Synthesis and electrochromic properties of Ti-doped core-shell crystalline@amorphous WO3 nanowire composite films
-
摘要: WO3的结晶程度对其电致变色特性有很大影响,本研究首先使用溶剂热法制备晶态WO3垂直纳米线阵列,随后采用磁控溅射技术在其表面包裹一层Ti掺杂氧化钨(WO3-Ti)非晶态薄膜,从而得到晶态WO3@非晶态WO3-Ti核壳复合阵列结构。通过SEM与TEM可以观察到非晶态薄膜的厚度约为3~7 nm,并且非晶层的沉积并不破坏纳米线阵列结构。相比于纯WO3纳米线,核壳纳米线的吸收峰发生了轻微红移,且XPS检测到复合前后W4f与Ti2p特征峰产生了明显的峰位移动,显示出核壳之间存在着界面交互作用。优化后WO3@WO3-Ti核壳纳米线的响应速度和着色效率分别是纯WO3纳米线的2倍与1.8倍,在可见光和近红外区域都显示出良好的光学对比度,并且具有优异的循环稳定性,经过3000圈循环后对比度保持率可达95.8%。
-
关键词:
- WO3晶态纳米线 /
- WO3-Ti非晶态薄膜 /
- 核壳结构 /
- 电致变色
Abstract: The degree of crystallinity of WO3 has a great influence on its electrochromic properties. In this study, crystalline WO3 vertical nanowire arrays were first prepared by solvothermal method, and then a layer of Ti doped tungsten oxide (WO3-Ti) amorphous film was wrapped on the surface by magnetron sputtering technology to obtain crystalline WO3@ amorphous WO3-Ti core-shell composite array structure. It can be observed by SEM and TEM that the thickness of the amorphous film is about 3-7 nm, and the deposition of the amorphous layer does not destroy the nanowire array structure. Compared with pure WO3 nanowires, the absorption peaks of core-shell nanowires have a slight red shift, and XPS detected that the characteristic peaks of W4f and Ti2p before and after recombination have shifted significantly, confirming an interfacial interaction between the shell and the core. The switching speed and coloring efficiency of the optimized WO3@WO3-Ti core-shell nanowires are 2 times and 1.8 times that of the pure WO3 nanowires and the heterostructures exhibit good optical contrast in both visible and near-infrared regions, and have excellent cycling stability, with a contrast retention rate of 95.8% after 3000 cycles. -
图 5 (a) WO3@WO3-Ti复合纳米线的拉曼光谱;纯WO3纳米线和WO3@WO3-Ti复合纳米线的XPS测试全谱(b) 和W4f图谱 (c);(d) WO3@WO3-Ti复合纳米线的Ti2p图谱
Figure 5. (a) Raman spectra of WO3@WO3-Ti composite nanowire; XPS survey spectra (b) and W4f spectrum (c) for the bare WO3 nanowires and WO3@WO3-Ti composite nanowires; (d) Ti2p map for WO3@WO3-Ti composite nanowires
图 9 (a) 材料的原位着色/褪色转换响应曲线;(b) Ti掺杂WO3(WO3-Ti)薄膜;WO3纳米线 (c) 和WO3@WO3-Ti复合纳米线 (d) 的着色效率(CE)曲线(∆OD表示光密度的变化)
Figure 9. (a) In situ coloration/bleaching switching responses of materials; Coloring efficiency (CE) curves of (b) Ti-doped WO3 (WO3-Ti) films; WO3 nanowires (c) and WO3@WO3-Ti composite nanowires (d) (∆OD represents the change in optical density)
表 1 纯WO3纳米线,Ti掺杂WO3(WO3-Ti)薄膜和WO3@WO3-Ti复合纳米线的电致变色性能比较
Table 1. Comparisons of the electrochromic properties of bare WO3 nanowires, Ti-doped WO3 (WO3-Ti) thin films and WO3@WO3-Ti composite nanowires
Sample Optical contrast/% Coloring time tc/s Bleaching time tb/s Coloring efficiency/
(cm2·C−1)WO3 70.3 6.6 1.6 53.5 WO3-Ti 8.4 1.7 0.3 42.5 WO3@WO3-Ti 74.2 3.2 0.8 96.5 -
[1] WANG Z, WANG X Y, CONG S, et al. Fusing electrochromic technology with other advanced technologies: A new roadmap for future development[J]. Materials Science and Engineering: R: Reports,2020,140:100524. doi: 10.1016/j.mser.2019.100524 [2] ROSSEINSKY D R, MORTIMER R J. Electrochromic systems and the prospects for devices[J]. Advanced Materials,2010,13(11):783-793. [3] GRANQVIST C G. Electrochromic tungsten oxide films: Review of progress 1993-1998[J]. Solar Energy Materials & Solar Cells,2000,60(3):201-262. [4] YUAN J, WANG B, WANG H, et al. Electrochromic behavior of WO3 thin films prepared by GLAD[J]. Applied Surface Science,2018,447:471-478. doi: 10.1016/j.apsusc.2018.03.248 [5] DEB S K. A novel electrophotographic system[J]. Applied Optics,1969,8(S1):192. doi: 10.1364/AO.8.S1.000192 [6] DEEPA M, KAR M, AGNIHOTRY S A. Electrodeposited tungsten oxide films: annealing effects on structure and electrochromic performance[J]. Thin Solid Films,2004,468(1):32-42. [7] YUAN G, HUA C, HUANG L, et al. Optical characterization of the coloration process in electrochromic amorphous and crystalline WO3 films by spectroscopic ellipsometry[J]. Applied Surface Science,2017,421:630-635. doi: 10.1016/j.apsusc.2016.10.176 [8] SUBRAHMANYAM A, KARUPPASAMY A. Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films[J]. Solar Energy Materials & Solar Cells,2007,91(4):266-274. [9] HUTCHINS M G, BUTT N S, TOPPING A J, et al. Infrared reflectance modulation in tungsten oxide based electrochromic devices[J]. Electrochimica Acta,2001,46(13):1983-1988. [10] MOHAMMAD A A, GILLET M. Phase transformations in WO3 thin films during annealing[J]. Thin Solid Films,2002,408(1):302-309. [11] LEE S H, DESHPANDE R, PARILLA P A, et al. Crystalline WO3 nanoparticles for highly improved electrochromic applications[J]. Advanced Materials,2010,18(6):763-766. [12] ANTONAIA A, ADDONIZIO M L, MINARINI C, et al. Improvement in electrochromic response for an amorphous/crystalline WO3 double layer[J]. Electrochimica Acta,2001,46(13):2221-2227. [13] LIN F, CHENG J, ENGTRAKUL C, et al. In situ crystallization of high performing WO3-based electrochromic materials and the importance for durability and switching kinetics[J]. Journal of Materials Chemistry,2012,22(33):16817-16823. doi: 10.1039/c2jm32742b [14] HONG G C, JUNG Y H, KIM D K. Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet[J]. Journal of the American Ceramic Society,2010,88(6):1684-1686. [15] SHEN K, SHENG K, WANG Z, et al. Cobalt ions doped tungsten oxide nanowires achieved vertically aligned nanostructure with enhanced electrochromic properties[J]. Applied Surface Science,2020,501:144003.1-144003.8. [16] WANG J L, LIU J W, SHENG S Z, et al. Manipulating nanowire assemblies toward multicolor transparent electrochromic device[J]. Nano Letters,2021,21:9203-9209. doi: 10.1021/acs.nanolett.1c03061 [17] HER Y C, CHANG C C. Facile synthesis of one-dimensional crystalline/amorphous tungsten oxide core/shell heterostructures with balanced electrochromic properties[J]. CrystEngComm,2014,16(24):5379-5386. doi: 10.1039/C4CE00430B [18] ZHOU D, XIE D, SHI F, et al. Crystalline/amorphous tungsten oxide core/shell hierarchical structures and their synergistic effect for optical modulation[J]. Journal of colloid and interface science,2015,460:200-208. doi: 10.1016/j.jcis.2015.08.042 [19] HUO X T, ZHANG H Y, SHEN W G, et al. Bifunctional aligned hexagonal/amorphous tungsten oxide core/shell nanorod arrays with enhanced electrochromic and pseudocapacitive performance[J]. Journal of Materials Chemistry A,2019,7(28):16867-16875. doi: 10.1039/C9TA03725J [20] HAN J, KO K W, SARWAR S, et al. Enhanced electrochromic properties of TiO2 nanocrystal embedded amorphous WO3 films[J]. Electrochimica Acta,2018,278:396-404. doi: 10.1016/j.electacta.2018.05.026 [21] 成明, 杨继凯, 杨馥瑜, 等. WO3/TiO2复合薄膜的制备及其电致变色性能[J]. 复合材料学报, 2019, 36(4):914-920.CHENG Ming, YANG Jikai, YANG Fuyu, et al. Preparation and electrochromic properties of WO3/TiO2 composite films[J]. Acta Materiae Compositae Sinica,2019,36(4):914-920(in Chinese). [22] PATIL P S, MUJAWAR S H, INAMDAR A I, et al. Electrochromic properties of spray deposited TiO2 -doped WO3 thin films[J]. Applied Surface Science,2005,250(1):117-123. [23] MATSUOKA H, HASHIMOTO S, KAGECHIKA H. Lifetime of electrochromism of amorphous WO3-TiO2 thin films[J]. Journal of the Surface Finishing Society of Japan,1991,42(2):246-252. doi: 10.4139/sfj.42.246 [24] TANG K, ZHANG Y, SHI Y D, et al. Crystalline WO3 nanowires array sheathed with sputtered amorphous shells for enhanced electrochromic performance[J]. Applied Surface Science,2019,31(498):143796. [25] HUANG J, ZHANG Y, DING Y. Rationally designed/constructed CoOx/WO3 anode for efficient photoelectrochemical water oxidation[J]. ACS Catal,2017,7:1841-1845. doi: 10.1021/acscatal.7b00022 [26] BALAJI S, DJAOUED Y, ALBERT A S, et al. Hexagonal tungsten oxide based electrochromic devices: Spectroscopic evidence for the Li ion occupancy of four-coordinated square windows[J]. Chemistry of Materials,2009,21(7):1381-1389. doi: 10.1021/cm8034455 [27] CAI G F, TU J P, ZHOU D, et al. Growth of vertically aligned hierarchical WO3 nano-architecture arrays on transparent conducting substrates with outstanding electrochromic performance[J]. Solar Energy Materials & Solar Cells,2014,124(5):103-110. [28] 黄佳木, 徐爱娇, 蔡明, 等. WOx-Ti薄膜的电致变色性能[J]. 重庆大学学报, 2007, 30(2):98-102. doi: 10.11835/j.issn.1000-582X.2007.02.024HUANG Jiamu, XU Aijiao, CAI Ming, et al. Electrochromic properties of WOx-Ti fimls[J]. Journal of Chongqing University,2007,30(2):98-102(in Chinese). doi: 10.11835/j.issn.1000-582X.2007.02.024 [29] 王丽阁. 磁控溅射WO3和NiOx互补型电致变色薄膜[D]. 大连: 大连理工大学, 2008.WANG Lige. WO3 and NiOx complementary electrochromic films deposited by mid-frequency magnetron sputtering method[D]. Dalian: Dalian University of Technology, 2008(in Chinese). [30] 代强. Ti掺杂WO3薄膜的制备及其电致变色性能研究[D]. 北京: 中国建筑材料科学研究总院, 2018.DAI Qiang. Preparation and electrochromic properties of Ti-doped WO3 thin film[D]. Beijing: China Building Materials Aacdemy, 2018(in Chinese). [31] SANTATO C, ODZIEMKOWSKI M, ULMANN M, et al. Crystallographically oriented mesoporous WO3 films: Synthesis, characterization, and applications[J]. Journal of the American Chemical Society,2001,123(43):10639-10649. doi: 10.1021/ja011315x [32] PAIPITAK K, KAHATTHA C, TECHITGHEERA W, et al. Characterization of sol-gel derived Ti-doped tungsten oxide electrochromic thin films[J]. Energy Procedia,2011,9(22):446-451. [33] ZHAN Y, TAN J M R, CHENG X, et al. Ti-doped WO3 synthesized by a facile wet bath method for improved electrochromism[J]. Journal of Materials Chemistry C,2017,5(38):9995-10000. doi: 10.1039/C7TC02456H [34] TANG K, ZHANG Y, SHI Y D, et al. Fabrication of WO3/TiO2 core-shell nanowire arrays: structure design and high electrochromic performance[J]. Electrochimica Acta,2020,330(10):135189. [35] YAN C, KANG W, WANG J, et al. Stretchable and wearable electrochromic devices[J]. Acs Nano,2014,8(1):316. doi: 10.1021/nn404061g [36] DI Y D, FIELD M R, MULLANE A P, et al. Electrochromic properties of TiO2 nanotubes coated with electrodeposited MoO3[J]. Nanoscale,2013,5(21):10353-10359. doi: 10.1039/c3nr03666a [37] CAI G F, WANG X L, ZHOU D, et al. Hierarchical structure Ti-doped WO3 film with improved electrochromism in visible-infrared region[J]. Rsc Advances,2013,3(19):6896. doi: 10.1039/c3ra40675j [38] MA D, SHI G, WANG H, et al. Morphology-tailored synthesis of vertically aligned 1 D WO3 nano-structure films for highly enhanced electrochromic performance[J]. Journal of Materials Chemistry A,2013,1(3):684-691. doi: 10.1039/C2TA00090C -