Progress of metal halide perovskite nanocrystal in the field of fluorescence sensing
-
摘要: 金属卤化物钙钛矿纳米晶因具独特的物理和化学特性,如高光吸收系数、窄发射光谱、高光致发光量子产率以及可调的组分与尺寸等,在发光二极管、太阳能电池、光电探测器、催化、激光、荧光传感等光电技术领域展现出广泛的应用潜力,已成为材料科学领域的研究热点。本文基于金属卤化物钙钛矿纳米晶在荧光传感领域的应用,重点归纳了金属卤化物钙钛矿纳米晶的制备技术、荧光传感机理及在该领域的应用研究进展;同时讨论了其在荧光传感领域应用中面临的稳定性问题及解决方案;最后,总结和展望了具有更高光学性能和稳定性的金属卤化物钙钛矿材料的发展方向。本文旨在通过对其在荧光传感领域应用的综述分析总结,为促进研究人员开发高效稳定的钙钛矿材料提供借鉴。Abstract: Due to the unique physical and chemical properties such as high light absorption coefficient, narrow emission spectrum, high photoluminescence quantum yield, and adjustable composition and size, metal halide perovskite nanocrystal have demonstrated extensive application potential in optoelectronic technologies including light-emitting diodes, solar cells, photodetectors, catalysis, lasers, and fluorescence sensing, and have become a research hotspot in the field of materials science. Based on their application in fluorescence sensing, this paper focuses on summarizing the preparation techniques of metal halide perovskites nanocrystal, the fluorescence sensing mechanism, and the research progress in this field. Meanwhile, it discusses the stability issues faced in the application of metal halide perovskites nanocrystal in fluorescence sensing and their corresponding solutions. Finally, the development direction of metal halide perovskite materials with higher optical performance and stability is summarized and prospected. This paper aims to provide a reference for researchers to develop efficient and stable perovskite materials through a comprehensive review and analysis of their applications in fluorescence sensing.
-
Key words:
- metal halide perovskite /
- fluorescence sensing /
- optical properties /
- stability /
- defect passivation
-
图 7 (a) 方法感应机制;(b) 不同过氧化物浓度的油样荧光光谱(从右到左依次为过氧化氢浓度为0、0.3、0.5 g/100 g和CsPbBr3钙钛矿)(插图显示在365 nm紫外光下的图像)[22]
Figure 7. (a) Sensing mechanism of method; (b) Fluorescence spectra of oil sample with different peroxide numbers (From right to left, the peroxide number is 0, 0.3, 0.5 g/100 g, and CsPbBr3 MHP) (The inset shows the apparent color under 365 nm UV light) [22]
-
[1] FU P, SHAN Q, SHANG Y, et al. Perovskite nanocrystals: synthesis properties and applications[J]. Science Bulletin, 2017, 62: 369-380. doi: 10.1016/j.scib.2017.01.006 [2] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131: 6050-6051. doi: 10.1021/ja809598r [3] MUTHU C, NAGAMMA S R, NAIR V C, Luminescent hybrid perovskite nanoparticles as a new platform for selective detection of 2, 4, 6-trinitrophenol[J]. RSC Advances 2014, 4: 55908-55911. [4] CHEN D, CHEN X. Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications[J]. Journal of Materials Chemistry C, 2019, 7: 1413-1446. doi: 10.1039/C8TC05545A [5] ZHANG J Z. A "cocktail" approach to effective surface passivation of multiple surface defects of metal halide perovskites using a combination of ligands[J]. Journal of Physical Chemistry Letters, 2019, 10: 5055-5063. doi: 10.1021/acs.jpclett.9b01166 [6] LIU L, XU K, VICKERS E T, et al. Varying the concentration of organic acid and amine ligands allows tuning between quantum dots and magic-sized clusters of CH3NH3PbBr3 perivskite: implications for photonics and energy conversion[J]. ACS Applied Nano Materials, 2020, 3: 12379-12387. doi: 10.1021/acsanm.0c02894 [7] LIU L, XU K, A’LESTER A, et al. Enhancing the photoluminescence and stability of methylammonium lead halide perovskite nanocrystals with phenylalanine[J]. Journal of Physical Chemistry C, 2021, 125: 2793-2801. [8] LIU L, PAN K L, XU K, et al. Synthesis and optical properties of Mn2+-doped amino lead halide molecular clusters assisted by chloride ion[J]. Journal of Physical Chemistry Letters, 2021, 12: 7497-7503. doi: 10.1021/acs.jpclett.1c02243 [9] LIU L, PAN K L, XU K, et al. Impact of molecular ligands in the synthesis and transformation between metal halide perovskite quantum dots and magic sized clusters[J]. ACS Physical Chemistry Au, 2022, 2: 156-170. doi: 10.1021/acsphyschemau.1c00047 [10] LIU L, PENG M M, XU K, et al. Molecularly imprinted fluorescence assay based on lead halide perovskite quantum dots for determination of benzo(a)pyrene[J]. Microchimica Acta, 2023, 190: 1-11. doi: 10.1007/s00604-022-05582-1 [11] LIU L, PENG M M, XU K, et al. Fluorescence quenching detection of clothianidin in fruit and vegetable samples using MAPbBr3 perovskite quantum dots[J]. ACS Applied Nano Materials, 2024, 7: 9176-9183. doi: 10.1021/acsanm.4c00626 [12] NEDELCU G, PROTESESCU L, YAKUNIN S, et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I)[J]. Nano Lett., 2015, 15: 5635-5640. doi: 10.1021/acs.nanolett.5b02404 [13] PAN A, HE B, FAN X Y, et al. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors[J]. ACS Nano, 2016, 10: 7943-7954. doi: 10.1021/acsnano.6b03863 [14] SUHAIL A, KUMAR J, TERON G, et al. Improving stability and photoluminescence of CsPbBr3 quantum dots/CMC polymer composite for optoelectronics application[J]. Optical Materials, 2022, 134: 113200. doi: 10.1016/j.optmat.2022.113200 [15] HAN Q, GONG S, YU H, et al. Room-temperature synthesis of CsPbBr3@CsPb2Br5 microcrystals and their upconversion luminescence[J]. Optical Materials, 2023, 137: 113477. doi: 10.1016/j.optmat.2023.113477 [16] CAO Y Q, SHAO Y B, ZHANG J, et al. The photothermal stability study of silica-coated CsPbBr3 perovskite nanocrystals[J]. Journal of Solid State Chemistry, 2022, 311: 123086. doi: 10.1016/j.jssc.2022.123086 [17] DIRIN D N, PROTESESCU L, TRUMMER D, et al. Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes[J]. Nano Letters, 2016, 16: 5866-5874. doi: 10.1021/acs.nanolett.6b02688 [18] HINTERMAYR V A, LAMPE C, LöW M, et al. Polymer nanoreactors shield perovskite nanocrystals from degradation[J]. Nano Letters, 2019, 19: 4928-4933. doi: 10.1021/acs.nanolett.9b00982 [19] ZHOU Q C, BAI Z L, LU W G, et al. In situ fabrication of halide perovskite nanocrystal embedded polymer composite films with enhanced photoluminescence for display backlights[J]. Advanced Materials, 2016, 28: 9163-9168. doi: 10.1002/adma.201602651 [20] LIGNOS I, STAVRAKIS S, NEDELCU G, et al. Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping[J]. Nano Letters, 2016, 16: 1869-1877. doi: 10.1021/acs.nanolett.5b04981 [21] CHEN X, HU H, XIA Z, et al. CsPbBr3 perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous HCl detection[J]. Journal of Materials Chemistry, 2017, 5: 309-313. [22] ZHU Y, LI F, HUANG Y, et al. Wavelength-shift-based colorimetric sensing for peroxide number of edible oil using CsPbBr3 perovskite nanocrystals[J]. Analytical chemistry, 2019, 91: 14183-14187. doi: 10.1021/acs.analchem.9b03267 [23] YANG Y, HAN A, HAO S, et al. Fluorescent methylammonium lead halide perovskite quantum dots as a sensing material for the detection of polar organochlorine pesticide residues[J]. Analyst, 2020, 145: 6683-6690. doi: 10.1039/D0AN01127D [24] CHEN C, CAI Q, LUO F, et al. Sensitive fluorescent sensor for hydrogen sulfide in rat brain microdialysis via CsPbBr3 quantum dots[J]. Analytical chemistry, 2019, 91: 15915-15921. doi: 10.1021/acs.analchem.9b04387 [25] WANG S Y, HUANG Y P, ZHANG L C, et al. Highly selective fluorescence turn-on determination of Pb(II) in Water by in-situ enrichment of Pb(II) and MAPbBr3 perovskite growth in sulfydryl functionalized mesoporous alumina film[J]. Sensors and Acruators: B. Chemical, 2021, 326: 128975-128983. doi: 10.1016/j.snb.2020.128975 [26] HUANG Y, WANG S, ZHU Y, et al. Dual-mode of fluorescence turn-on and wavelength-shift for methylamine gas sensing based on space-confined growth of methylammonium lead tribromide perovskite nanocrystals[J]. Analytical chemistry, 2020, 92: 5661-5665. doi: 10.1021/acs.analchem.0c00698 [27] HUANG H, HAO M, SONG Y, et al. Dynamic passivation in perovskite quantum dots for specific ammonia detection at room temperature[J]. Small, 2020, 16: 1904462. doi: 10.1002/smll.201904462 [28] LI G, SHE C, ZHANG Y, et al. A “Turn-on” fluorescence perovskite sensor based on MAPbBr3/mesoporous TiO2 for NH3 and amine vapor detections[J]. Sensors and Actuators B: Chemical, 2021, 327: 128918. doi: 10.1016/j.snb.2020.128918 [29] WANG Y, ZHU Y, HUANG J, et al. CsPbBr3 perovskite quantum dots-based monolithic electrospun fiber membrane as an ultrastable and ultrasensitive fluorescent sensor in aqueous medium[J]. Journal of Physical Chemistry Letters, 2016, 7: 4253-4258. doi: 10.1021/acs.jpclett.6b02045 [30] HALAL V V, RANI R S, BALAKRISHNAR G, et al. Ultra-trace level chemosensing of uranyl ions; scuffle between electron and energy transfer from perovskite quantum dots to adsorbed uranyl ions[J]. Microchemical Journal, 2020, 156: 104808. doi: 10.1016/j.microc.2020.104808 [31] MUTHU C, NAGAMMA S R, NAIR V C, Luminescent hybrid perovskite nanoparticles as a new platform for selective detection of 2, 4, 6-trinitrophenol[J]. RSC Advances 2014, 4: 55908-55911. [32] CHEN X, SUN C, LIU Y, et al. All-inorganic perovskite quantum dots CsPbX3 (Br/I) for highly sensitive and selective detection of explosive picric acid[J]. Chemical Engineering Journal, 2020, 379: 122360. doi: 10.1016/j.cej.2019.122360 [33] WANG T, WEI X, ZONG Y, et al. An efficient and stable fluorescent sensor based on APTES-functionalized CsPbBr3 perovskite quantum dots for ultrasensitive tetracycline detection in ethanol[J]. Journal of Materials Chemistry C, 2020, 8: 12196-12203. doi: 10.1039/D0TC02852E [34] YOU X, WU J, CHI Y. Superhydrophobic silica aerogels encapsulated fluorescent perovskite quantum dots for reversible sensing of SO2 in a 3D-printed gas cell[J]. Analytical chemistry, 2019, 91: 5058-5066. doi: 10.1021/acs.analchem.8b05253 [35] HUANG S Y, TAN L, ZHANG L, et al. Molecularly imprinted mesoporous silica embedded with perovskite CsPbBr3 quantum dots for the fluorescence sensing of 2, 2-dichlorovinyl dimethyl phosphate[J]. Sensors and Actuators B: Chemical, 2020, 325. [36] XU K, VICKERS E T, RAO L S, et al. Synergistic surface passivation of CH3NH3PbBr3 perovskite quantum dots with phosphonic acid and (3-Aminopropyl) triethoxysilane[J]. Chemistry-A European Journal, 2019, 25: 5014-5021. doi: 10.1002/chem.201805656 [37] SHEN J, MENG N, CHEN J, et al. Polyacrylic acid-b-polystyrene-passivated CsPbBr3 perovskite quantum dots with high photoluminescence quantum yield for light-emitting diodes[J]. Chemical Communications, 2022, 58: 4235-4238. doi: 10.1039/D2CC00051B [38] LUO B B, PU Y C, LINDLEY SA, et al. Organolead halide perovskite nanocrystals: branched capping ligands control crystal size and stability[J]. Angewandte Chemie International Edition English, 2016, 55: 8864-8868. doi: 10.1002/anie.201602236 [39] VICKERS E T, GRAHAM TA, CHOWDHURY AH, et al. Improving charge carrier delocalization in perovskite quantum dots by surface passivation with conductive aromatic ligands[J]. ACS Energy Letters, 2018, 3: 2931-2939. doi: 10.1021/acsenergylett.8b01754 [40] LUO B B, NAGHADEH S B, ALLEN A L, et al. Peptide-passivated lead halide perovskite nanocrystals based on synergistic effect between amino and carboxylic functional groups[J]. Advanced Functional Materials, 2017, 27: 1604018-1604025. doi: 10.1002/adfm.201604018 [41] KRIEG F, SERCEL P C, BURIAN M, et al. Monodisperse long-chain sulfobetaine-capped CsPbBr3 nanocrystals and their superfluorescent assemblies[J]. ACS Central Science, 2021, 7: 135-144. doi: 10.1021/acscentsci.0c01153 [42] MANOLI A, PAPAGIORGIS P, SERGIDES M, et al. Surface functionalization of CsPbBr3 nanocrystals for photonic applications[J]. ACS Applied Nano Materials, 2021, 4: 5084-5097. doi: 10.1021/acsanm.1c00558 [43] HOU S, GUO Y, TANG Y, et al. Synthesis and stabilization of colloidal perovskite nanocrystals by multidentate polymer micelles[J]. ACS Applied Materials & Interfaces, 2017, 9: 18417-18422. [44] IMRAN M, MAI B T, GOLDONI L, et al. Switchable anion exchange in polymer-encapsulated APbX3 nanocrystals delivers stable all-perovskite white emitters[J]. ACS Energy Letters, 2021, 6: 2844-2853. doi: 10.1021/acsenergylett.1c01232 [45] RAMBABU D, BHATTACHARYYA S, SINGH T, et al. Stabilization of MAPbBr3 perovskite quantum dots on perovskite MOFs by a one-step mechanochemical synthesis[J]. Inorganic Chemistry, 2020, 59: 1436-1443. doi: 10.1021/acs.inorgchem.9b03183 [46] ZHANG Q, WU H, LIN W, et al. Enhancing air-stability of CH3NH3PbBr3 perovskite quantum dots by in-situ growth in metal-organic frameworks and their applications in light emitting diodes[J]. Journal of Solid State Chemistry, 2019, 272: 221-226. doi: 10.1016/j.jssc.2019.02.019 [47] HOU J W, CHEN P, SHUKLA A, et al. Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses[J]. Science, 2021, 374: 621-625. doi: 10.1126/science.abf4460 [48] WANG W, SONG S, Li J, et al. Single silica-coated Mn-doped CsPbCl3 perovskite quantum dots with enhanced stability and excellent optical properties[J]. Journal of Luminescence, 2022, 252: 119361. doi: 10.1016/j.jlumin.2022.119361 [49] XIANG Z H, CAO H S, WEI Y H, et al. Bivalent metal ion co-doped methylammonium lead tribromide perovskite nanocrystal scintillator for X-ray imaging[J]. Chemical Engineering Journal, 2024, 495: 153432-153439. doi: 10.1016/j.cej.2024.153432 [50] ZHANG L L, KANG C T, ZHANG C Z, et al. All-inoganic CsPbI3 quantum dots solar cells with efficiency over 16% by defect control[J]. Advanced Functional Materials, 2021, 31: 2005930-2005939. doi: 10.1002/adfm.202005930 [51] WANG W Z, SONG S, CAO B Q, et al. Bi3+ and Eu3+ co-doped CsPbCl3 perovskite quantum dots with efficient controllable blue emission via energy transfer[J]. Journal of Luminescence, 2022, 247: 118901. doi: 10.1016/j.jlumin.2022.118901 [52] MA Y H, WEI Y C, JIANG F L, et al. Photon upconversion of all-inorganic CsPbX3 quantum dots based on fluorescence resonance energy transfer in hetero-structured perovskite/upconversion nanocomposites[J]. Journal of Luminescence, 2022, 242: 118565-118571. doi: 10.1016/j.jlumin.2021.118565 [53] HOU S C, GUO Y Z, TAGN Y G, et al. Synthesis and stabilization of colloidal perovskite nanocrystals by multidentate polymer micelles[J]. ACS Applied Materials & Interfaces, 2017, 9: 18417-18422. [54] BHAUMIK S, VELDHUIS S A, NG Y F, et al. Highly stable, luminescent core-shell type methylammonium–octylammonium lead bromide layered perovskite nanoparticles[J]. Chemical Communications, 2016, 52: 7118-7121. doi: 10.1039/C6CC01056C
计量
- 文章访问数: 25
- HTML全文浏览量: 16
- 被引次数: 0