留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属卤化物钙钛矿纳米晶在荧光传感领域的应用进展

彭茂民 潘可亮 周然锋 夏虹 刘丽 彭西甜

彭茂民, 潘可亮, 周然锋, 等. 金属卤化物钙钛矿纳米晶在荧光传感领域的应用进展[J]. 复合材料学报, 2024, 43(0): 1-12.
引用本文: 彭茂民, 潘可亮, 周然锋, 等. 金属卤化物钙钛矿纳米晶在荧光传感领域的应用进展[J]. 复合材料学报, 2024, 43(0): 1-12.
PENG Maomin, PAN Keliang, ZHOU Ranfeng, et al. Progress of metal halide perovskite nanocrystal in the field of fluorescence sensing[J]. Acta Materiae Compositae Sinica.
Citation: PENG Maomin, PAN Keliang, ZHOU Ranfeng, et al. Progress of metal halide perovskite nanocrystal in the field of fluorescence sensing[J]. Acta Materiae Compositae Sinica.

金属卤化物钙钛矿纳米晶在荧光传感领域的应用进展

基金项目: 湖北省重点研发计划项目 (2022BBA0069);湖北省自然科学基金联合基金 (2023AFD215);湖北省地质局科技项目 (KJ2024-3,KJ2024-4)
详细信息
    通讯作者:

    刘丽,博士,副研究员,硕士生导师,研究方向为新型钙钛矿复合材料 E-mail: liuli@hbaas.ac.cn

  • 中图分类号: TB332;TB383

Progress of metal halide perovskite nanocrystal in the field of fluorescence sensing

Funds: Hubei Province Key Research and Development Program (No. 2022BBA0069); Hubei Province Natural Science Foundation Joint Fund (No. 2023AFD215); Science and Technology Project of Hubei Province Geological Bureau (KJ2024-3, KJ2024-4)
  • 摘要: 金属卤化物钙钛矿纳米晶因具独特的物理和化学特性,如高光吸收系数、窄发射光谱、高光致发光量子产率以及可调的组分与尺寸等,在发光二极管、太阳能电池、光电探测器、催化、激光、荧光传感等光电技术领域展现出广泛的应用潜力,已成为材料科学领域的研究热点。本文基于金属卤化物钙钛矿纳米晶在荧光传感领域的应用,重点归纳了金属卤化物钙钛矿纳米晶的制备技术、荧光传感机理及在该领域的应用研究进展;同时讨论了其在荧光传感领域应用中面临的稳定性问题及解决方案;最后,总结和展望了具有更高光学性能和稳定性的金属卤化物钙钛矿材料的发展方向。本文旨在通过对其在荧光传感领域应用的综述分析总结,为促进研究人员开发高效稳定的钙钛矿材料提供借鉴。

     

  • 图  1  ABX3型金属卤化物钙钛矿结构组成示意图

    Figure  1.  Structural composition diagram of ABX3 MHPs

    图  2  (a)高温热注入法制备CsPbX3钙钛矿晶体结构中的阴离子交换示意图和(b)CsPbX3钙钛矿荧光光谱[12]

    Figure  2.  (a) Schematic diagram of anion exchange in CsPbX3 perovskite crystal structure prepared by high-temperature hot injection method and (b) fluorescence spectrum of CsPbX3 perovskite[12]

    图  3  配体辅助再沉淀法合成钙钛矿示意图[15]

    Figure  3.  Schematic diagram of ligand-assisted reprecipitation method for the synthesis of perovskite[15]

    图  4  SiO2模板法合成钙钛矿纳米晶示意图[17]

    Figure  4.  Schematic diagram of the synthesis of perovskite nanocrystals using mesoporous SiO2 template method[17]

    图  5  MAPbBr3钙钛矿嵌入PVDF复合膜的原位制备示意图[19]

    Figure  5.  Schematic illustration of the in-situ fabrication of MAPbBr3 nanocrystals embedded PVDF composite films[19]

    图  6  基于金属卤化物钙钛矿构建的荧光传感器

    Figure  6.  Fluorescent sensors based on MHPs

    图  7  (a) 方法感应机制;(b) 不同过氧化物浓度的油样荧光光谱(从右到左依次为过氧化氢浓度为0、0.3、0.5 g/100 g和CsPbBr3钙钛矿)(插图显示在365 nm紫外光下的图像)[22]

    Figure  7.  (a) Sensing mechanism of method; (b) Fluorescence spectra of oil sample with different peroxide numbers (From right to left, the peroxide number is 0, 0.3, 0.5 g/100 g, and CsPbBr3 MHP) (The inset shows the apparent color under 365 nm UV light) [22]

    图  8  CsPbBr3钙钛矿硫化氢荧光传感器示意图[24]

    Figure  8.  Schematic diagram of a CsPbBr3 perovskite-based hydrogen sulfide fluorescence sensor[24]

    图  9  MAPbBr3钙钛矿甲胺气体传感示意图[26]

    Figure  9.  Schematic diagram of a MAPbBr3 perovskite-based methylamine gas sensor[26]

    图  10  CsPbBr3纳米晶检测罗丹明6 G原理图[29]

    Figure  10.  Schematic diagram of CsPbBr3 nanocrystals for detecting Rhodamine 6 G[29]

    图  11  基于钙钛矿量子点的PA荧光检测示意图[32]

    Figure  11.  Schematic illustration for the sensitive fluorescence detection of PA based on perovskite quantum dots[32]

    图  12  (a)钙钛矿稳定性问题示意图和(b)钙钛矿表面缺陷钝化策略

    Figure  12.  (a) Schematic diagram of perovskite stability issues and (b) Passivation strategy for perovskite surface defects

    图  13  钙钛矿钝化策略示意图:(a)直链酸/胺配体钝化,(b)MOFs包覆[45],(c)离子掺杂[49]和(d)核壳结构[53]

    Figure  13.  Schematic diagram of perovskite passivation strategies:(a) Linear acid/amine ligand passivation, (b) MOFs coating[45], (c) Ion doping[49], and (d) Core-shell structure[53]

  • [1] FU P, SHAN Q, SHANG Y, et al. Perovskite nanocrystals: synthesis properties and applications[J]. Science Bulletin, 2017, 62: 369-380. doi: 10.1016/j.scib.2017.01.006
    [2] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131: 6050-6051. doi: 10.1021/ja809598r
    [3] MUTHU C, NAGAMMA S R, NAIR V C, Luminescent hybrid perovskite nanoparticles as a new platform for selective detection of 2, 4, 6-trinitrophenol[J]. RSC Advances 2014, 4: 55908-55911.
    [4] CHEN D, CHEN X. Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications[J]. Journal of Materials Chemistry C, 2019, 7: 1413-1446. doi: 10.1039/C8TC05545A
    [5] ZHANG J Z. A "cocktail" approach to effective surface passivation of multiple surface defects of metal halide perovskites using a combination of ligands[J]. Journal of Physical Chemistry Letters, 2019, 10: 5055-5063. doi: 10.1021/acs.jpclett.9b01166
    [6] LIU L, XU K, VICKERS E T, et al. Varying the concentration of organic acid and amine ligands allows tuning between quantum dots and magic-sized clusters of CH3NH3PbBr3 perivskite: implications for photonics and energy conversion[J]. ACS Applied Nano Materials, 2020, 3: 12379-12387. doi: 10.1021/acsanm.0c02894
    [7] LIU L, XU K, A’LESTER A, et al. Enhancing the photoluminescence and stability of methylammonium lead halide perovskite nanocrystals with phenylalanine[J]. Journal of Physical Chemistry C, 2021, 125: 2793-2801.
    [8] LIU L, PAN K L, XU K, et al. Synthesis and optical properties of Mn2+-doped amino lead halide molecular clusters assisted by chloride ion[J]. Journal of Physical Chemistry Letters, 2021, 12: 7497-7503. doi: 10.1021/acs.jpclett.1c02243
    [9] LIU L, PAN K L, XU K, et al. Impact of molecular ligands in the synthesis and transformation between metal halide perovskite quantum dots and magic sized clusters[J]. ACS Physical Chemistry Au, 2022, 2: 156-170. doi: 10.1021/acsphyschemau.1c00047
    [10] LIU L, PENG M M, XU K, et al. Molecularly imprinted fluorescence assay based on lead halide perovskite quantum dots for determination of benzo(a)pyrene[J]. Microchimica Acta, 2023, 190: 1-11. doi: 10.1007/s00604-022-05582-1
    [11] LIU L, PENG M M, XU K, et al. Fluorescence quenching detection of clothianidin in fruit and vegetable samples using MAPbBr3 perovskite quantum dots[J]. ACS Applied Nano Materials, 2024, 7: 9176-9183. doi: 10.1021/acsanm.4c00626
    [12] NEDELCU G, PROTESESCU L, YAKUNIN S, et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I)[J]. Nano Lett., 2015, 15: 5635-5640. doi: 10.1021/acs.nanolett.5b02404
    [13] PAN A, HE B, FAN X Y, et al. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors[J]. ACS Nano, 2016, 10: 7943-7954. doi: 10.1021/acsnano.6b03863
    [14] SUHAIL A, KUMAR J, TERON G, et al. Improving stability and photoluminescence of CsPbBr3 quantum dots/CMC polymer composite for optoelectronics application[J]. Optical Materials, 2022, 134: 113200. doi: 10.1016/j.optmat.2022.113200
    [15] HAN Q, GONG S, YU H, et al. Room-temperature synthesis of CsPbBr3@CsPb2Br5 microcrystals and their upconversion luminescence[J]. Optical Materials, 2023, 137: 113477. doi: 10.1016/j.optmat.2023.113477
    [16] CAO Y Q, SHAO Y B, ZHANG J, et al. The photothermal stability study of silica-coated CsPbBr3 perovskite nanocrystals[J]. Journal of Solid State Chemistry, 2022, 311: 123086. doi: 10.1016/j.jssc.2022.123086
    [17] DIRIN D N, PROTESESCU L, TRUMMER D, et al. Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes[J]. Nano Letters, 2016, 16: 5866-5874. doi: 10.1021/acs.nanolett.6b02688
    [18] HINTERMAYR V A, LAMPE C, LöW M, et al. Polymer nanoreactors shield perovskite nanocrystals from degradation[J]. Nano Letters, 2019, 19: 4928-4933. doi: 10.1021/acs.nanolett.9b00982
    [19] ZHOU Q C, BAI Z L, LU W G, et al. In situ fabrication of halide perovskite nanocrystal embedded polymer composite films with enhanced photoluminescence for display backlights[J]. Advanced Materials, 2016, 28: 9163-9168. doi: 10.1002/adma.201602651
    [20] LIGNOS I, STAVRAKIS S, NEDELCU G, et al. Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping[J]. Nano Letters, 2016, 16: 1869-1877. doi: 10.1021/acs.nanolett.5b04981
    [21] CHEN X, HU H, XIA Z, et al. CsPbBr3 perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous HCl detection[J]. Journal of Materials Chemistry, 2017, 5: 309-313.
    [22] ZHU Y, LI F, HUANG Y, et al. Wavelength-shift-based colorimetric sensing for peroxide number of edible oil using CsPbBr3 perovskite nanocrystals[J]. Analytical chemistry, 2019, 91: 14183-14187. doi: 10.1021/acs.analchem.9b03267
    [23] YANG Y, HAN A, HAO S, et al. Fluorescent methylammonium lead halide perovskite quantum dots as a sensing material for the detection of polar organochlorine pesticide residues[J]. Analyst, 2020, 145: 6683-6690. doi: 10.1039/D0AN01127D
    [24] CHEN C, CAI Q, LUO F, et al. Sensitive fluorescent sensor for hydrogen sulfide in rat brain microdialysis via CsPbBr3 quantum dots[J]. Analytical chemistry, 2019, 91: 15915-15921. doi: 10.1021/acs.analchem.9b04387
    [25] WANG S Y, HUANG Y P, ZHANG L C, et al. Highly selective fluorescence turn-on determination of Pb(II) in Water by in-situ enrichment of Pb(II) and MAPbBr3 perovskite growth in sulfydryl functionalized mesoporous alumina film[J]. Sensors and Acruators: B. Chemical, 2021, 326: 128975-128983. doi: 10.1016/j.snb.2020.128975
    [26] HUANG Y, WANG S, ZHU Y, et al. Dual-mode of fluorescence turn-on and wavelength-shift for methylamine gas sensing based on space-confined growth of methylammonium lead tribromide perovskite nanocrystals[J]. Analytical chemistry, 2020, 92: 5661-5665. doi: 10.1021/acs.analchem.0c00698
    [27] HUANG H, HAO M, SONG Y, et al. Dynamic passivation in perovskite quantum dots for specific ammonia detection at room temperature[J]. Small, 2020, 16: 1904462. doi: 10.1002/smll.201904462
    [28] LI G, SHE C, ZHANG Y, et al. A “Turn-on” fluorescence perovskite sensor based on MAPbBr3/mesoporous TiO2 for NH3 and amine vapor detections[J]. Sensors and Actuators B: Chemical, 2021, 327: 128918. doi: 10.1016/j.snb.2020.128918
    [29] WANG Y, ZHU Y, HUANG J, et al. CsPbBr3 perovskite quantum dots-based monolithic electrospun fiber membrane as an ultrastable and ultrasensitive fluorescent sensor in aqueous medium[J]. Journal of Physical Chemistry Letters, 2016, 7: 4253-4258. doi: 10.1021/acs.jpclett.6b02045
    [30] HALAL V V, RANI R S, BALAKRISHNAR G, et al. Ultra-trace level chemosensing of uranyl ions; scuffle between electron and energy transfer from perovskite quantum dots to adsorbed uranyl ions[J]. Microchemical Journal, 2020, 156: 104808. doi: 10.1016/j.microc.2020.104808
    [31] MUTHU C, NAGAMMA S R, NAIR V C, Luminescent hybrid perovskite nanoparticles as a new platform for selective detection of 2, 4, 6-trinitrophenol[J]. RSC Advances 2014, 4: 55908-55911.
    [32] CHEN X, SUN C, LIU Y, et al. All-inorganic perovskite quantum dots CsPbX3 (Br/I) for highly sensitive and selective detection of explosive picric acid[J]. Chemical Engineering Journal, 2020, 379: 122360. doi: 10.1016/j.cej.2019.122360
    [33] WANG T, WEI X, ZONG Y, et al. An efficient and stable fluorescent sensor based on APTES-functionalized CsPbBr3 perovskite quantum dots for ultrasensitive tetracycline detection in ethanol[J]. Journal of Materials Chemistry C, 2020, 8: 12196-12203. doi: 10.1039/D0TC02852E
    [34] YOU X, WU J, CHI Y. Superhydrophobic silica aerogels encapsulated fluorescent perovskite quantum dots for reversible sensing of SO2 in a 3D-printed gas cell[J]. Analytical chemistry, 2019, 91: 5058-5066. doi: 10.1021/acs.analchem.8b05253
    [35] HUANG S Y, TAN L, ZHANG L, et al. Molecularly imprinted mesoporous silica embedded with perovskite CsPbBr3 quantum dots for the fluorescence sensing of 2, 2-dichlorovinyl dimethyl phosphate[J]. Sensors and Actuators B: Chemical, 2020, 325.
    [36] XU K, VICKERS E T, RAO L S, et al. Synergistic surface passivation of CH3NH3PbBr3 perovskite quantum dots with phosphonic acid and (3-Aminopropyl) triethoxysilane[J]. Chemistry-A European Journal, 2019, 25: 5014-5021. doi: 10.1002/chem.201805656
    [37] SHEN J, MENG N, CHEN J, et al. Polyacrylic acid-b-polystyrene-passivated CsPbBr3 perovskite quantum dots with high photoluminescence quantum yield for light-emitting diodes[J]. Chemical Communications, 2022, 58: 4235-4238. doi: 10.1039/D2CC00051B
    [38] LUO B B, PU Y C, LINDLEY SA, et al. Organolead halide perovskite nanocrystals: branched capping ligands control crystal size and stability[J]. Angewandte Chemie International Edition English, 2016, 55: 8864-8868. doi: 10.1002/anie.201602236
    [39] VICKERS E T, GRAHAM TA, CHOWDHURY AH, et al. Improving charge carrier delocalization in perovskite quantum dots by surface passivation with conductive aromatic ligands[J]. ACS Energy Letters, 2018, 3: 2931-2939. doi: 10.1021/acsenergylett.8b01754
    [40] LUO B B, NAGHADEH S B, ALLEN A L, et al. Peptide-passivated lead halide perovskite nanocrystals based on synergistic effect between amino and carboxylic functional groups[J]. Advanced Functional Materials, 2017, 27: 1604018-1604025. doi: 10.1002/adfm.201604018
    [41] KRIEG F, SERCEL P C, BURIAN M, et al. Monodisperse long-chain sulfobetaine-capped CsPbBr3 nanocrystals and their superfluorescent assemblies[J]. ACS Central Science, 2021, 7: 135-144. doi: 10.1021/acscentsci.0c01153
    [42] MANOLI A, PAPAGIORGIS P, SERGIDES M, et al. Surface functionalization of CsPbBr3 nanocrystals for photonic applications[J]. ACS Applied Nano Materials, 2021, 4: 5084-5097. doi: 10.1021/acsanm.1c00558
    [43] HOU S, GUO Y, TANG Y, et al. Synthesis and stabilization of colloidal perovskite nanocrystals by multidentate polymer micelles[J]. ACS Applied Materials & Interfaces, 2017, 9: 18417-18422.
    [44] IMRAN M, MAI B T, GOLDONI L, et al. Switchable anion exchange in polymer-encapsulated APbX3 nanocrystals delivers stable all-perovskite white emitters[J]. ACS Energy Letters, 2021, 6: 2844-2853. doi: 10.1021/acsenergylett.1c01232
    [45] RAMBABU D, BHATTACHARYYA S, SINGH T, et al. Stabilization of MAPbBr3 perovskite quantum dots on perovskite MOFs by a one-step mechanochemical synthesis[J]. Inorganic Chemistry, 2020, 59: 1436-1443. doi: 10.1021/acs.inorgchem.9b03183
    [46] ZHANG Q, WU H, LIN W, et al. Enhancing air-stability of CH3NH3PbBr3 perovskite quantum dots by in-situ growth in metal-organic frameworks and their applications in light emitting diodes[J]. Journal of Solid State Chemistry, 2019, 272: 221-226. doi: 10.1016/j.jssc.2019.02.019
    [47] HOU J W, CHEN P, SHUKLA A, et al. Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses[J]. Science, 2021, 374: 621-625. doi: 10.1126/science.abf4460
    [48] WANG W, SONG S, Li J, et al. Single silica-coated Mn-doped CsPbCl3 perovskite quantum dots with enhanced stability and excellent optical properties[J]. Journal of Luminescence, 2022, 252: 119361. doi: 10.1016/j.jlumin.2022.119361
    [49] XIANG Z H, CAO H S, WEI Y H, et al. Bivalent metal ion co-doped methylammonium lead tribromide perovskite nanocrystal scintillator for X-ray imaging[J]. Chemical Engineering Journal, 2024, 495: 153432-153439. doi: 10.1016/j.cej.2024.153432
    [50] ZHANG L L, KANG C T, ZHANG C Z, et al. All-inoganic CsPbI3 quantum dots solar cells with efficiency over 16% by defect control[J]. Advanced Functional Materials, 2021, 31: 2005930-2005939. doi: 10.1002/adfm.202005930
    [51] WANG W Z, SONG S, CAO B Q, et al. Bi3+ and Eu3+ co-doped CsPbCl3 perovskite quantum dots with efficient controllable blue emission via energy transfer[J]. Journal of Luminescence, 2022, 247: 118901. doi: 10.1016/j.jlumin.2022.118901
    [52] MA Y H, WEI Y C, JIANG F L, et al. Photon upconversion of all-inorganic CsPbX3 quantum dots based on fluorescence resonance energy transfer in hetero-structured perovskite/upconversion nanocomposites[J]. Journal of Luminescence, 2022, 242: 118565-118571. doi: 10.1016/j.jlumin.2021.118565
    [53] HOU S C, GUO Y Z, TAGN Y G, et al. Synthesis and stabilization of colloidal perovskite nanocrystals by multidentate polymer micelles[J]. ACS Applied Materials & Interfaces, 2017, 9: 18417-18422.
    [54] BHAUMIK S, VELDHUIS S A, NG Y F, et al. Highly stable, luminescent core-shell type methylammonium–octylammonium lead bromide layered perovskite nanoparticles[J]. Chemical Communications, 2016, 52: 7118-7121. doi: 10.1039/C6CC01056C
  • 加载中
计量
  • 文章访问数:  25
  • HTML全文浏览量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-28
  • 修回日期:  2024-10-09
  • 录用日期:  2024-10-20
  • 网络出版日期:  2024-10-31

目录

    /

    返回文章
    返回