass

    图  2  纯WO3纳米线 ((a), (b)) 和WO3@WO3-Ti复合纳米线 ((c), (d)) 的SEM图像

    Figure  2.  SEM images of bare WO3 nanowires ((a), (b)) and WO3@WO3-Ti composite nanowires ((c), (d))

    图  3  空白FTO导电玻璃 (a) 和复合前后纳米线 (b) 的XRD图谱

    Figure  3.  XRD patterns of blank FTO conductive glass (a) and nanowires before and after composite (b)

    图  4  纯WO3纳米线 ((a)~(c)) 和WO3@WO3-Ti复合纳米线 ((d)~(f)) 的TEM图像;((h)~(j)) 复合纳米线 (g)的EDS元素能谱图

    Figure  4.  TEM images of bare WO3 nanowires ((a)-(c)) and WO3@WO3-Ti composite nanowires ((d)-(f)); ((h)-(j)) EDS elemental maps of the composite nanowire shown in (g)

    图  5  (a) WO3@WO3-Ti复合纳米线的拉曼光谱;纯WO3纳米线和WO3@WO3-Ti复合纳米线的XPS测试全谱(b) 和W4f图谱 (c);(d) WO3@WO3-Ti复合纳米线的Ti2p图谱

    Figure  5.  (a) Raman spectra of WO3@WO3-Ti composite nanowire; XPS survey spectra (b) and W4f spectra (c) for the bare WO3 nanowires and WO3@WO3-Ti composite nanowires; (d) Ti2p map for WO3@WO3-Ti composite nanowires

    图  6  WO3纳米线 (a) 和WO3@WO3-Ti复合纳米线 (b) 的循环伏安曲线;(c) 扫描速度为50 mV/s的CV曲线;(d) 扫描速率的平方根与峰值电流密度的变化曲线

    Figure  6.  Cyclic voltammetry (CV) curves of WO3 nanowires (a) and WO3@WO3-Ti composite nanowires (b); (c) CV curves at a scan rate of 50 mV/s; (d) Square root of scan rate versus peak current density

    图  7  WO3纳米线 (a),WO3@WO3-Ti复合纳米线 (b) 和Ti掺杂WO3(WO3-Ti)薄膜 (c) 的透过率光谱;(d) 复合纳米线的变色实物照片

    Figure  7.  Transmission spectra of WO3 nanowires (a), WO3@WO3-Ti composite nanowires (b), Ti-doped WO3 (WO3-Ti) films (c); (d) Photo of the discoloration of composite nanowires

    图  8  (a) 纯WO3纳米线和WO3@WO3-Ti复合纳米线的紫外吸收光谱图;(b) WO3薄膜和Ti掺杂WO3(WO3-Ti)薄膜的紫外吸收光谱图

    Figure  8.  (a) UV absorption spectra of bare WO3 nanowires and WO3@WO3-Ti composite nanowires; (b) UV absorption spectra of WO3 film and Ti-doped WO3 (WO3-Ti) film

    图  9  (a) 材料的原位着色/褪色转换响应曲线;Ti掺杂WO3(WO3-Ti)薄膜(b)、WO3纳米线 (c) 和WO3@WO3-Ti复合纳米线 (d) 的着色效率(CE)曲线

    Figure  9.  (a) In situ coloration/bleaching switching responses of materials; Coloring efficiency (CE) curves of Ti-doped WO3 (WO3-Ti) films (b), WO3 nanowires (c) and WO3@WO3-Ti composite nanowires (d)

    ∆OD—Change in optical density

    图  10  WO3@WO3-Ti核壳纳米线中Li+离子传输示意图

    Figure  10.  Schematic diagram of Li+ ions transport in WO3@WO3-Ti core-shell nanowires

    图  11  WO3@WO3-Ti核壳纳米线的动态透过率测量 (a) 和相应的计时电流数据 (b)

    Figure  11.  Dynamic transmittance measurement (a) and the corresponding chronoamperometry data (b) of WO3@WO3-Ti core-shell nanowires

    表  1  纯WO3纳米线、Ti掺杂WO3(WO3-Ti)薄膜和WO3@WO3-Ti复合纳米线的电致变色性能比较

    Table  1.   Comparisons of the electrochromic properties of bare WO3 nanowires, Ti-doped WO3 (WO3-Ti) thin films and WO3@WO3-Ti composite nanowires

    SampleOptical contrast/%Coloring time tc/sBleaching time tb/sColoring efficiency/
    (cm2·C−1)
    WO370.36.61.653.5
    WO3-Ti8.41.70.342.5
    WO3@WO3-Ti74.23.20.896.5
    下载: 导出CSV
  • [1] WANG Z, WANG X Y, CONG S, et al. Fusing electrochromic technology with other advanced technologies: A new roadmap for future development[J]. Materials Science and Engineering: R: Reports,2020,140:100524. doi: 10.1016/j.mser.2019.100524
    [2] ROSSEINSKY D R, MORTIMER R J. Electrochromic systems and the prospects for devices[J]. Advanced Materials,2010,13(11):783-793.
    [3] GRANQVIST C G. Electrochromic tungsten oxide films: Review of progress 1993-1998[J]. Solar Energy Materials & Solar Cells,2000,60(3):201-262.
    [4] YUAN J, WANG B, WANG H, et al. Electrochromic behavior of WO3 thin films prepared by GLAD[J]. Applied Surface Science,2018,447:471-478. doi: 10.1016/j.apsusc.2018.03.248
    [5] DEB S K. A novel electrophotographic system[J]. Applied Optics,1969,8(S1):192. doi: 10.1364/AO.8.S1.000192
    [6] DEEPA M, KAR M, AGNIHOTRY S A. Electrodeposited tungsten oxide films: annealing effects on structure and electrochromic performance[J]. Thin Solid Films,2004,468(1):32-42.
    [7] YUAN G, HUA C, HUANG L, et al. Optical characterization of the coloration process in electrochromic amorphous and crystalline WO3 films by spectroscopic ellipsometry[J]. Applied Surface Science,2017,421:630-635. doi: 10.1016/j.apsusc.2016.10.176
    [8] SUBRAHMANYAM A, KARUPPASAMY A. Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films[J]. Solar Energy Materials & Solar Cells,2007,91(4):266-274.
    [9] HUTCHINS M G, BUTT N S, TOPPING A J, et al. Infrared reflectance modulation in tungsten oxide based electrochromic devices[J]. Electrochimica Acta,2001,46(13):1983-1988.
    [10] MOHAMMAD A A, GILLET M. Phase transformations in WO3 thin films during annealing[J]. Thin Solid Films,2002,408(1):302-309.
    [11] LEE S H, DESHPANDE R, PARILLA P A, et al. Crystalline WO3 nanoparticles for highly improved electrochromic applications[J]. Advanced Materials,2010,18(6):763-766.
    [12] ANTONAIA A, ADDONIZIO M L, MINARINI C, et al. Improvement in electrochromic response for an amorphous/crystalline WO3 double layer[J]. Electrochimica Acta,2001,46(13):2221-2227.
    [13] LIN F, CHENG J, ENGTRAKUL C, et al. In situ crystallization of high performing WO3-based electrochromic materials and the importance for durability and switching kinetics[J]. Journal of Materials Chemistry,2012,22(33):16817-16823. doi: 10.1039/c2jm32742b
    [14] HONG G C, JUNG Y H, KIM D K. Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet[J]. Journal of the American Ceramic Society,2010,88(6):1684-1686.
    [15] SHEN K, SHENG K, WANG Z, et al. Cobalt ions doped tungsten oxide nanowires achieved vertically aligned nanostructure with enhanced electrochromic properties[J]. Applied Surface Science,2020,501:144003.
    [16] WANG J L, LIU J W, SHENG S Z, et al. Manipulating nanowire assemblies toward multicolor transparent electrochromic device[J]. Nano Letters,2021,21:9203-9209. doi: 10.1021/acs.nanolett.1c03061
    [17] HER Y C, CHANG C C. Facile synthesis of one-dimensional crystalline/amorphous tungsten oxide core/shell heterostructures with balanced electrochromic properties[J]. CrystEngComm,2014,16(24):5379-5386. doi: 10.1039/C4CE00430B
    [18] ZHOU D, XIE D, SHI F, et al. Crystalline/amorphous tungsten oxide core/shell hierarchical structures and their synergistic effect for optical modulation[J]. Journal of colloid and interface science,2015,460:200-208. doi: 10.1016/j.jcis.2015.08.042
    [19] HUO X T, ZHANG H Y, SHEN W G, et al. Bifunctional aligned hexagonal/amorphous tungsten oxide core/shell nanorod arrays with enhanced electrochromic and pseudocapacitive performance[J]. Journal of Materials Chemistry A,2019,7(28):16867-16875. doi: 10.1039/C9TA03725J
    [20] HAN J, KO K W, SARWAR S, et al. Enhanced electrochromic properties of TiO2 nanocrystal embedded amorphous WO3 films[J]. Electrochimica Acta,2018,278:396-404. doi: 10.1016/j.electacta.2018.05.026
    [21] 成明, 杨继凯, 杨馥瑜, 等. WO3/TiO2复合薄膜的制备及其电致变色性能[J]. 复合材料学报, 2019, 36(4):914-920.

    CHENG Ming, YANG Jikai, YANG Fuyu, et al. Preparation and electrochromic properties of WO3/TiO2 composite films[J]. Acta Materiae Compositae Sinica,2019,36(4):914-920(in Chinese).
    [22] PATIL P S, MUJAWAR S H, INAMDAR A I, et al. Electrochromic properties of spray deposited TiO2-doped WO3 thin films[J]. Applied Surface Science,2005,250(1):117-123.
    [23] MATSUOKA H, HASHIMOTO S, KAGECHIKA H. Lifetime of electrochromism of amorphous WO3-TiO2 thin films[J]. Journal of the Surface Finishing Society of Japan,1991,42(2):246-252. doi: 10.4139/sfj.42.246
    [24] TANG K, ZHANG Y, SHI Y D, et al. Crystalline WO3 nanowires array sheathed with sputtered amorphous shells for enhanced electrochromic performance[J]. Applied Surface Science,2019,31(498):143796.
    [25] HUANG J, ZHANG Y, DING Y. Rationally designed/constructed CoOx/WO3 anode for efficient photoelectrochemical water oxidation[J]. ACS Catal,2017,7:1841-1845. doi: 10.1021/acscatal.7b00022
    [26] BALAJI S, DJAOUED Y, ALBERT A S, et al. Hexagonal tungsten oxide based electrochromic devices: Spectroscopic evidence for the Li ion occupancy of four-coordinated square windows[J]. Chemistry of Materials,2009,21(7):1381-1389. doi: 10.1021/cm8034455
    [27] CAI G F, TU J P, ZHOU D, et al. Growth of vertically aligned hierarchical WO3 nano-architecture arrays on transparent conducting substrates with outstanding electrochromic performance[J]. Solar Energy Materials & Solar Cells,2014,124(5):103-110.
    [28] 黄佳木, 徐爱娇, 蔡明, 等. WOx-Ti薄膜的电致变色性能[J]. 重庆大学学报, 2007, 30(2):98-102. doi: 10.11835/j.issn.1000-582X.2007.02.024

    HUANG Jiamu, XU Aijiao, CAI Ming, et al. Electrochromic properties of WOx-Ti fimls[J]. Journal of Chongqing University,2007,30(2):98-102(in Chinese). doi: 10.11835/j.issn.1000-582X.2007.02.024
    [29] 王丽阁. 磁控溅射WO3和NiOx互补型电致变色薄膜[D]. 大连: 大连理工大学, 2008.

    WANG Lige. WO3 and NiOx complementary electrochromic films deposited by mid-frequency magnetron sputtering method[D]. Dalian: Dalian University of Technology, 2008(in Chinese).
    [30] 代强. Ti掺杂WO3薄膜的制备及其电致变色性能研究[D]. 北京: 中国建筑材料科学研究总院, 2018.

    DAI Qiang. Preparation and electrochromic properties of Ti-doped WO3 thin film[D]. Beijing: China Building Materials Aacdemy, 2018(in Chinese).
    [31] SANTATO C, ODZIEMKOWSKI M, ULMANN M, et al. Crystallographically oriented mesoporous WO3 films: Synthesis, characterization, and applications[J]. Journal of the American Chemical Society,2001,123(43):10639-10649. doi: 10.1021/ja011315x
    [32] PAIPITAK K, KAHATTHA C, TECHITGHEERA W, et al. Characterization of sol-gel derived Ti-doped tungsten oxide electrochromic thin films[J]. Energy Procedia,2011,9(22):446-451.
    [33] ZHAN Y, TAN J M R, CHENG X, et al. Ti-doped WO3 synthesized by a facile wet bath method for improved electrochromism[J]. Journal of Materials Chemistry C,2017,5(38):9995-10000. doi: 10.1039/C7TC02456H
    [34] TANG K, ZHANG Y, SHI Y D, et al. Fabrication of WO3/TiO2 core-shell nanowire arrays: structure design and high electrochromic performance[J]. Electrochimica Acta,2020,330(10):135189.
    [35] YAN C, KANG W, WANG J, et al. Stretchable and wearable electrochromic devices[J]. ACS Nano,2014,8(1):316. doi: 10.1021/nn404061g
    [36] DI Y D, FIELD M R, MULLANE A P, et al. Electrochromic properties of TiO2 nanotubes coated with electrodeposited MoO3[J]. Nanoscale,2013,5(21):10353-10359. doi: 10.1039/c3nr03666a
    [37] CAI G F, WANG X L, ZHOU D, et al. Hierarchical structure Ti-doped WO3 film with improved electrochromism in visible-infrared region[J]. RSC Advances,2013,3(19):6896. doi: 10.1039/c3ra40675j
    [38] MA D, SHI G, WANG H, et al. Morphology-tailored synthesis of vertically aligned 1D WO3 nano-structure films for highly enhanced electrochromic performance[J]. Journal of Materials Chemistry A,2013,1(3):684-691. doi: 10.1039/C2TA00090C
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  993
  • HTML全文浏览量:  554
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-17
  • 修回日期:  2022-07-22
  • 录用日期:  2022-08-08
  • 网络出版日期:  2022-08-19
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回